
Introduction

The present book is devoted to the exposition of the research developments at the
intersection of two active fields of mathematics: Hardy inequalities and related
analysis, and the noncommutative analysis in the setting of nilpotent Lie groups
of different types. Both subjects are very broad and deserve separate monograph
presentations on their own, and many good books are already available.

However, the recent active research in the area does allow one to make a
consistent treatment of ‘anisotropic’ Hardy inequalities, their numerous features,
and a number of related topics. This brings many new insights to the subject,
also allowing to underline the interesting character of its subelliptic features. The
progress in this field is facilitated by the rapid developments in both areas of Hardy
inequalities and related topics, and in the noncommutative analysis on Folland and
Stein’s homogeneous groups.

We will now give some short insights into both fields and into the scope of
this book. Here we only give a general overview, with more detailed references and
explanations of different features presented throughout the monograph.

Hardy inequalities and related topics

The classical L2-Hardy inequality in the modern literature in the Euclidean space
Rn with n ≥ 3 can be written in the form∥∥∥∥ f

|x|E

∥∥∥∥
L2(Rn)

≤ 2

n− 2
‖∇f‖L2(Rn) , (1)

where ∇ is the standard gradient in Rn,

|x|E =
√
x2
1 + · · ·+ x2

n

is the Euclidean norm, f ∈ C∞
0 (Rn), and where the constant 2

n−2 is known to be
sharp. In addition to references in the preface, the multidimensional version of the
Hardy inequality was proved by J. Leray [Ler33].

It has numerous applications in different fields, for example in the spec-
tral theory, leading to the lower bounds for the quadratic form associated to the
Laplacian operator. It is also related to many other areas and fields, notably to
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2 Introduction

the uncertainty principles. The uncertainty principle in physics is a fundamental
concept going back to Heisenberg’s work on quantum mechanics [Hei27, Hei85], as
well as to its mathematical justification by Hermann Weyl [Wey50]. In the simplest
Euclidean setting it can be stated as the inequality(∫

Rn

|∇φ|2dx
)(∫

Rn

|x|2Eφ2dx

)
≥ n2

4

(∫
Rn

φ2dx

)2

, (2)

for all real-valued functions φ ∈ C∞
0 (Rn), where the constant n2

4 is sharp. It can
be shown to be a consequence of (1). There are good surveys on the mathematical
aspects of uncertainty principles by Fefferman [Fef83] and by Folland and Sitaram
[FS97]. We also note that the uncertainty principle can be also obtained without
Hardy inequalities, see, e.g., Ciatti, Ricci and Sundari [CRS07].

The inequality (1) can be extended to Lp-spaces, taking the form∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p
‖∇f‖Lp(Rn) , n ≥ 2, 1 ≤ p < n, (3)

where f ∈ C∞
0 (Rn), and where the constant p

n−p is known to be sharp.

As mentioned in the preface, such inequalities go back to Hardy [Har19], and
have been evolving and growing over the years. In fact, the subject is so deep
and broad at the same time that it would be impossible to give justice to all the
authors who have made their contributions. To this end, we can refer to several
extensive presentations of the subject in the books and surveys and the references
therein: Opic and Kufner [OK90] in 1990, Davies [Dav99] in 1999, Edmunds and
Evans [EE04] in 2004, part of Mazya’s books [Maz85, Maz11], Ghoussoub and
Moradifam [GM13] in 2013, and the recent book by Balinsky, Evans and Lewis
[BEL15]. Hardy type inequalities have been very intensively studied, see, e.g., also
Davies and Hinz [DH98], Davies [Dav99] as well as Ghoussoub and Moradifam
[GM11] for reviews and applications.

One further extension of the Hardy inequality is the now classical result by
Rellich appearing at the 1954 ICM in Amsterdam [Rel56] with the inequality∥∥∥∥ f

|x|2E

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)
‖Δf‖L2(Rn), n ≥ 5, (4)

with the sharp constant. We can refer, for example, to Davies and Hinz [DH98]
(see also Brézis and Vázquez [BV97]) for further history and later extensions,
including the derivation of sharp constants.

Higher-order Hardy inequalities have been also intensively investigated. Some
of such results go back to 1961 to Birman [Bir61, p. 48] who has shown, for
functions f ∈ Ck

0 (0,∞), the family of inequalities∥∥∥∥ f

xk

∥∥∥∥
L2(0,∞)

≤ 2k

(2k − 1)!!

∥∥∥f (k)
∥∥∥
L2(0,∞)

, k ∈ N, (5)
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where (2k − 1)!! = (2k − 1) · (2k − 3) · · · 3 · 1. For k = 1 and k = 2 this reduces to
one-dimensional Hardy and Rellich inequalities, respectively. Such one-dimensional
inequalities have recently found new life and one can find their historical discussion
by Gesztesy, Littlejohn, Michael and Wellman in [GLMW17].

There is now a whole scope of related inequalities playing fundamental roles
in different branches of mathematics, in particular, in the theory of linear and
nonlinear partial differential equations. For example, the analysis of more general
weighted Hardy–Sobolev type inequalities has also a long history, initiated by
Caffarelli, Kohn and Nirenberg [CKN84] as well as by Brézis and Nirenberg in
[BN83], and then Brézis and Lieb [BL85] with a mixture with Sobolev inequalities,
Brézis and Vázquez in [BV97, Section 4], also [BM97], with many subsequent works
in this direction. We also refer to more recent paper of Hoffmann-Ostenhof and
Laptev [HOL15] on this subject and to further references therein. Many of these
inequalities will be also appearing in the present book.

Of course, there are many more aspects to Hardy inequalities. In particular,
working in domains, one can establish inequalities under certain boundary condi-
tions. For example, for Hardy inequalities for Robin Laplacians and p-Laplacians
see [KL12] and [EKL15], respectively, or [LW99, BLS04] for magnetic versions,
or [BM97, HOHOL02] for versions involving the distance to the boundary. For
Hardy inequalities for discrete Laplacians see, e.g., [KL16], or [HOHOLT08] for
many-particle versions.

Homogeneous groups of different types

The harmonic analysis on homogeneous groups goes back to 1982 to Folland and
Stein who in their book [FS82] laid down the foundations of ‘anisotropic’ harmonic
analysis, that is, the harmonic analysis that depends only on the group and dilation
structures of the group.

Such homogeneous groups are necessarily nilpotent, and provide a unified
framework including many well-known classes of (nilpotent) Lie groups: the Eu-
clidean space, the Heisenberg group, H-type groups, polarizable Carnot groups,
stratified groups (homogeneous Carnot groups), graded groups. All of these groups
are homogeneous and have the rational weights for their dilations.

The class of homogeneous groups is closer to the classical analysis than one
might first think: in fact, any homogeneous group can be identified with some space
R

n with a polynomial group law. The simplest examples are Rn itself, where the
group law is linear, or the Heisenberg group, where the group law is quadratic in
the last variable.

An important feature of homogeneous groups is that they do not have to
allow for homogeneous hypoelliptic left invariant partial differential operators. In
fact, if such an operator exists, the group has to be graded and its weights of
dilations are rational. The class of stratified groups is a particularly important
class of graded groups allowing for a homogeneous second-order sub-Laplacian. In
general, nilpotent Lie groups provide local models for many questions in subelliptic



4 Introduction

analysis and sub-Riemannian geometry, their importance widely recognized since
the essential role they played in deriving sharp subelliptic estimates for differential
operators on manifolds, starting from the seminal paper by Rothschild and Stein
[RS76] (see also [Fol77, Rot83]).

In order to facilitate the exposition in the sequel, in Chapter 1 we will recall
all the necessary facts needed for the analysis in this book.

We note, however, that the general scope of techniques available on such
groups is much more extensive than presented in Chapter 1. The fundamental
paper by Folland [Fol75] developed the rich functional analysis on stratified groups.
Further functional spaces (e.g., of Besov type) on stratified groups have been
analysed by Saka [Sak79]. There are many sources with rather comprehensive
and deep treatments of general nilpotent Lie groups, for example, the books by
Goodman [Goo76] or Corwin and Greanleaf [CG90]. Good sources of information
are the notes by Fulvio Ricci [Ric] and Folland’s books [Fol89, Fol95, Fol16].

As a side remark we can note that there is also a number of recent works
developing function spaces on graded groups extending Folland and Saka’s con-
structions in the stratified case, see [FR17] and [FR16] for Sobolev, and [CR16]
and [CR17] for Besov spaces, respectively.

In our presentation and approach to the basic analysis on homogeneous
groups of different types we mostly rely on the recent open access book [FR16].
Moreover, the exposition of the topics in this book is done more in the spirit
of the classical potential theory, without much reference to the Fourier analysis.
However, here we should mention that the noncommutative Fourier analysis on
nilpotent Lie groups is extremely rich, with many powerful approaches available,
such as Kirillov’s orbit method [Kir04], Mackey general description of the unitary
dual, or the von Neumann algebra approaches of Dixmier [Dix77, Dix81]. We can
refer to [FR16, Appendix B] for a workable summary of these methods.

The recently developed noncommutative quantization theories on nilpotent
Lie groups, in particular, the global theory of pseudo-differential operators on
graded groups, indeed heavily rely on such Fourier analysis. We refer the interested
reader to [FR16] for the thorough exposition and application of such methods. A
good exposition of the analysis of questions not requiring the Fourier analysis, in
the setting of stratified groups, can be found in the book [BLU07] by Bonfiglioli,
Lanconelli and Uguzzoni.

Hardy inequalities and potential theory on stratified groups

The study of the subelliptic Hardy inequalities has also begun more than 40 years
ago due to their importance for many questions involving subelliptic partial differ-
ential equations, unique continuation, sub-Riemannian geometry, subelliptic spec-
tral theory, etc. Not surprisingly, here the work started with the most important
example of the Heisenberg group, where we can mention a fundamental contribu-
tion by Garofalo and Lanconelli [GL90].
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There is a deep link with the properties of the fundamental solutions for the
sub-Laplacian on stratified groups. In general, the understanding of the fundamen-
tal solutions of differential operators is one of the keys for solving boundary value
problems for differential equations in a domain, and this idea has a long history
dating back to the works of mathematicians such as Gauss [Gau77, Gau29] and
Green [Gre28].

In general, the sub-Laplacians on stratified (and on more general graded)
groups play important roles not only in theoretical settings (see, e.g., Gromov
[Gro96] or Danielli, Garofalo and Nhieu [DGN07] for general expositions from
different points of view), but also in applications of mathematics, for example
in mathematical models of crystal material and human vision (see, for example,
[Chr98] and [CMS04]).

The fundamental solution for the sub-Laplacian on stratified groups behaves
well and was already understood by Folland [Fol75]. In particular, one always has
its existence and uniqueness, an advantageous feature when compared to higher-
order operators on stratified groups, or more general hypoelliptic operators on
graded groups, see Geller [Gel83], and an exposition in [FR16, Section 3.2.7].

Roughly speaking, there are three versions of Hardy type inequalities on
stratified groups available in the literature:

(A) Using the homogeneous quasi-norm, sometimes called the L-gauge, given by
the appropriate power of the fundamental solution of the sub-Laplacian L.
Thus, if d(x) is the L-gauge, then d(x)2−Q is a constant multiple of Folland’s
[Fol75] fundamental solution of the sub-Laplacian L, with Q being the ho-
mogeneous dimension of the stratified group G; these will be discussed in
Chapter 7.

(B) Using the Carnot–Carathéodory distance, i.e., the control distance associated
to the sub-Laplacian.

(C) Using the Euclidean distance on the first stratum of the group.

One can note that if one is not interested in best constants in such inequalities
one can work with any of these equivalent quasi-norms. In fact, in such a case one
can also work with fractional-order derivatives expressed as arbitrary powers of the
sub-Laplacian, see, e.g., Ciatti, Cowling and Ricci [CCR15] for such an analysis on
stratified groups, as well as Yafaev [Yaf99] for some Euclidean considerations also
with best constants, or Hoffmann-Ostenhof and Laptev [HOL15] and references
therein.

However, the best constants in the corresponding inequalities in cases (A)–
(C) above may depend on the quasi-norm that one is using.

Thus, in the case (A) there is an extensive literature on Hardy inequalities
and related topics on stratified groups relating them to the fundamental solution to
the sub-Laplacian. Here we can briefly mention some papers [GL90, GK08, Gri03,
NZW01, HN03, D’A04b, WN08, DGP11, Kom10, JS11, Lia13, Yan13, CCR15,
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Yen16, GKY17], with more details and acknowledgements given throughout the
book. Here, the Hardy inequality typically takes the form∥∥∥∥ f

d(x)

∥∥∥∥
Lp(G)

≤ p

Q− p
‖∇Hf‖Lp(G) , Q ≥ 3, 1 < p < Q, (6)

where Q is the homogeneous dimension of the stratified group G, ∇H is the hor-
izontal gradient, and d(x) is the so-called L-gauge related to the fundamental
solution of the sub-Laplacian, and the constant is sharp. The analysis in the case
(A) in terms of the fundamental solution of the sub-Laplacian will be the subject
of Chapter 11 of this book.

The results on Hardy and other inequalities for the case (B) are less extensive,
mostly devoted to the case of the Heisenberg group. However, the case (C) has
recently attracted a lot of attention due to its geometrically clear nature and
importance for questions in partial differential equations, see, e.g., [BT02a] and
[D’A04b]. A typical horizontal Hardy inequality would take the form∥∥∥∥ f

|x′|
∥∥∥∥
Lp(G)

≤ p

N − p
‖∇Hf‖Lp(G) , 1 < p < N, (7)

where N is the dimension of the first stratum, x′ denotes the variables in the first
stratum of G, and

|x′| =
√
x′2
1 + · · ·+ x′2

N

is the Euclidean norm on the first stratum of G, which can be identified with RN .
The constant p

N−p in (7) is also sharp.

In Chapter 6 we aim at giving a comprehensive treatment of such horizontal
estimates based on the divergence relations and on the potential theory on the
stratified groups.

Another ingredient that we find to be missing in the literature in the setting
of stratified groups is the classical style potential theory working with layer po-
tential operators. Indeed, nowadays the appearing boundary layer operators and
elements of the potential theory serve as the main apparatus for the analysis and
construction of solutions to boundary value problems. That have led to a vast
literature concerning modern theory of boundary layer operators and potential
theory in Rn as well as their important applications. In the subelliptic setting we
can mention the works of Jerison [Jer81] and Romero [Rom91] on the Heisenberg
group. We refer to [GL03], [GN88], [GW92], [LU97], [RS17d] and [WN16] as well
as to references therein for more general Green function analysis of second order
subelliptic (and weighted degenerate) operators. In this book, we follow a more
geometric approach of our recent paper [RS17c] to present such a subject in the
setting of general stratified groups, and to give its applications to several ques-
tions, such as boundary value problems for the sub-Laplacian, traces of Newton
potential operators, and Hardy inequalities with boundary terms. All these topics
will be the subject of discussions in Chapter 11.
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The boundary value problems in the subelliptic settings are substantially
more complicated than in the elliptic case due to the appearance of so-called
characteristic points at the boundary – some problems of such a type are well
explained, e.g., in [DGN06]. However, there is still a particular type of boundary
conditions (Kac’ boundary value problem) which can be viewed as a subelliptic
version of M. Kac’s question: is there any boundary value problem for the Laplacian
which is explicitly solvable in the classical sense for any smooth domain?

An answer to M. Kac’s question was given in [RS16c] for the Heisenberg
group and in [RS17c] for general stratified groups. The appearing boundary condi-
tions are, however, nonlocal and the corresponding boundary value problem can be
called Kac’s boundary value problem. One interesting fact is that the explicit solu-
tions that one constructs for Kac’s boundary value problem for the sub-Laplacian
work also well in the presence of characteristic points on the boundary.

In Section 11.5 we also discuss another version of such a question: is there
a class of domains in which the Dirichlet boundary value problem for the sub-
Laplacian is explicitly solvable in the classical sense? This is discussed in the
setting of H-type groups following our recent paper [GRS17] with Nicola Garofalo.

Furthermore, in Chapter 12 we will give an exposition of the potential the-
ory and related Hardy–Rellich inequalities for more general Hörmander’s sums of
squares, based on the properties of the fundamental solutions rather than those
of the L-gauge. This has a definitive advantage of eliminating the need to use
Folland’s formula relating the L-gauge with the fundamental solution. As a result,
we can extend the analysis to more general settings, also those without any group
structure, dealing with Hörmander’s sums of squares beyond the setting of the
stratified groups.

In general, there are several ways to obtain improvements of Hardy inequal-
ities by including boundary terms. For the Laplacians such problems have been
considered in [ACR02] by using variational method and in [WZ03] by using confor-
mal transformation method. The methods described in this book are based on the
potential theory and, compared to other approaches, do not rely so much on the
particular structure of the Euclidean space. Certain Hardy and Rellich inequalities
for sums of squares have been considered by Grillo [Gri03], compared to which our
approach provides refinements from several points of view, based on the general-
ized representation formulae (Green’s formulae) of non-subharmonic functions for
improved Hardy and Rellich type inequalities with boundary terms.

Hardy inequalities and related topics on homogeneous groups

The lack of homogeneous hypoelliptic left invariant differential operators on gen-
eral homogeneous groups is compensated by several other advantageous properties,
such as a good polar decomposition which, combined with dilations, still allows
one to explore the radial structure of the group. For this purpose, we extensively
work with the radial derivative operator R and the Euler operator E which we
describe in Section 1.3.
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This fits well with the structure of Hardy and other inequalities as their max-
imisers are often achieved on radial functions. An advantage of such an approach is
that one can also work with arbitrary quasi-norms and anisotropic structures still
yielding similar properties and best constants in the inequalities. In addition, in
Section 1.3.3 we demonstrate how the Hardy type inequalities for radial functions
often imply similar inequalities for functions of general (non-radial) type.

Thus, Chapter 2 is devoted to Hardy inequalities on homogeneous groups,
their weighted and critical versions, stability and remainder estimates. Further-
more, Chapter 3 is devoted to Rellich, Caffarelli–Kohn–Nirenberg and Sobolev
type inequalities on homogeneous groups. In Chapter 9 we present different ver-
sions of uncertainty principles on homogeneous groups. We follow an abstract
approach by defining abstract position and momentum operators satisfying min-
imal structural properties, already allowing one to establish a number of uncer-
tainty type relations. Consequently, different choices of such abstract position and
momentum operators are possible based on the additional structural properties
available on the group.

In Chapter 10 we discuss different function spaces on homogeneous groups,
with or without differentiability properties. The spaces involving radial deriva-
tives are the Euler–Hilbert–Sobolev and Sobolev–Lorentz–Zygmund spaces. We
investigate their basic properties and embeddings. The spaces not involving the
differentiable structure are the Morrey and Campanato spaces. There, we discuss
the boundedness of integral operators, namely, the Hardy–Littlewood maximal
operator, Bessel–Riesz operators, generalized Bessel–Riesz operators, generalized
fractional integral operators and Olsen type inequalities in generalized Morrey
spaces on homogeneous groups.

Incidentally, all these and other results on homogeneous groups in this book
give new statements already in the Euclidean setting of Rn when we are working
with anisotropic differential structure in view of the arbitrariness of the choice of
any homogeneous quasi-norm.

Let us consider, for instance, the following Bessel–Riesz operators

Iα,γf(x) =

∫
Rn

|x− y|α−n
E

(1 + |x− y|E)γ f(y)dy, (8)

where f ∈ Lp
loc(R

n), p ≥ 1, γ ≥ 0 and 0 < α < n. Classical results on the Bessel–
Riesz operators are due to Hardy, Littlewood and Sobolev, precisely, the bound-
edness of the Bessel–Riesz operators on Lebesgue spaces was shown by Hardy
and Littlewood in [HL27], [HL32] and by Sobolev in [Sob38]. In the case of Rn,
the Hardy–Littlewood maximal operator, the Riesz potential Iα,0 = Iα, the gen-
eralized fractional integral operators, which are a generalized form of the Riesz
potential Iα,0 = Iα, Bessel–Riesz operators and Olsen type inequalities are widely
analysed on Lebesgue spaces, Morrey spaces and generalized Morrey spaces. For
further discussions in this direction we refer to [Ada75, CF87, BNC14, Nak94,
EN04, Eri02, KNS99, Nak01, Nak02, GE09, SST12, IGLE15, IGE16], as well as to
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[Bur13] for a recent survey. Morrey spaces for non-Euclidean distances find their
applications in many problems, see, e.g., [GS15a, GS15b] and [GS16]. A natural
analogue of the Bessel–Riesz operator (8) on homogeneous groups is the operator

Iα,γf(x) :=

∫
G

|xy−1|α−Q

(1 + |xy−1|)γ f(y)dy.

In the setting of graded Lie groups the connections between these operators and the
Sobolev spaces have been investigated in [FR16, Chapter 4] using the heat kernel
methods. Here, in Chapter 10 we concentrate on the harmonic analysis aspects in
the framework of Morrey and Campanato spaces on homogeneous groups.

In addition, we can mention an overview of constructions for Morrey–Campa-
nato spaces in [RSS13] by Rafeiro, N. Samko and S. Samko, or in [RT15] by
Rosenthal and Triebel. It is worth noting that Morrey–Campanato spaces can
be interpolated [VS14]. One also considered variable exponent versions of Morrey
spaces and maximal and singular operators there, see [GS13, GS16] and references
therein.

In Chapter 4 we look at the Hardy inequalities from the point of view of
operators of fractional orders. Certainly, fractional powers of Laplacians and sub-
Laplacians can be defined in different ways, e.g., using the Fourier or spectral
analysis. However, here, we first adopt the integral representation that turns out
to make perfect sense on general homogeneous groups. More specifically, for p > 1
and s ∈ (0, 1), we consider the fractional p-sub-Laplacian (−Δp)

s on a general
homogeneous group G defined by the formula

(−Δp)
su(x) := 2 lim

δ↘0

∫
G\B(x,δ)

|u(x) − u(y)|p−2(u(x)− u(y))

|y−1x|Q+sp
dy, x ∈ G,

where B(x, δ) = B|·|(x, δ) is a quasi-ball with respect to the quasi-norm | · |, with
radius δ centred at x ∈ G. It turns out that this operator has many advantageous
properties similar to those exhibited by the usual p-Laplacians on the Euclidean
spaces, and in Chapter 4 we present their analysis and some applications to ‘partial
differential’ functional equations and related spectral questions. Consequently, we
look at operators of fractional orders from a different point of view, and in Section
4.7 we discuss the boundedness of the operator

Tαf(x) := |x|−αL−α/2f(x),

on Lp-spaces on stratified Lie groups, where L is a sub-Laplacian. The analysis is
based on the Riesz kernel representation of such operators, and we also supplement
it with several versions of the Landau–Kolmogorov inequalities.

In Chapter 5 we discuss integral versions of Hardy inequalities. In fact, such
a point of view goes back to one of the original versions of such inequalities by
Hardy [Har20], where he has shown the inequality∫ ∞

b

(∫ x

b
f(t)dt

x

)p

dx ≤
(

p

p− 1

)p ∫ ∞

b

f(x)pdx,
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where p > 1, b > 0, and f ≥ 0 is a non-negative function. It turns out that such
an inequality can be also put in the framework of general homogeneous groups,
especially since it does not involve derivatives, so that one does not need to specify
one’s analysis to a particular choice of the gradient. Thus, in Chapter 5 we present
inequalities of such a type in weighted and unweighted settings, actually providing
characterizations of weights for which integral Hardy inequalities hold true. We
also present inequalities in the convolution form which, in turn, can be used for
the derivation of Hardy–Littlewood–Sobolev and Stein–Weiss inequalities. The
latter can be then established both on general homogeneous groups as well as on
stratified/graded groups using Riesz kernels of hypoelliptic differential operators.

In Chapter 8 we discuss the so-called geometric versions of Hardy inequalities.
By this one usually means Hardy inequalities on domains when the distance to
the boundary enters the inequality as a weight. For example, if Ω is a convex open
set of the Euclidean space Rn, then a geometric version of the Hardy inequality
can take a form ∫

Ω

|∇u|2dx ≥ 1

4

∫
Ω

|u|2
dist(x, ∂Ω)2

dx,

for all u ∈ C∞
0 (Ω), with the sharp constant 1/4. In the case of half-spaces and,

more generally, convex domains, in Chapter 8 we present such inequalities in the
setting of stratified groups.
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