
Reconciling Practice and Rigour in Ontology-
Based Heterogeneous Information Systems

Construction

Carme Quer1(&) , Xavier Franch1 , Cristina Palomares1 ,
Andreas Falkner2, Alexander Felfernig3 , Davide Fucci4,
Walid Maalej4, Jennifer Nerlich5, Mikko Raatikainen6 ,

Gottfried Schenner2, Martin Stettinger3, and Juha Tiihonen6

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{cquer,franch,cpalomares}@essi.upc.edu

2 Siemens AG Österreich, Vienna, Austria
{andreas.a.falkner,gottfried.schenner}@siemens.com

3 Graz University of Technology, Graz, Austria
{felfernig,stettinger}@ist.tugraz.at
4 University of Hamburg/HITeC, Hamburg, Germany

{fucci,maalej}@informatik.uni-hamburg.de
5 Vogella GmbH, Hamburg, Germany

jennifer.nerlich@vogella.com
6 University of Helsinki, Helsinki, Finland

{mikko.raatikainen,juha.tiihonen}@helsinki.fi

Abstract. Ontology integration addresses the problem of reconciling into one
single semantic framework different knowledge chunks defined according to its
own ontology. This field has been subject of analysis and many consolidated
theoretical results are available. Still, in practice, ontology integration is difficult
in heterogeneous information systems (HIS) that need to integrate assets already
built and running which cannot be changed. Furthermore, in practice, the
composed assets are usually not really defined according to an ontology but to a
data model which is less rigorous but fit for the purpose of defining a data
schema. In this paper, we propose a method for integrating assets participating
in a HIS using a domain ontology, aimed at finding an optimal balance between
semantic rigour and feasibility in terms of adoption in a real-world setting. The
method proposes the use of data models describing the semantics of existing
assets; their analysis in order to find commonalities and misalignments; the
definition of the domain ontology, considering also other sources as standards,
to express the main concepts in the HIS domain; the connection of the local
models with this domain ontology; and its abstraction into a metamodel to
facilitate further extensions. The method is an outcome of a collaborative
software development project, OpenReq, aimed at delivering an ontology for
requirements engineering (RE) designed to serve as baseline for the data model
of an open platform offering methods and techniques to the RE community. The
construction process of this ontology will be used to illustrate the method.

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
R. A. Buchmann et al. (Eds.): PoEM 2018, LNBIP 335, pp. 205–220, 2018.
https://doi.org/10.1007/978-3-030-02302-7_13

http://orcid.org/0000-0002-9000-6371
http://orcid.org/0000-0001-9733-8830
http://orcid.org/0000-0003-4722-5584
http://orcid.org/0000-0003-0108-3146
http://orcid.org/0000-0002-2410-0722
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02302-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02302-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02302-7_13&domain=pdf

Keywords: Ontology integration � Heterogeneous information systems
Domain ontology � Requirements engineering ontology

1 Introduction

Modern information systems are rarely monolithic, but instead they are heterogeneous,
composed of different subsystems that altogether provide the required functionality.
Quite often, these subsystems follow their own rules and manage their own data
schemas, which need to fit together at different levels, from conceptual (e.g., to provide
a consolidated vocabulary) to operational (e.g., to allow their interoperability). This is
especially true in collaborative software development projects, where different orga-
nizations bring some existing assets that need to be combined into a holistic system.

The reconciliation of the different data schemas can be implemented through
ontology integration. An ontology defines an explicit specification of a conceptual-
ization [1]. Ontologies are tightly related to other conceptual modelling artifacts as
modelling languages and metamodels [2]. Ontology-based data model integration
addresses the problem of building a new ontology for heterogeneous information
systems (HIS) composed of subsystems that need to interoperate [3]. Methods for
ontology integration have been proposed for more than 20 years (see Sect. 2), but
integration in real settings remains a challenging problem due to several reasons.
Among them, there is the need to find an adequate trade-off between rigour in the
integration and feasibility in terms of return on investment for the organizations
involved.

The need for such practical method became evident during the OpenReq collab-
orative software development project in which the authors are participating (www.
openreq.eu). The main goal of OpenReq is to develop, evaluate, and transfer highly
innovative methods, algorithms, and tools for community-driven RE in large and
distributed software-intensive projects. To this end, four universities and five compa-
nies from Europe collaborate in the deployment of a platform providing services to the
community. The platform will be built upon a data schema derived from a domain
ontology for RE which should reconcile a global perspective to satisfy the requests of
the community and a local perspective to integrate the current assets, techniques and
needs from all the project partners. The purpose of the ontology is thus supporting the
development and integration of techniques while serving as a reference framework for
the community.

In this context, the present work addresses the following research goal:

Research Goal. To propose a method based on domain ontologies to integrate
the data models of assets participating in a HIS with optimal trade-off of semantic
rigour and feasibility in terms of implementation effort and adoption in a real
setting.

206 C. Quer et al.

http://www.openreq.eu
http://www.openreq.eu

The rest of the paper is organized as follows. Section 2 provides the background.
Section 3 presents the context of our research. Section 4 shows the method proposed to
construct the domain ontology applied in the OpenReq case, which is developed in
details in Sects. 5–9. Finally, Sect. 10 conducts some discussion and identifies future
work.

2 Background

The application of ontology integration in the context of HIS was claimed by Sowa [4],
who also identified two possible ways to proceed: replace the original ontologies by the
new one, or use the new one as an intermediary between the HIS. This second option
seems more appropriate when integrating models with little room for changes, as it is
the case for the context that we are addressing in this paper.

Calvanese et al. [5] formally defined the semantics of integration in this scenario. It
is characterised by a mapping between the new ontology (called global ontology) and
local ontologies (which are used as a starting point for the integration). This mapping
can be defined adopting either a global-centric approach or a local-centric approach. In
the global-centric approach, every term in the global ontology has associated a view
(i.e., a query) over the local ontologies, while in the local-centric approach every term
in a local ontology is mapped onto a view over the global ontology.

In our work, we follow this idea reviewed also in De Giacomo et al. [6]. In this kind
of integration the ontology is a formal and conceptual view and constitutes the com-
ponent to which the clients of the integrated information systems use to interact with
them. In our case, we consider also as clients the own information systems integrated
that use the ontology to interact with the rest of the system. Thus, the ontology provides
the semantic data integration of the heterogeneous information systems.

3 The Context: The OpenReq Project

The OpenReq collaborative development project will support (see Fig. 1): (1) the
automated identification of requirements from different knowledge sources (e.g., com-
munities or natural language text documents); (2) the personal recommendation of
requirements as well as requirement-related aspects (such as quality tips or requirement
metadata fields) and stakeholders; (3) the support of group decision making (e.g., in
release planning) by providing a solution that fulfills all users preferences or indicates the
conflicts that need to be solved to provide a solution; (4) the automated identification of
(hidden) dependencies between requirements. OpenReq will provide an open source tool
and a set of APIs that will integrate these innovative technologies applied to RE.

OpenReq is a classic example of a collaborative software development project that
needs to address contradicting challenges for producing a HIS, as defined in the
introduction:

• Different partners bring to the project their own assets in the form of implemented
software components. The partners developed these components for their own

Reconciling Practice and Rigour in Ontology-Based 207

purposes and they do not want to change their data model and (underlying)
ontology.

• These assets need to be reconciled because the project aims at delivering a single,
unifying platform. Furthermore, given that the platform shall be open to the RE
community, it is utterly important that the resulting domain model is cohesive and
general-enough.

4 The Method

In this section, we briefly present the method proposed for ontology-based integration
in the context stated above, emerging from our experience in the OpenReq project. The
method is composed of five steps (see Fig. 2) briefly enumerated below and developed
in detail in the next sections.

• Step I: Creation of the Baseline. Obtain (if they do not exist yet) the local data
model of each of the existing assets to be reconciled.

• Step II: Analysis of the Baseline. Local data models are aligned to understand
which are the core concepts and identify possible contradictions and variants.

• Step III: Definition of the Domain Ontology. From the previous analysis and
considering conveniently standards and other reference models for the domain, the
domain ontology is defined around the core concepts, integrating the different
variants and solving all detected contradictions.

• Step IV: Mapping among the Local Data Models and the Domain Ontology. In
order to support the semantic alignment of the existing assets, the mapping among
the local data models and the domain ontology is defined.

• Step V: Definition of the Metamodel. With the purpose to better structure the
domain ontology and to support easier maintainability, a metamodel is built
abstracting the concepts appearing in the domain ontology.

Fig. 1. The OpenReq approach to RE.

208 C. Quer et al.

5 Step I: Creation of the Baseline

In this first step, the goal is to represent in the same modelling paradigm the ontologies
that the different partners participating in a collaborative development project are
currently using as semantic framework for their assets. This way, we avoid two of the
main types of ontology mismatches that could have make the integration process
harder: paradigm heterogeneity and language heterogeneity [7].

As already stated, it will not be usual to have fully-fledged ontologies defining the
assets to be integrated into the HIS. Therefore, we propose to use data models to
describe such assets, as simplified representation of the (underlying) ontologies. More
precisely, we propose UML class diagrams plus a vocabulary of terms for each input
model, since the idea is to use UML for the domain ontology representation. The use of
UML class diagrams in ontology representation is quite usual and well-established [8]
and has two advantages. On the one hand, class diagrams for the assets may already
exist or otherwise, they are easy to build from a database schema, which is a technical
artefact that can be assumed to exist. On the other hand, class diagrams (particularly, in
UML) are a widespread notation that usually will not require any kind of training.
Working with UML instead of other more accurate formalisms has one drawback,
namely the limitations in reasoning capabilities. If such capabilities were required, we

Fig. 2. The OpenReq approach to the definition of a domain ontology for RE.

Reconciling Practice and Rigour in Ontology-Based 209

could still apply this same method, using other ontology representation language, e.g.,
based on Description Logics.

The OpenReq Case. In OpenReq, the baseline is composed of five local data models
(and associated vocabulary) that we identify hereafter with the acronym of the partner1:

• The UPC data model. Quite general, it is a subpart of the PABRE system con-
ceptual model for requirements reuse [9].

• The TUGRAZ data model. In addition to some general-purpose concepts for
requirements, this model also includes concepts related to release planning (i.e.,
distributing the requirements into releases).

• The HITEC data model. It is based on the concept of user feedback (as source of
requirements), expressed as comments and ratings in an app stores [10] and social
media [11], but also as usage data obtained, for example, from handheld devices.

• The SIEMENS data model. This model is specific for requests for proposal (RFPs)
in an industrial context such as rail automation.

• The VOGELLA data model. It comprises very few classes that correspond to the
Bugzilla system used by the Eclipse project to maintain issues.

In all the cases, the partners represented such data models with UML class dia-
grams, which were leveraged in this first step by means of a vocabulary including all
the relevant concepts introduced in the diagram. For the sake of illustration, just to
understand the big diversity that we may find in such collaborative development
projects, Fig. 3 shows the class diagrams of two partners, UPC and VOGELLA.

Fig. 3. Fig. 3 Class diagrams included in the baseline: UPC (up) and VOGELLA (down) (UPC
data model does not include attributes due to space reasons).

1 We refer to authors’ affiliations in the first page.

210 C. Quer et al.

6 Step II: Analysis of the Baseline

The main purpose of this step is to analyse the local models and vocabularies that
compose the baseline for their later alignment. In a collaborative software project, we
may expect different interests from all the partners, different contexts, scopes, etc. In
addition, every domain may have its own additional challenges, e.g. heterogeneity of
data sources. Therefore, it is utterly important to profoundly understand this variety to
find alignments, overlapping, contradictions and differences, i.e., data heterogeneity.

In general, we may expect several data heterogeneity causes to emerge [12]:
schematic (e.g., same concept with a different name), semantic (e.g., same name for
different concepts) and intensional (e.g., fundamental differences in the domain).

The OpenReq Case. In OpenReq, the central concept around which all models
revolve is that of requirement. This concept is represented explicitly in three models,
and remarkably in two of them (UPC and TUGRAZ) its notion is quite similar.
However, since the attributes are slightly different, it cannot be said that the concept is
exactly the same. In the third case (i.e., SIEMENS) the concept of requirement is
explicitly defined in the ontology, but in fact it is wider: in addition to requirements,
pieces of text that are candidate to become requirements, and pieces of text that have
been assessed and finally discarded as requirements, also are included in this concept.
In the other models, the requirement concept as such does not exist. Instead, two related
concepts appear, namely bug (VOGELLA) and users’ feedback (HITEC). Both con-
cepts are a potential source of requirements. Figure 4 summarizes these classes.

For the sake of illustration, Table 1 exemplifies the main causes of data hetero-
geneity at the level of attributes for the requirement concept considering three of the
local data models. Note that it may be the case that more than one heterogeneity cause
occurs for a given attribute. An extended version of this table including all the models
and all the causes could be considered the outcome of this step.

Table 1. Examples of the main causes of data heterogeneity at the level of attributes in three of
the local data models with respect to the notion of requirement.

SIEMENS TUGRAZ UPC Data heterogeneity
id: long --- ID:

Integer
Semantic: different scale for the same attribute
Intensional: attribute is not considered in all the models

text: Text description:
String

Description:
String

Schematic: different data type and name for the same
attribute

type: {DEF, Prose,
Not Classified}

--- --- Intensional: attribute is not considered in all the mod-
els

--- status: Enum --- Intensional: attribute is not considered in all the models
--- creationDate:

DateTime
CreatedAt:
DateTime

Schematic: different name for the same attribute
Intensional: attribute is not considered in all the models

--- priority: Float Priority:
Integer

Schematic: different name for the same attribute
Semantic: different scale for the same attribute
Intensional: attribute is not considered in all the models

Reconciling Practice and Rigour in Ontology-Based 211

Fig. 4. The concept of requirement and related concepts in the 5 baseline data models.

212 C. Quer et al.

7 Step III: Definition of the Domain Ontology (M1)

In the third step, the analysis made in the previous step is consolidated into a domain
ontology, again considering the needs outlined in Sect. 3: it is required to satisfy the
needs of the different project participants (i.e., asset providers), while opening the space
to accommodate new, sometimes unforeseen evolutionary paths. The domain ontology
will be represented through a UML class diagram plus associated glossary to define all
the classes, attributes and associations appearing therein.

The main task in this process is to solve the heterogeneity causes identified in
Step II. Schematic causes are the easiest to solve, while intensional causes are the most
difficult and require a strong decision based on the purposes of the domain ontology.
The use of bodies of knowledge pertaining to the domain, e.g. in the form of standards,
can help to make decisions in this process.

The OpenReq Case. From the analysis above, it is clear that the Requirement class
is central to the domain ontology. We present in detail the consolidation of this concept
from the analysis carried out in Step II (for the rest of the ontology, due to space
limitations, not all details are reported):

• The most fundamental intensional heterogeneity is agreeing on the concept of
requirement itself. We decided to define requirement according to the IEEE stan-
dard glossary of software engineering terminology [13]: “A condition or capability
that must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed document”. This means
that all definitions need to fit this referential framework. As an additional advantage,
adhering to a well-known standard paves the way for dissemination and evolution.

• The rest of intensional heterogeneities refer to attributes that are not included in all
the local models (modulo other heterogeneities). The selection of the attributes to
include is based on expert judgement and, in a project of this nature, requires the
consensus from all partners, who evaluate them in terms of the impact on their
assets and their goal for evolution.

• Similarly, schematic and semantic heterogeneities are solved by expert criteria. In
general, they are not fundamental for the final result.

As for the rest of information conveyed in the domain ontology, requirements are
structured into a hierarchy by means of a decomposition association. Two other
relationships, namely conflict and synergy, are mentioned in several local data
models, therefore we introduce two associations with the same name.

Since the ultimate concept of OpenReq is the planning of requirements into
releases, we introduce the Release class. Releases exist in the scope of Projects.
Requirements bound to a release are bound to the project that defined such release,
made explicit with a derived association, belongs-to. TeamMembers are members
of a Project in which they participate (i.e., Participant) playing a given role.
TeamMembers may have requirements assigned.

Reconciling Practice and Rigour in Ontology-Based 213

Last, for practical reasons, we introduce one abstract class, Element. It is the most
generic in the model and encapsulates attributes that are shared by virtually all the
classes: identifier, name, description, creation date, last update date and their source.
Also the associations to Comment and Attachment are related to Element, to
allow for adding these explanatory elements to all type of elements. This generalization
serves to exemplify the need of adding non-graphical integrity constraints to the model,
e.g., an attachment cannot be attached to another attachment.

Figure 5 shows the OpenReq domain ontology for requirements engineering. The
domain ontology includes also the vocabulary, not reported due to space limitations.

8 Step IV: Mapping Among the Local Data Models
and the Domain Ontology (M1)

As mentioned in Sect. 2.2, mappings are a central element in the integration of HIS
through ontologies [5].

The concrete definition of the mapping ultimately depends on the purpose for
building the domain ontology. In some contexts, the ontology has the purpose of
mediating among the local data models, e.g., interconnecting software components or
data bases, or providing a single access point to a distributed data base, in which case
an implementation in the form of, for instance, SPARQL queries is required [14]. In

Fig. 5. The OpenReq reference model for requirements engineering.

214 C. Quer et al.

other cases, the domain ontology is conceived as a semantic framework to provide an
intermediate layer to the consumers and providers of a heterogeneous information
system, facilitating the development of services on top of this layer. In this situation, a
more conceptual implementation of the mapping is convenient.

We propose to implement the mapping at the level of the UML class diagrams used
to represent the global ontology and local data models. In particular, we bind concepts
in the local models to the domain ontology through specialization. At the end, all those
concepts in the local data models which are related to the domain ontology will have
their correspondence to the domain ontology, which could eventually be expressed
through OCL expressions if needed. In some cases, they will be subclasses of a class in
the domain ontology, in other cases there will be necessary to create a new class in the
local data model that will be subclass of the domain ontology. Elements in the local
ontologies not clearly related to the domain will remain independent of the domain
ontology.

The OpenReq Case. For the sake of space, we illustrate this step with two repre-
sentative situations. First, we focus on how the different local data models connect with
the Requirement class introduced in the domain ontology. Given that the definition
of requirement in the domain ontology has been kept generic enough to accommodate
the semantics of that concept in all the local models, we define a specialization from the
local class (renamed into XX-Requirement, being XX the name of the partner) to the
domain ontology class. The declaration of this specialization implies removing from
XX-Requirement all the attributes and associations that are inherited from the
domain ontology, e.g., id, name and text. This way, schematic and semantic hetero-
geneities are automatically fixed. Figure 6(a) shows the details for one of the OpenReq
cases.

Fig. 6. Mappings with the OpenReq RE domain ontology: (a) mapping SIEMENS require-
ments; (b) Mapping HITEC user feedback.

Reconciling Practice and Rigour in Ontology-Based 215

Second, there are several concepts in the local data models that do not specialize
any class in the domain ontology but are related. For instance, this is the case of
HITEC’s Feedback class. User feedback is not a type of requirement but one possible
source of requirements; therefore, a subclass has been added to the HITEC ontology
that specializes Requirement and a new association definedFrom so that a
requirement may have its origin after an undetermined number of feedback instances
(see Fig. 6(b)).

9 Step V: Definition of the Metamodel (M2)

Finally, we aim at consolidating the core concepts of the domain ontology into a
metamodel. This allows a more compact view of the concepts at hand and support
future evolution and extension of the domain ontology as new business cases and
opportunities arise. Some points worth to remark are:

• The metamodel shall be such that most concepts of the domain ontology are
instances of metaclasses. However, it may be the case that some concepts are not, if
they are not considered in the backbone of the domain ontology. In addition, the
classes introduced as abstract for convenience (in the case of OpenReq, the class
Element, see Sect. 7) are not intended to be instances of any metaclass.

• The definition of the metamodel can require slight adjustments in the domain
ontology. The mappings defined in the former step need to be adjusted accordingly.

The OpenReq Case. We consider as starting point a metamodel for requirements
proposed by UH based in the metamodel presented in [15] for the area of variability
modelling. The upper part of Fig. 7 shows the metamodel (M2), and the lower part
shows an excerpt of some of its instantiations at the domain ontology (M1).

• Requirements as introduced in the domain ontology have been assumed to be free
text in natural language. However, if we aim at having a comprehensive framework,
it is necessary to allow other formats: diagrams, formulae, etc., or even natural
language according to a template or user stories. Therefore, we define in M2 the
RequirementType metaclass, which allows the definition of a requirements
class in M1 that instantiates this metaclass for each format of requirements that is
necessary. As attribute, apart from the name, the contents (i.e., the requirement
in any type of notation) is declared as Object. In the current domain ontology at
M1, just one class of requirement is needed, and we change the name of the
Requirement class into NL-Requirement and adjust the mappings to this
name change.

• In addition to the attributes included in the domain ontology, we consider that in
other contexts there can be other attributes of interest. Therefore, we associate
RequirementType to a new metaclass, Attribute. We relate this metaclass
with a new one, AttributeType (note that for simplicity we do not include in
Fig. 7 the metaclasses corresponding to enumerates or sets). Names as identifiers
are the only attributes in these two metaclasses.

216 C. Quer et al.

• Similarly, we can think that eventually other type of relationships over requirements
could be stated; therefore, we introduce a metaclass RelationshipType where
the name of the relationship (synergy, conflict, …) is declared as attribute.

On the other hand, we realize that there are two types of classes with respect to their
relationship with Requirements:

• Classes extending requirements to provide richer information. These are Comment
and Attachment. Note that they are optional (i.e., a requirement does not need a
comment or attachment to exist). We define a metaclass AdditionalInfor-
mation to capture this concept.

• Classes defining elements that describe some context of the requirement. These are
Release, Project and TeamMember. Note that they may be mandatory (i.e., a
requirements needs to be defined in the context of a project) or optional (i.e., a
requirement may be temporarily not assigned to any release). We define a metaclass
RelatedConcept to capture these types of elements.

Fig. 7. The OpenReq metamodel for requirements.

Reconciling Practice and Rigour in Ontology-Based 217

10 Discussion and Future Work

In this paper, we have presented a method to be used in the context of HIS construction
in collaborative development projects. The method follows the principles of ontology-
based integration balancing several somehow conflicting forces: semantic rigour,
practicality in terms of effort, fit for purpose and open adoption. The final product is a
domain ontology with a corresponding metamodel, which also combines a general-
purpose point of view (to serve an unforeseen portfolio of adopters) with a specific
point of view (to satisfy the needs of the project partners).

The method has been used in the OpenReq project to develop a domain ontology
for requirements engineering. The domain ontology and metamodel will be used to
derive the schema for the implementation of OpenReq, i.e., platform and cloud ser-
vices. The mappings among the local data models and the domain ontology will be
used in the OpenReq interfaces to know how OpenReq concepts should be translated to
local concepts. From a practical point of view, the ontology is being represented
through JSON derived from the metamodel.

A lesson learned from this case study is the importance of understanding the local
data models to be integrated. The role of glossaries (which are part of the ontologies) is
key, and in fact they need to arrive to the level of defining the attributes. We found
useful to use examples that complement definitions of terms. Even with these glos-
saries, some misunderstandings appeared and clarifications were needed. Thus, it was
needed to ensure continuous and fluent communication among all ontology providers.

As in any other modelling endeavour, modelling was useful not only to produce a
final result but also because the process of modelling uncovered some aspects in the
original models that were subject of improvement, e.g. redundancies or non-optimal
modelling solutions. We fixed these problems before defining the mapping.

The domain ontology obtained through our method should not be seen as a final
product. For instance, we foresee that the OpenReq ontology will continue evolving as
the OpenReq project does, including new elements that did not appear in the local data
models. Candidate concepts at the moment are Classifiers (to allow grouping
requirements by concepts, e.g. to organize a requirements document) and External
Elements (such as code or tests cases) to be linked with requirements. Also new
concepts may be necessary in local models of partners working on contributing to
OpenReq new functionalities (see Sect. 3). In all the cases, the changes will be con-
sidered in order to evolve the domain ontology, and if it is necessary the metamodel.

Despite our effort to ensure validity, some threats could impact the results [16]. For
instance, internal validity concerns are covered by the fact that we restrain ourselves to
the retrieved evidence and expert knowledge. As for reducing reliability threats, we
departed from a set of RE data models from different domains (usually with charac-
teristics that are domain-dependent), some of them being already used by the industrial
partners (i.e., SIEMENS and VOGELLA). Last, concerning external validity, we have
produced a method with the aim to be general, but we need to be aware that it comes
from a single experience in one particular domain, therefore further cases are needed.

218 C. Quer et al.

Our future work spreads along several directions. First, as mentioned above, we
envisage changes in the domain ontology due to evolution in the platform as the project
progresses and also at the end of the project, as new local ontologies implementing
additional functionalities will join the OpenReq platform.

Acknowledgments. This work is a result of the OpenReq project, which has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 732463.

References

1. Gruber, T.R.: A translation approach to portable ontologies. Knowl. Acquis. 5(2), 199–229
(1993)

2. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta)
models. Front. Artif. Intell. Appl. 155, 18 (2007)

3. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., &
Hübner, S.: Ontology-based integration of information-a survey of existing approaches. In:
IJCAI-01 Workshop: Ontologies and Information Sharing (2001)

4. Sowa, J.F.: Building, Sharing, and Merging Ontologies (2001). http://users.bestweb.net/
*sowa/ontology/ontoshar.htm

5. Calvanese, D., de Giacomo, G., Lenzerini, M.: Ontology of integration and integration of
ontologies. In: DL Workshop 2001 – CEUR 49 (2001)

6. De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Using ontologies for
semantic data integration. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds.) A
Comprehensive Guide Through the Italian Database Research Over the Last 25 Years. SBD,
vol. 31, pp. 187–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61893-7_
11

7. Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M., Shave, M.J.R.: An analysis of ontology
mismatches; heterogeneity versus interoperability. In: AAAI Spring Symposium on
Ontological Engineering, Stanford University, California, USA (1997)

8. Cranefield, S., Purvis, M.: UML as an ontology modelling language. In: IJCAI (1999)
9. Franch, X., Palomares, C., Quer, C., Renault, S., De Lazzer, F.: A metamodel for software

requirement patterns. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182,
pp. 85–90. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-8_10

10. Gómez, M., Adams, B., Maalej, W., Monperrus, M., Rouvoy, R.: App Store 2.0: from
crowdsourced information to actionable feedback in mobile ecosystems. IEEE Softw. 34(2),
81–89 (2017)

11. Kurtanović, Z., Maalej, M.: Mining User Rationale from Software Reviews. In: RE 2017
(2017)

12. Goh, C.H.: Representing and reasoning about semantic conflicts in heterogeneous
information sources. Ph.D. thesis, MIT (1996)

13. IEEE Std 610.12-1990 - IEEE Standard Glossary of Software Engineering Terminology
(1990)

14. Schenner, G., Bischof, S., Polleres, A., Steyskal, S.: Integrating distributed configurations
with RDFS and SPARQL. In: confWS 2014 (2014)

Reconciling Practice and Rigour in Ontology-Based 219

http://users.bestweb.net/%7esowa/ontology/ontoshar.htm
http://users.bestweb.net/%7esowa/ontology/ontoshar.htm
http://dx.doi.org/10.1007/978-3-319-61893-7_11
http://dx.doi.org/10.1007/978-3-319-61893-7_11
http://dx.doi.org/10.1007/978-3-642-14192-8_10

15. Asikainen, T., Männistö, T., Soininen. T.: Kumbang: A Domain Ontology for Modelling
Variability in Software Product Families. Adv. Eng. Inform. 21(1), 23–40 (2007)

16. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimen-
tation in Software Engineering: An Introduction. Kluwer Academic Publishers Norwell,
MA, USA (2012)

220 C. Quer et al.

	Reconciling Practice and Rigour in Ontology-Based Heterogeneous Information Systems Construction
	Abstract
	1 Introduction
	2 Background
	3 The Context: The OpenReq Project
	4 The Method
	5 Step I: Creation of the Baseline
	6 Step II: Analysis of the Baseline
	7 Step III: Definition of the Domain Ontology (M1)
	8 Step IV: Mapping Among the Local Data Models and the Domain Ontology (M1)
	9 Step V: Definition of the Metamodel (M2)
	10 Discussion and Future Work
	Acknowledgments
	References

