
Certifying Variant of RSA
with Generalized Moduli

Yao Lu1, Noboru Kunihiro1, Rui Zhang2,4(B), Liqiang Peng2,3(B),
and Hui Ma2(B)

1 The University of Tokyo, Tokyo, Japan
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

{r-zhang,pengliqiang,mahui}@iie.ac.cn
3 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
4 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Let N be an arbitrary integer with unknown factorization.
In Asiacrypt 2012, Kakvi et al. proposed an algorithm that, given prime

e ≥ N
1
4 + ε, certifies whether the RSA function RSAN,e(x) := xe mod N

defines a permutation over Z
∗
N or not. In this paper, we extend Kakvi

et al.’s work by considering the case with generalized moduli N =∏n
i=1 pzi

i . Surprisingly, when min{z1, . . . , zn} ≥ 2, we show that it can
be efficiently decided whether the RSA function defines a permutation

over Z
∗
N or not even for the prime e < N

1
4 . Our result can be viewed as

an extension of Kakvi et al.’s result.

Keywords: Coppersmith’s method · Lattices · RSA
Public key cryptosystem · LLL algorithm

1 Introduction

RSA function is one of the most well known cryptographic primitives, it is defined
as RSAN,e : Z∗

N → Z
∗
N , x → xe mod N , where N is a public modulus and e

is an exponent integer. Moreover, it is believed that RSA function (with the
appropriate choice of parameters) defines a family of trapdoor permutations,
which has a number of applications in public-key cryptosystems.

In Crypto’92, Bellare and Yung [2,3] introduced a new primitive called cer-
tified trapdoor permutations, compared with standard trapdoor permutation, it
requires an additional efficient permutation checking procedure, roughly speak-
ing, a trapdoor permutation is certified if one can verify from the public key that
it is actually a permutation. Using certified trapdoor permutations as a building
block, we can construct many useful cryptographic protocols: ZAPS and verfi-
able PRF [6]; Sequential aggregate signatures [1,12]. More importantly, NIZK
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 598–608, 2018.
https://doi.org/10.1007/978-3-030-01950-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_35&domain=pdf

Certifying Variant of RSA with Generalized Moduli 599

protocols for any NP-statement can be built from certified trapdoor permuta-
tions [8].

Among all the known candidate trapdoor permutations (factoring-based),
RSA trapdoor function is the most efficient certified trapdoor permutation cur-
rently known. It is well known that RSA trapdoor function defines a permutation
over the domain Z

∗
N iff gcd(e, φ(N)) = 1 where φ(·) is Euler’s totient function

i.e. the number of positive integers less than or equal to N that are coprime
to N . So we only need to check whether gcd(e, φ(N)) = 1 to tell whether RSA
trapdoor function defines a permutation or not.

Generally speaking, RSA function is not a certified trapdoor permutation.
In [2,3], Bellare and Yung proposed a generalized approach that can transform
every trapdoor permutation into a certified trapdoor permutation. Using their
method, we can easily make RSA function to be certified, however, since Bellare-
Yung transformation brings an additional computational overhead, which makes
their method relatively inefficient. Besides, in order to keep the same data struc-
ture, we prefer to use directly method rather than artificial method. In [4,12], the
authors showed that if prime e > N , the RSA function is a certified permutation
(since e is a prime and φ(N) < N , thus gcd(e, φ(N)) = 1), but in practice, using
large exponent e (e > N) will bring heavy costs for modular exponentiation.
Therefore, the question naturally arises: Is the RSA function certified for the
case of e < N?

There exist several research results on the above problem. Suppose that N
is a RSA modulus i.e. N = pq where p and q are of the same bit-size. If prime
e ≥ N1/4, we can efficiently decide whether e divides φ(N) or not by using
Coppersmith’s result [5]. On the other hand, if prime e < N1/4, it is hard to
decide whether e divides φ(N) or not, which is called Phi-Hiding Assumption, by
Cachin, Micali and Stadler [4] in the context of efficient single database private
information retrieval, which has found a lot of applications in cryptography.

Later, in Asiacrypt 2008, Schridde and Freisleben [15] showed that the Phi-
Hiding Assumption does not hold for special composite integers of the form
N = pq2k for k > 0. Such integers are often used in cryptography to speed up
certain operations [16].

Suppose that N is an arbitrary integer with unknown factorization. Recently,
in Asiacrypt 2012, Kakvi et al. [10] proposed an algorithm that, given prime e ≥
N1/4+ε, efficiently decides whether e divides φ(N) or not. Kakvi et al. [10] gave
an efficient certification procedure that works for any prime exponent e > N1/4

(rather than e > N). However, until now, if prime e < N1/4, we do not know
that whether Phi-Hiding Assumption holds or not (we know the results for RSA
moduli [4] and moduli of the form pq2k with k > 1 [15], but we know nothing
for arbitrary integer with unknown factorization).

1.1 Our Contributions

In this paper, given an arbitrary modulus N with unknown factorization and
a prime e < N1/4, we can extract more information than previously expected,
which enable us to efficiently decide whether e divides φ(N) or not in some

600 Y. Lu et al.

circumstances, that means we can further improve [10]’s result in this circum-
stances.

In particular, using our algorithm, if prime e satisfies N1/4r < e <
Nmin{1/4(r−1),1} (r is a positive integer), we can check whether exists secret fac-
tor p s.t. e|p − 1 and N ≡ 0 mod pr. Note that when r = 1, that is exactly [10]’s
result. Thus, our result can be viewed as a generalization of [10]’s result.

Although when e < N1/4, we can not directly decide whether gcd(e, φ(N)) =
1 or not (since we can only check the factor p: N ≡ 0 mod pr, r is related to the
size of exponent e), we can identify the scenarios of gcd(e, φ(N)) �= 1 if moduli
of form N ≡ 0 mod pr are used and p hides e. In addition, let N =

∏n
i=1 pzi

i ,
for the case of min{z1, ..., zn} ≥ 2, we can improve [10]’s result: for example,
for N = p2q3, we can improve [10]’s result to 1/8. Therefore, using moduli of
this form, we can further decrease the size of exponent e while publicly verifying
the permutation. However, on the other hand, this indicates that cryptographic
schemes using moduli of this form and relying on the Phi-Hiding Assumption
must be handled with care.

Our technique is similar to Kakvi et al. [10], we also use Coppersmith’s
method [5] to find prime divisors p of N in a specific range, and the key problem
is to show that the number of invocations of Coppersmith’s algorithm in our
certification algorithm is polynomial-time.

Like [10]’s algorithm, our algorithm also only works for prime e and how to
extend to arbitrary integers e of unknown factorization is still an open problem.

2 Preliminary

2.1 Certified Trapdoor Permutation

Definition 1. A family of trapdoor permutations is a tripe of algorithms
(G,E,D) such that:

– G(·) is a randomized algorithm that takes no input and generates a pair
(pk, sk), where pk is a public key and sk is a secret key;

– E(·) is a deterministic algorithm such that, for every fixed public key pk, the
mapping x → E(pk, x) is a bijection;

– D(·) is a deterministic algorithm such that for every possible pair of keys
(pk, sk) generated by G(·) and for every x we have

D(sk,E(pk, x)) = x

A family of permutations Π is said to be certified if the permutation can be
verified in polynomial-time given pk. We follow the definition in [10,12].

Definition 2. Π = (G,E,D,C) is called a family of certified trapdoor permuta-
tions if (G,E,D) is a family of trapdoor permutations and C(·) is a deterministic
polynomial-time algorithm such that, for an arbitrary pk (potentially not gener-
ated by G(·)), returns 1 iff (E(pk, ·)) defines a permutation over domain Dompk.

Certifying Variant of RSA with Generalized Moduli 601

2.2 Coppersmith’s Method

Let us introduce Coppersmith’s algorithm for finding small roots of modular
polynomial equations. Our main algorithm uses Coppersmith’s algorithm as sub-
routine.

Theorem 1 (Coppersmith [5], May [13]). Let N be an integer of unknown
factorization, which has a divisor p ≥ Nβ, 0 < β ≤ 1. Let 0 < μ ≤ 1

7β.
Furthermore, let f(x) be a univariate monic polynomial of degree δ. Then we
can find all solutions x0 for the equation:

f(x0) = 0 mod p with |x0| ≤ 1
2
N

β2

δ −μ

This can be achieved in time O(μ−7δ5 log2 N). The number of solutions x0 is
bounded by O(μ−1δ).

In the rest of our paper, one of our main algorithms is to find small roots of
polynomial equation f(x) = x + a = 0 mod p, where p is unknown that satisfies
N = 0 mod pr. We can model this problem as the univariate polynomial with
degree r:

f(x) = (x + a)r mod pr

A direct application of Theorem1 can get the desired result. However, we notice
that the form of polynomial f(x) = (x + a)r is kind of special, actually we can
use a smarter way to solve this type of equation. In this paper, we exploit Lu et
al’s. [11] algorithm because of its better performance and lower complexity.

Theorem 2 (Lu et al. [11]). For every 0 < μ < β, let N be a sufficiently
large composite integer (of unknown factorization) with a divisor pr (p ≥ Nβ

and r is a positive integer: r ≥ 1). Let f(x) ∈ Z[x] be a univariate monic linear
polynomial. Then we can find all the solutions x0 of the equation f(x) = 0 mod p
with |x0| ≤ Nγ if

γ < rβ2 − μ

The time complexity is O(μ−7 log2 N).

For completeness, we give the whole proof here.

Proof. Consider the following univariate linear polynomial:

f1(x) = a0 + a1x mod p

where N is known to be a multiple of pr for known r and unknown p. Here
we assume that a1 = 1, since otherwise we can multiply f1 by a−1

1 mod N . Let
f(x) = a−1

1 f1(x) mod N .
We define a collection of polynomials as follows:

gk(x) := fk(x)Nmax{� t−k
r �,0}

602 Y. Lu et al.

for k = 0, . . . , m and integer parameters t and m with t = τm (0 ≤ τ < 1),
which will be optimized later. Note that for all k, gk(y) ≡ 0 mod pt.

Let X := Nrβ2−μ(= Nγ) be the upper bound on the desired root y. We will
show that this bound can be achieved for any chosen value of μ by ensuring that
m ≥ m∗ := �β(2r +1− rβ)

μ 	 − 1.
We build a lattice L of dimension d = m + 1 using the coefficient vectors of

gk(xX) as basis vectors. We sort these polynomials according to the ascending
order of g, i.e., gk < gl if k < l.

From the triangular matrix of the lattice basis, we can compute the determi-
nant as the product of the entries on the diagonal as det(L) = XsNsN where

s =
m∑

k=0

k =
m(m + 1)

2

sN =
t−1∑

k=0

� t − k

r
	 =

t−1∑

k=0

(
t − k

r
+ ck

)

=
τm(τm + 1)

2r
+

t−1∑

k=0

ck.

Here we rewrite � t−k
r 	 as

(
t−k

r + ck

)
where ck ∈ [0, 1). To obtain a polynomial

with short coefficients that contains all small roots over integer, we apply LLL-
basis reduction algorithm to the lattice L. Lemma 1 gives us an upper bound on
the norm of the shortest vector in the LLL-reduced basis.

Lemma 1 (LLL [7]). Let L be a lattice of dimension w. Within polynomial-
time, LLL-algorithm outputs a set of reduced basis vectors vi, 1 � i � w that
satisfies

||v1|| � ||v2|| � · · · � ||vi|| � 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

If the bound is smaller than the bound given in Lemma 2 (below), we can obtain
the desired polynomial.

Lemma 2 (Howgrave-Graham [9]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and
2. ||g(x1X1, · · · , xkXk)|| < pm

√
w

Then g(y1, · · · , yk) = 0 holds over integers.

We require the following condition:

2
d−1
4 det(L)

1
d <

Nβτm

√
d

where d = m + 1. We plug in the values for det(L) and d, and obtain

2
m(m+1)

4 (m + 1)
m+1

2 X
m(m+1)

2 < Nβτm(m+1)− τm(τm+1)
2r −∑t−1

k=0 ck

Certifying Variant of RSA with Generalized Moduli 603

To obtain the asymptotic bound, we let m grow to infinity. Note that for suffi-
ciently large N the powers of 2 and m+1 are negligible. Thus, we only consider
the exponent of N . Then we have

X < N2βτ− τ(τm+1)
r(m+1) − 2

∑t−1
k=0 ck

m(m+1)

Setting τ = rβ, and noting that
∑t−1

k=0 ck ≤ t, the exponent of N can be lower
bounded by

rβ2 − β(1 − rβ)
m + 1

− 2rβ

m + 1

We appropriate the negative term ∗
m+1 by ∗

m and obtain

rβ2 − β(2r + 1 − rβ)
m

Enduring that m ≥ m∗ will then gurantee that X satisfies the required bound
for the chosen value of μ.

The running time of our method is dominated by LLL-algorithm, which is
polynomial in the dimension of the lattice and in the maximal bit-size of the
entries. We have a bound for the lattice d

d = m + 1 ≥ �β(2r + 1 − rβ)
μ

	

Since rβ < 1, then we obtain d = O(μ−1). The maximal bit-size of the entries
is bounded by

max{ t

r
log(N), drβ2 log(N)} = max{βd log(N), drβ2 log(N)}

Since rβ < 1 and d = O(μ−1), the bit-size of the entries can be upper bounded
by

max{O(βμ−1) log(N),O(βμ−1) log(N)} = O(μ−1 log(N))

Nguên and Stehlé [14] proposed a modified version of the LLL-algorithm called
L2-algorithm. The L2-algorithm achieves the same approximation quality for a
shortest vectors as the LLL-algorithm, but has an improved worst case running
time analysis. Its running time is O(d5(d + log bd) log bd), where log bd is the
maximal bit-size of an entry in lattice. Thus, we can obtain the running time of
our algorithm

O
((

1
μ

)5 (
1
μ

+
log N

μ

)
log N

μ

)

Therefore, the running time of our algorithm is O(μ−7 log2 N). Eventually, the
vector output by LLL-algorithm gives a univariate polynomial g(x) such that
g(y) = 0, and one can find the root of g(x) over the integers.

604 Y. Lu et al.

3 Our Main Result

In this section we give our main result.

Theorem 3. Let N be an integer of unknown factorization and e < N (suppose
γ = logN e) be a prime integer and gcd(e,N) = 1. First determine a positive
integer r such that 1

4r < γ < min{ 1
4(r − 1) , 1}. Let ε = γ − 1

4r , then we can
decide whether exists secret factor p s.t. e|p − 1 and N ≡ 0 mod pr in time
O(ε−8 log2 N).

Before we provide a proof for Theorem 3, we would like to interpret its impli-
cations. Notice that Theorem 3 yields in the special case r = 1 the bound
1
4 < γ < 1 that corresponds to [10]’s result. Thus, our result can be viewed as a
generalization of [10]’s result.

On the other hand, we would like to give an example to clarify our result.
If 1

8 < γ < 1
4 , we can check whether exists secret factor p s.t. e|p − 1 and

N ≡ 0 mod p2, which means that if some secret factor p hides e (e|p − 1) and p2

divides modulus N (N ≡ 0 mod p2), our proposed algorithm can recover such
factor p. Although our result does not guarantee that gcd(e, φ(N)) = 1 (since
we can only check the factor p: N ≡ 0 mod p2), we have gcd(e, φ(N)) �= 1 if
our algorithm outputs a factor p. In addition, let N =

∏n
i=1 pzi

i , for the case
of min{z1, ..., zn} ≥ 2, we can identify whether gcd(e, φ(N)) = 1 or not, which
improve [10]’s result to γ > 1

8 .

Proof. At first we get the value of integer r from the exponent e. Then we have

φ(N) =
n∏

i=1

pzi−1
i (pi − 1)

Let us focus on the case e|(pi − 1) and N ≡ 0 mod pr
i for some i. Denote that

p := pi, there exists an x0 ∈ Z s.t.

ex0 + 1 = p

Next our goal is to find x0, which is a small root of the polynomial equation
f(x) = ex + 1 mod p (N ≡ 0 mod pr).

In order to run Coppersmith’s algorithm, we have to know the parameter
β: the bitsize of unknown divisor. However, we do not know the exact value of
β here. To overcome this problem, we give a lemma that can be used to check
whether e|p − 1 for some p (N ≡ mod pr) in a specific range. This following
lemma can be regard as an extension of Lemma 5 of [10].

Lemma 3. Let N be an integer of unknown factorization with divisor pr: p ≥
Nβ (β ∈ (0, 1]) and r ≥ 1. Further, let e = Nγ with e|p − 1. Then there is an
algorithm that, given (N, e, β, μ), outputs p in time O(μ−7 log2 N) provided that

p ≤ Nrβ2+γ−μ

If this algorithm can not find a non-trivial factor of N , it outputs ⊥.

Certifying Variant of RSA with Generalized Moduli 605

Proof. We can easily get the result from Theorem 2. We have e|p − 1, then we
get the polynomial f(x) = ex + 1 has the root x0 modulo p. By multiplying e−1

modulo N , we can get a monic polynomial. Since p ≤ Nrβ2+γ−μ, we have

x0 =
p − 1

e
<

Nrβ2+γ−μ

Nγ
= Nrβ2−μ

Therefore, we can recover x0 by Theorem 2 in time O(μ−7 log2 N). For every
candidate of x0, we check whether gcd(ex0 + 1, N) gives us the divisor p. Since
the number of the candidate is bounded by O(μ−1r), this can be done in
O(μ−1r log2 N), which can be negligible compared to the running time of Cop-
persmith’s algorithm.

Using Lemma 3, we can check whether e|p − 1 for some p (N ≡ mod pr)
in the range [Nβ , Nrβ2−μ+γ]. However, it is not enough, our target range is
p ∈ [e,N

1
r], much larger than the search range of Lemma 3. Next we apply [10]’s

idea to solve the above problem.

At first, we set rβ2 − μ + γ = 1
r , which implies β =

√
1− r(γ − μ)

r . Then we

can check p in the interval [N
√

1 − r(γ − μ)
r , N

1
r] using Lemma 3. If we can not find

such p, we turn to the range [e,N
√

1 − r(γ − μ)
r], then we use Lemma 3 again, and

set rβ2 − μ + γ =
√

1− r(γ − μ)

r , which defines a new lower bound β. We then
repeat this process.

To summary, we cover the target range by a sequence of intervals
[Nβ1 , Nβ0], ..., [Nβn , Nβn−1] where the βi are defined by the recurrence relation

βi+1 = max{
√

βi − (γ − μ)
r

, γ} with β0 =
1
r
.

Here we suppose that

1
4r

< γ − μ < γ < min{ 1
4(r − 1)

, 1}

We have to prove that the number of invocations of Lemma 3 is polynomial.
At first, we show by induction that the sequence of the βi is monotone decreasing.

It is obvious that β1 < β0 since γ < 1
r = β0 and

√
β0 − (γ − μ)

r <
√

β0
r = β0.

We now show that if βi ≤ βi−1 for all i ≤ m, we have βm+1 ≤ βm.
Since βm ≤ βm−1, we have

βm − (γ − μ)
r

≤ βm−1 − (γ − μ)
r

which implies
√

βm − (γ − μ)
r

≤
√

βm−1 − (γ − μ)
r

606 Y. Lu et al.

That means

max{
√

βm − (γ − μ)
r

, γ} ≤ max{
√

βm−1 − (γ − μ)
r

, γ}

Thus βm+1 ≤ βm.
Since the sequence of {βi} is monotone decreasing and bounded below by

γ, it converges. Now we investigate the length of interval [βi, βi−1]. Define a
function Δ(βi−1) = βi−1 − βi ≥ 0, which is the length of the ith interval. We
have

Δ(βi−1) = βi−1 − βi = βi−1 −
√

βi−1 − (γ − μ)
r

We calculate the first two derivations of Δ(β) as follows

Δ
′
(β) = 1 − 1

2
√

r
(β − (γ − μ))− 1

2

and

Δ
′′
(β) =

1
4
√

r
(β − (γ − μ))− 3

2 > 0

It is clear that Δ(β) achieves its minimum at the point β(0) = 1
4r + γ − μ (when

Δ
′
(β) = 0). And the length of interval Δ(β) is of size at least

Δ(β(0)) = γ − μ − 1
4r

Let

k := �
1
r − γ

γ − μ − 1
4r

	 + 1

That means after the number of k steps, the sequence βi stabilize at the point
βk = γ.

Therefore, if we run the algorithm of Lemma 3 at most k times, we can test
the entire range [e,N

1
r].

Before we give the running time of our algorithm, we would like to discuss the
choice of the parameter μ. Since ε := γ − 1

4r , we have the condition 1
4r < γ − μ,

thus μ < γ − 1
4r = ε, we simply choose μ = 1

c ε where c is a positive integer. In
practice, if we choose larger c, which means smaller value of μ, then the value of
k is smaller, and the same time, Lemma 3 may take more running time; if c is
smaller, by contrast, means larger value of k and less running time of Lemma 3.
However, note that the running time of our algorithm is mainly decided by the
running time of Lemma 3, thus we would like to choose c = 2 in practice.

At last we give the total running time of our algorithm, we have to run the
algorithm of Lemma 3 at most k times, which can be bounded as

k := �
1
r − γ

γ − μ − 1
4r

	 + 1 ≤ �
1
r

(c − 1)μ
	 + 1 = O(μ−1) = O(ε−1)

Certifying Variant of RSA with Generalized Moduli 607

Table 1. Example: concrete values for r = 2

r = 2 β0 β1 β2 β3 β4 β5 β6 β7

γ = 0.187500 0.500000 0.414578 0.359394 0.314396 0.281199 0.249949 0.216447 0.187500

μ = 0.031250

γ = 0.187500 0.500000 0.405046 0.341446 0.291179 0.244238 0.190214 0.187500

μ = 0.015625

γ = 0.200000 0.500000 0.400000 0.331662 0.275374 0.218374 0.200000

μ = 0.020000

and each iteration takes time O(μ−7 log2 N), finally we obtain the total runnning
time of our algorithm

O(μ−8 log2 N) = O(ε−8 log2 N)

In Table 1, we give three examples to show the concrete values of {βi}. Note
that if μ is smaller, we can take fewer steps to search the whole target range.

4 Conclusion

In this paper, we extend Kakvi et al.’s work by considering the case with gen-
eralized moduli N =

∏n
i=1 pzi

i . Surprisingly, when min{z1, . . . , zn} ≥ 2, we show
that it can be efficiently decided whether the RSA function defines a permuta-
tion over Z

∗
N or not even for the prime e < N

1
4 . Our result can be viewed as an

extension of Kakvi et al.’s result.

Acknowledgments. The authors thank anonymous reviewers for their valuable com-
ments. This work was supported in part by National Natural Science Foundation of
China (Nos. 61632020, 61472416, 61772520,61702505, 61732021), Key Research Project
of Zhejiang Province (No. 2017C01062), Fundamental theory and cutting edge technol-
ogy Research Program of Institute of Information Engineering, CAS (No. Y7Z0321102,
Y7Z0341103), National Cryptography Development Fund (MMJJ20170115), JST
CREST (No. JPMJCR14D6), and JSPS KAKENHI (No.16H02780).

References

1. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

2. Bellare, M., Yung, M.: Certifying cryptographic tools: the case of trapdoor per-
mutations. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 442–460.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 31

3. Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptol. 9(3), 149–166 (1996)

https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/3-540-48071-4_31

608 Y. Lu et al.

4. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

5. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

6. Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA,
12–14 November 2000, pp. 283–293 (2000)

7. Giuliani, K.: Factoring polynomials with rational coefficients. Math. Ann. 216(4),
515–534 (1982)

8. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: the state of the art. In: Goldreich, O. (ed.) Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computa-
tion. LNCS, vol. 6650, pp. 406–421. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22670-0 28

9. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

10. Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 25

11. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown
divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 189–213. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 9

12. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 5

13. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P., Vallée, B. (eds.) The LLL Algorithm - Survey and Applications, pp.
315–348. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-
1 10

14. Nguên, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 13

15. Schridde, C., Freisleben, B.: On the validity of the Φ-hiding assumption in crypto-
graphic protocols. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
344–354. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 21

16. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055738

https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/978-3-642-34961-4_25
https://doi.org/10.1007/978-3-662-48797-6_9
https://doi.org/10.1007/978-3-662-48797-6_9
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/978-3-540-89255-7_21
https://doi.org/10.1007/978-3-540-89255-7_21
https://doi.org/10.1007/BFb0055738

	Certifying Variant of RSA with Generalized Moduli
	1 Introduction
	1.1 Our Contributions

	2 Preliminary
	2.1 Certified Trapdoor Permutation
	2.2 Coppersmith's Method

	3 Our Main Result
	4 Conclusion
	References

