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Abstract. In a revocable identity-based encryption (RIBE) system,
the private key and update key are generated separately and combined
together to obtain the decryption key. Since the update key is distributed
in a public channel, for each user, the private key and the decryption
key are essential to his information security. Careless key management,
e.g. full disk encryption may leak the encryption of the private key or
decryption key, which actually needs to consider the key dependent mes-
sage (KDM) security. However, previous research mainly focus on the
KDM security of IBE and revocability separately and the KDM secu-
rity for RIBE scheme is still unclear. In this paper, we consider the
KDM security for RIBE schemes for the first time and investigate two
KDM security models with respect to the private key and decryption
key respectively. First, we present a generic construction of KDM-secure
RIBE with the private key from any KDM-secure IBE and RIBE in the
selective/adaptive chosen-identity model. Second, we construct a con-
crete KDM-secure RIBE scheme with the decryption key in the selective
chosen-identity model from lattices under the polynomial modulus. As
an independent interest, we also present an efficient lattice-based KDM-
secure IBE scheme in the random oracle model. However, it is only secure
in the single key setting in the quantum random oracle model.
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1 Introduction

Identity-based encryption (IBE) is a special public key encryption (PKE), where
a user’s public key can be an arbitrary string. It was first advocated by Shamir
[19] in 1984, mainly to leverage the difficulty of managing certificates for tradi-
tional public key infrastructure (PKI). Similar to its PKE counterpart, IBE was
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also born without the revocation mechanism. To solve this problem, Boneh and
Franklin [5] mentioned to append the current time t to an id, namely, to encrypt
a message, the sender uses id||t instead of id, and the private key will be refreshed
according to the time. But it is very inefficient, actually linear in the number of
remaining users for both computation and bandwidth, since the private keys of
all remaining users should be reissued and distributed at the beginning of each
time period. Later, in ACM CCS’08, using broadcast encryption for tree-based
structures, Boldyreva, Goyal, and Kumar [4] introduced revocable IBE (RIBE),
which reduced the complexity of key update information from linear to loga-
rithmic in the number of users. Subsequent work [8,11,18,20] based on bilinear
pairings and lattices made further improvements and/or trade-offs.

On the other hand, key management is essential to the security of any prac-
tical system. E.g., in full disk encryption, an adversary may see the encryption
of the secret key, which was known as key dependent message (KDM) security
[3,6]1. There are great efforts on KDM-secure PKE [2,6,7,21], but less attention
on KDM-secure IBE. The first KDM-secure IBE was introduced by Alperin-
Sheriff and Peikert [1]. They considered the scenario of revocation and proved
the KDM security against selective chosen-identity attack (KDM-sID-CPA) with
respect to the users’ private keys in the multi-key setting. However, since the
selective security is a weaker security model and the scheme with large keys is
less efficient. Hereafter, there are some further improvements [9,14] on [1] in the
aspects of efficiency and security. In the selective security model, Chen et al. [9]
optimized the efficiency of the scheme in [1] with indistinguishability obfuscation
(iO) and puncturable PRF, where iO seems impractical by far. As for security
optimization, in [9] and [14], they were both interested in the KDM security
against adaptive chosen-identity attack (KDM-ID-CPA). Chen et al. [9] pro-
posed a generic construction of KDM-ID-CPA secure IBE from identity-based
hash proof system (IB-HPS) with homomorphic property. In the recent work
[14], Kitagawa and Tanaka constructed a generic construction of KDM-ID-CPA
secure IBE from KDM-secure symmetric key encryption using IND-ID-CPA IBE
and garbled circuits.

Similar to its IBE counterpart, RIBE may also share the same practical
problem. In an RIBE system, the private key and update key are generated sep-
arately, and combined together to generate the decryption key. In the real world,
the private key serves as a long-term key, while the update key (an ephemeral
key) is distributed through a public channel. Since for each user, the private
key and decryption key are the main secrecy of the system, it may damage the
user’s data confidentiality when such keys are lost or some information is leaked.

1 If we consider the KDM security in d pairs of public/secret keys, i.e., the multi-key
setting, we denote it as d-KDM security and if d = 1, it refers to the KDM security
in a single key setting, a weaker security notion than d-KDM with d ≥ 2.
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Therefore, it is necessary to consider the KDM security for RIBE. However, the
previous research on revocability and KDM security is discussed separately2.

As a result, the problems whether one can construct a KDM-secure RIBE
system are still open.

1.1 Our Results

In this paper, we pose an affirmative answer to the above problems. Since there
are two kinds of secret keys for each user in the RIBE scheme—private key and
decryption key, we investigate the KDM security with respect to the private key
and decryption key respectively. We view our work as one step ahead towards
bringing IBEs to the real-world usage. Our techniques are summarized as follows.
Due to the space limit, our proofs are given in the full version of this paper.

First, we propose a generic construction of KDM-secure RIBE with the pri-
vate key from a KDM-secure IBE and a RIBE scheme, where the KDM-security
with the private key is gained from the underlying KDM-secure IBE and revoca-
tion mechanism stems from the underlying RIBE. When encrypting a message,
we randomly split the message into two parts and encrypt each part using the
corresponding IBE and RIBE respectively. As long as the two building blocks is
secure in the selective/adaptive chosen-identity model, our generic construction
preserves the security in the selective/adaptive chosen-identity model.

Second, as for the KDM security with the decryption key, instead of combin-
ing two unrelated building blocks to achieve KDM security and key revocation,
we propose a KDM-sID-CPA secure RIBE scheme from lattices by modifying
the RIBE proposed by Chen et al. [8]. Recall such RIBE in the selective chosen-
identity model utilized two IBE schemes, one of which is used to deal with the
identity and the other is corresponding to the time. To achieve the revocation
mechanism, Chen et al. adopted the binary data structure and randomly split
the public parameter into two parts to link the identity and time. The private
key of each user is a set of vectors corresponding to the nodes in the binary
tree. Each non-revoked user can get the update key of one node and generate
the decryption key relating to such node. Inspired by the work of [8] and [1], we
exploit the framework of [8] and replace the IBE building block corresponding
to the identity with a KDM-secure IBE of [1]. If guessing the decryption node
correctly (with non-negligible probability), we can answer the KDM queries of
the decryption key following the strategy of [1]. Therefore, we can obtain a
KDM-sID-CPA secure RIBE but suffering from a super-polynomial modulus as
[1]. Furthermore, we optimize the modulus from super-polynomial to polynomial
by the noise re-randomization technique [12], which leads to a reasonably weak
assumption and much efficiency. By the way, our modulus optimization is also
applicable to [1].

As an independent interest, we also present an efficient KDM-ID-CPA secure
IBE for arbitrary constant identity clique d under the LWE assumption in the
2 In [1], scenarios of revocation has been considered for the IBE scheme, but in the

concrete construction, they proposed the KDM-secure IBE instead of KDM-secure
RIBE.
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random oracle. Unlike [9,14] using the complicated tools, such as iO and garbled
circuits, our IBE scheme is a GPV-style construction [10] and for each identity id,
it is actually an image of the KDM-PKE instance in [1]. In the classical random
oracle model, we can link the KDM-PKE public key Ai and the public parameter
Aid of IBE with the help of a trapdoor, thus successfully transforming a KDM-
challenge ciphertext of PKE scheme to a KDM-challenge response for our IBE
scheme. Therefore, our security of KDM-IBE merely relies on the security of the
underlying KDM-PKE scheme. In the quantum random oracle, our security is
a direct adaption of [22] and only 1-KDM secure. However, when extending the
security to d-KDM security, the existing strategy fails and the detailed discussion
is put in Sect. 6.2.

Related Work. As for RIBE, there is another stronger security notion—
decryption key exposure resistance (DKER), which is introduced by Seo and
Emura [18]. Recently, Katsumata et al. [11] proposed a generic construction of
RIBE with DKER and gave the first construction based on lattices. However,
it is worth mentioning that our concrete RIBE scheme does not support DKER
security, since our decryption key is a simple concatenation of the private key
and update key.

2 Preliminary

Notations. Denote real numbers by R and integers by Z. Denote column vec-
tors over R and Z with lower-case bold letters (e.g. x), and matrices by upper-
case bold letters (e.g. A). Denote the matrix [A1|A2] the concatenating the
matrix A1 and A2. For a positive integer d, let [d] denote the integer set
{1, · · · , d}. If S is a set, s

r← S denotes sampling randomly s from uniform
distribution over S. A function negl(n) : R≥0 → R≥0 is negligible if suffi-
ciently large n > n0 (n0 is a constant), negl(n) < 1/poly(n). The statistical
distance between two random variables X and Y over a countable set D is
Δ(X,Y ) = 1

2

∑
w∈D |Pr[X = w] − Pr[Y = w]|. Let {Xn} and {Yn} be ensembles

of random variables indexed by a security parameter n, we say that {Xn} and
{Yn} are statistically close if Δ(Xn, Yn) is negligible function of n. For a matrix
R ∈ R

l×t, the largest singular value of R is defined as s1(R) = max‖u‖=1 ‖Ru‖.
We fix a universal gadget matrix G = In ⊗ (1, 2, 4, . . . , 2k−1) ∈ Z

n×w
q for

k = �log q� and w = nk = n�log q�. In this paper, we use negl(n) to denote
a class of negligible functions instead of some fixed function.

2.1 Lattices and Gaussian Measures

An n-dimension (full-rank) lattice Λ ⊆ R
n is the set of all integer linear com-

binations of some set of independent basis vectors B = {b1, . . . ,bn} ⊆ R
n×n,

Λ = L(B) = {
∑n

i=1 zibi : zi ∈ Z}. The dual lattice of Λ ⊆ R
n is defined as

Λ∗ = {x ∈ R
n : 〈Λ,x〉 ⊆ Z}. For integers n ≥ 1, modulus q ≥ 2 and A ∈ Z

n×m
q ,

an m-dimensional lattice is defined as Λ⊥(A) = {x ∈ Z
m : Ax = 0 ∈ Z

n
q } ⊆ Z

m.
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For any y in the subgroup of Zn
q , we also define the coset Λ⊥

y (A) = {x ∈ Z
m :

Ax = y mod q} = Λ⊥(A)+x̄, where x̄ ∈ Z
m is an arbitrary solution to Ax̄ = y.

Gaussian Measures. Let Λ be a lattice in Z
n. For any vector c ∈ R

n and
parameter r > 0, the n-dimensional Gaussian function ρr,c : R

n → (0, 1] is
defined as ρr,c(x) := exp(−π‖x − c‖2/r2). The discrete Gaussian distribution
over Λ with parameter r and center c (abbreviated as DΛ,r,c) is defined as
∀y ∈ Λ,DΛ,r,c(y) := ρr,c(y)

ρr,c(Λ) , where ρr,c(Λ) =
∑

y∈Λ ρr,c(y). When c = 0, we
write DΛ,r for short.

Lemma 1. ([10], Theorem 4.1). There is a probabilistic polynomial-time algo-
rithm SampleGaussian that, given a basis BΛ of an n-dimensional lattice Λ, a
parameter r ≥ ‖B̃Λ‖ · ω(

√
log n), and a center c ∈ R

n, outputs a sample from a
distribution that is statistically close to DΛ,r,c.

Lemma 2. ([10,15,16]). Let m ≥ Cn log q for some constant C > 1.

1. For any n-dimensional lattice Λ, any c ∈ Z
n, and any r ≥ ηε(Λ),3 where

ε(n) = negl(n), we have ‖DΛ+c,r‖ ≤ r
√

n with all but negl(n) probability.
In addition, for Λ = Z we have |DZ,r| ≤ r · ω(

√
log n) except with negl(n)

probability.
2. For any r > 0, and for R ← Dn×k

Z,r , we have s1(R) ≤ r · O(
√

n +
√

k) except
with negl(n) probability.

3. With all but negl(n) probability over the uniformly random choice of A ∈
Z

n×m
q , the following holds: For e ← Dm

Z,r, where r = ω(
√

log n), the distribu-
tion of y = Ae mod q is within negl(n) statistical distance of uniform, and
the conditional distribution of e given y is DΛ⊥

y (A),r.

Lemma 3. ([12], Lemma 1). Let q, l,m be positive integers and r a positive
real satisfying r > max{ω(

√
log m), ω(

√
log l)}. Let b ∈ Z

m
q be arbitrary and x

chosen from Dm
Z,r. Then for any V ∈ Z

m×l and positive real σ > s1(V), there
exists a PPT algorithms ReRand(V,b + x, r, σ) that outputs b′ = bV + x′ ∈
Z

l
q where x′ is distributed statistically close to Dl

Z,2rσ.

A new trapdoor notion was introduced in [15]. The strong trapdoor R for
a matrix A ∈ Z

n×m
q refers that for some invertible matrix H ∈ Z

n×n
q , we have

R ∈ Z
(m−w)×w such that A

[
R
I

]

= HG.

Lemma 4. ([15], Theorem 5.1). Let R be a strong trapdoor for A ∈ Z
n×m
q .

There is an efficient randomized algorithm that given R, any u ∈ Z
n
q , and any

r ≥ s1(R) · ω(
√

log n) ≥ ηε(Λ⊥(A)) (for some ε(n) = negl(n)), samples from a
distribution within negl(n) distance of DΛ⊥

u (A),r.

3 For a lattice Λ and a positive real ε > 0, the smoothing parameter ηε(Λ) is defined
as the smallest real r > 0 such that ρ1/r(Λ

∗\{0}) ≤ ε. Especially, for any ω(
√

log n)
function, ηε(Z

n) ≤ ω(
√

log n).
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Learning with Errors Assumption. The learning with errors (LWE) prob-
lem was introduced by Regev [17], which is at least as hard as several lattice
problems in the worst case. For security parameter λ, let n = n(λ) be an inte-
ger dimension, let q = q(λ) ≥ 2 be an integer, and let χ = χ(λ) be a distri-
bution over Z. The LWEn,q,χ problem is to distinguish the two distributions:
{A,Ats + x} and {A,u} where A r← Z

n×m
q , s r← Z

n
q ,u r← Z

m
q , and x ← χm.

When the error distribution χ = DZ,αq, the problem is abbreviated as LWEn,q,α.

2.2 KDM-PKE Scheme in [1]

KDM Security.We mainly consider the KDM security from [1,3]. In their def-
initions, the adversary A plays a game with the challenger C, and is able to
make queries for encryptions of functions of secret keys. The functions which
the adversary queries are restricted in a certain family F ⊂ {f : K → M} (F
contains constant functions on M), where K is the keyspace of secret keys and
M is the message space of the encryption scheme. In the definition of [1], the
adversary assigns two functions (f0, f1) ∈ F with each query, and must dis-
tinguish between the encryptions of f0 and encryptions of f1. Concretely, for
the PKE scheme (Setup,Enc,Dec), the d-KDM-CPA security game between an
adversary and the challenger parameterized by β ∈ {0, 1} proceeds as follows.

– Setup: The challenger runs (PKi,SKi) ← Setup(1n) for i ∈ [d] and the
adversary A is given the challenge public keys I = {PK1, · · · ,PKl} for some
l ≤ d.

– Query: A may adaptively make a polynomial number of queries: A can
make encryption query of the form (i, f0, f1), where f0, f1 ∈ F and 1 ≤ i ≤ l.
The challenger computes μ ← fβ(SK1, · · · ,SKl) and c ← Enc(PKi, μ), and
responses a ciphertext c.

We say the scheme is d-KDM-CPA secure with respect to F if the game for
β = 0, 1 are computationally indistinguishable.

The d-KDM security against selective chosen-identity and chosen-message
attack for IBE scheme (d-KDM-sID-CPA) was defined in [1]. A stronger secu-
rity model for IBE, i.e., adaptive chosen-identity and chosen-message attack
(d-KDM-ID-CPA), is similar to the above definition for d target identities with
the KDM ciphertext of f(SKid∗

1
, · · · ,SKid∗

d
) except that the challenge identities

can be chosen adaptively even after seeing the public key.

KDM-PKE Scheme. Let a modulus be q = p2 for a polynomial prime
p ≥ r2

√
n + m · ω(

√
log n), where n,m are integers, r is a Gaussian parame-

ter satisfying r ≥ 2
√

n and λ be a security parameter. The message space is Zp.
The KDM-secure PKE scheme ΠPKE in [1] consists of three algorithms:

– (PK,SK) ← Gen(1λ): Choose A ∈ Z
n×m
q , z0 ← Dn

Z,r, z1 ← Dm
Z,r, and let

y = z0 −Az1 = [In|−A]z ∈ Z
n
q where z = [z0t|z1t]t ∈ Z

n+m. The public key
PK is (A,y) and the secret key SK is z1.
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– ct ← Enc(A,y, μ): To encrypt a message μ ∈ Zp, choose x0 ← Dn
Z,r, x1 ←

Dm
Z,r and x′ ← DZ,r. Output the ciphertext ct = xt

0[A|y]+ [xt
1|x′]+ [0|p ·μ] ∈

Z
1×(m+1)
q .

– μ← Dec(z1, c): Compute μ′ = ct

[
z1
1

]

∈ Zq. Output the μ ∈ {0, . . . , p − 1} =

Zp such that μ′ is closest to p · μ mod q.

Theorem 1. ([1]). The above cryptosystem is d-KDM-CPA secure with respect
to the set of affine functions over Zp under the LWE assumption.

3 Security Model

In this section, we review the definition of revocable identity-based encryption
(RIBE), and adapt the KDM security to the RIBE scheme. Since there are two
kinds of secret keys for each user—the private key and the decryption key in the
RIBE schemes, we consider our KDM security with respect to the private key
and decryption key respectively.

An RIBE scheme has seven probabilistic polynomial-time (PPT) algorithms
Setup, PriKeyGen, KeyUpd, DecKeyGen, Enc, Dec and KeyRev with
associated message space M, identity space I, and time space T . We assume that
the size of T is a polynomial in the security parameter. There are three parties:
key authority, sender and receiver. Key authority maintains a revocation list
RL and state ST. Hereafter, an algorithm is called stateful if RL or ST needs
updating for revocation.

– (PP,MK,RL,ST) ← Setup(1n, N): Taking as input a security parameter n
and a maximal number of users N , it outputs public parameters PP, a master
secret key MK, a revocation list RL (initially empty) and a state ST.

– (SKid,ST) ← PriKeyGen(PP,MK, id,ST): Taking as input public parame-
ters PP, a master secret key MK, an identity id ∈ I and a state ST, it outputs
a private key SKid and an updated state ST.

– KUt ← KeyUpd(PP,MK, t,RL,ST): Taking as input public parameters PP,
a master secret key MK, a key update time t ∈ T , a revocation list RL and a
state ST, it outputs an update key KUt.

– DKid,t/⊥ ← DecKeyGen(PP,SKid,KUt): Taking as input public parameters
PP, a private key SKid and an update key KUt, it outputs a decryption key
DKid,t or a special symbol ⊥ indicating that id has been revoked.

– CTid,t ← Enc(PP, id, t, μ): Taking as input public parameters PP, an identity
id ∈ I, an encryption time t ∈ T and a message μ ∈ M, it outputs a
ciphertext CTid,t.

– μ ← Dec(PP,DKid,t,CTid,t): Taking as input public parameters PP, a decryp-
tion key DKid,t and a ciphertext CTid,t, it outputs a message μ ∈ M.

– RL ← KeyRev(id, t,RL,ST): Taking as input an identity to be revoked id ∈
I, a revocation time t ∈ T , a revocation list RL and a state ST, it outputs an
updated revocation list RL.
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We require the correctness condition holds that ∀ polynomially-bounded
N , ∀ (PP,MK) ← Setup(1n, N), ∀ μ ∈ M, ∀ id ∈ I, ∀ t ∈ T , all pos-
sible valid states ST and revocation lists RL, if identity id was not revoked
before or at time t, for (SKid,ST) ← PriKeyGen(PP,MK, id,ST), KUt ←
KeyUpd(PP,MK, t,RL,ST) and DKid,t ← DecKeyGen(PP,SKid,KUt), we have
Pr[Dec(PP,DKid,t,Enc(PP, id, t, μ)) �= μ] ≤ negl(n).

Now we define the KDM security games in the RIBE. For simplicity, we only
consider the selective chosen-identity attack model4 in the single identity setting
and take into account the key revocation and KDM security with respect to
function family F . We define the KDM security game with decryption key and
private key respectively.
The KDM security game with the decryption key between an adversary A and
a challenger C is parameterized by some β ∈ {0, 1} and proceeds as follows:

– Initial: The adversary first outputs the challenge identity id∗ and time t∗,
and also some information state it wants to preserve.

– Setup: The challenger runs (PP,MK,RL,ST) ← Setup(1n, N), and the adver-
sary A is given public parameters PP.

– Query: A may adaptively make a polynomial number of queries of the fol-
lowing oracles (the oracles share state):

– Extraction Queries: A can query PriKeyGen(·) for identity id, and gets
a private key SKid.

– Update Queries: A can query KeyUpd(·) for time t, and gets an update
key KUt.

– Revocation Queries: A can query KeyRev(·, ·) for identity id and time
t, and gets an update RL.

– KDM-Encryption Queries: A can make encryption queries of the form
(f0, f1), where f0, f1 ∈ F . If DKid∗,t∗ �= ⊥, the challenger C computes
μ ← fβ(DKid∗,t∗) and c ← Enc(PP, id∗, t∗, μ), and responses a ciphertext
CTid∗,t∗ . If DKid∗,t∗ = ⊥ and fβ = mβ , a constant function in M, C
returns encryption of mβ , i.e.,CTid∗,t∗ ← Enc(PP, id∗, t∗,mβ). Otherwise,
if DKid∗,t∗ = ⊥ and fβ is not a constant function in M, then C returns
the encryption of zero string, i.e., CTid∗,t∗ ← Enc(PP, id∗, t∗,0).

– Guess: The adversary outputs a bit β′. If β′ = β, A succeeds.

The KDM security game with the private key between an adversary A and
a challenger C is the same as above, except the KDM-Encryption queries. Such
KDM-Encryption queries with the private key are as follows.

– KDM-Encryption Queries: A can make encryption queries of the form
(f0, f1), where f0, f1 ∈ F . The challenger C computes μ ← fβ(SKid∗) and
c ← Enc(PP, id∗, t∗, μ), and responses a ciphertext CTid∗,t∗ .

4 The adaptive chosen-identity model is identical to the selective chosen-identity
model, except the target identity and time are adaptively chosen by the adversary
after seeing the public key.
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We insist that KeyUpd(·) and KeyRev(·, ·) can be queried on time in a non-
decreasing order of time. Besides, the following restrictions should always hold:

1. KeyRev(·, ·) cannot be queried at time t if KeyUpd(·) was queried on t.
2. If PriKeyGen(·) was queried on identity id∗, then KeyRev(id∗, ·) must be

queried at time t ≤ t∗. In other words, id∗ must be revoked at time t ≤ t∗.
3. If t ≥ t∗ and ID∗ is not revoked at t∗, then PriKeyGen(ID∗) cannot be queried

at time t.

We say that a scheme has KDM security with the decryption key/private key
against selective chosen-identity and chosen-plaintext attacks (KDM-sID-CPA)
with respect to F , if the advantage of any PPT adversary A is bounded by a
negligible function negl(n), i.e. Adv(A) = |Pr[A succeeds] − 1

2 | ≤ negl(n).

4 KDM Security for RIBE with the Private Key

In this section, we give a generic construction of KDM-secure RIBE
with the private key from a KDM-secure IBE and a RIBE scheme. Let
k.Π = (k.Setup, k.PriKeyGen, k.Enc, k.Dec) be a KDM-secure IBE scheme with
identity space k.I and message space k.M. Let r.Π = (r.Setup, r.PriKeyGen,
r.KeyUpd, r.DecKeyGen, r.Enc, r.Dec,KeyRev) be an RIBE scheme with iden-
tity space r.I, time space r.T and message space r.M. We assume k.I =
r.I, k.M = r.M.

Our KDM-secure RIBE Π = (Setup,PriKeyGen,KeyUpd,DecKeyGen,Enc,
Dec,KeyRev) with identity space I, message space M and time space T . Assum-
ing I = k.I = r.I,M = k.M = r.M, T = r.T , our construction is as follows.

– (PP,MK,RL,ST) ← Setup(1n, N): Taking as input a security param-
eter n and a maximal number of users N , run (k.PP, k.MK) ←
k.Setup(1n) and (r.PP, r.MK) ← r.Setup(1n, N). It outputs public param-
eters PP=(k.PP,r.PP), a master secret key MK=(k.MK,r.MK), a revocation
list RL (initially empty) and a state ST.

– (SKid,ST) ← PriKeyGen(PP,MK, id,ST): Taking as input public parameters
PP, a master secret key MK, an identity id ∈ I and a state ST, run k.SKid ←
k.PriKeyGen(k.PP, k.MK, id) and r.SKid ← r.PriKeyGen(r.PP, r.MK, id,ST).
It outputs a private key SKid = (k.SKid, r.SKid) and an updated state ST.

– KUt ← KeyUpd(PP,MK, t,RL,ST): Taking as input public parameters PP, a
master secret key MK, a key update time t ∈ T , a revocation list RL and a
state ST, run r.KUt ← r.KeyUpd(r.PP, r.MK, t,RL,ST). it outputs an update
key KUt = r.KUt.

– DKid,t/⊥ ← DecKeyGen(PP,SKid,KUt): Taking as input public param-
eters PP, a private key SKid and an update key KUt, run r.DKid,t ←
r.DeyKeyGen(r.PP, r.SKid, r.KUt). It outputs a decryption key DKid,t =
(k.SKid, r.DKid,t) or a special symbol ⊥ if r.DKid,t = ⊥ indicating that id
has been revoked.
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– CTid,t ← Enc(PP, id, t, μ): Taking as input public parameters PP, an identity
id ∈ I, an encryption time t ∈ T and a message μ ∈ M, sample a uniform pair
(k.μ, r.μ) ∈ M2 such that μ = k.μ+ r.μ. Run k.CT ← k.Enc(k.PP, id, k.μ) and
r.CT ← r.Enc(r.PP, id, t, r.μ). It outputs a ciphertext CTid,t = (k.CT, r.CT).

– μ ← Dec(PP,DKid,t,CTid,t): Taking as input public parameters PP, a decryp-
tion key DKid,t and a ciphertext CTid,t, run k.μ ← k.Dec(k.PP, k.SKid, k.CT)
and r.μ ← r.Dec(r.PP, r.DKid,t, r.CT). If k.μ = ⊥ or r.μ = ⊥, it output ⊥.
Otherwise, it outputs a message μ = k.μ + r.μ ∈ M.

– RL ← KeyRev(id, t,RL,ST): Taking as input an identity to be revoked id ∈ I,
a revocation time t ∈ T , a revocation list RL and a state ST, run r.RL ←
r.KeyRev(id, t,RL,ST). It outputs an updated revocation list RL=r.RL.

The correctness of our scheme Π relies on the correctness of each building block,
i.e., k.Π and r.Π. The security of Π is given as follows.

Theorem 2. Assuming the IBE scheme k.Π is KDM-sID-CPA secure (resp.
KDM-ID-CPA) with the private key with respect to the affine functions F and
the RIBE scheme r.Π is IND-sID-CPA secure (resp. IND-ID-CPA), then the
scheme Π is KDM-sID-CPA secure (resp. KDM-ID-CPA) with the private key
with respect to F .

Proof. (Sketch) Since the proofs for the selective chosen-identity model and the
adaptive chosen-identity model are the same, we only consider the proof in the
selective chosen-identity model. Let id∗ and t∗ be the target identity and time.
Denote Q the number of extraction queries issued by the adversary A. For 1 ≤
i ≤ Q, let SKidi denote the queried private key on identity idi. For simplicity, we
divide A into two types:

– Type I : for ∀i ∈ [Q], SKid∗ �= SKidi
. That means, A does not issue the

extraction query on id∗.
– Type II : for some i ∈ [Q], SKid∗ = SKidi

. That means, A learns the private
key SKid∗ by the extraction query, but id∗ is revoked at t∗.

Combining the Lemmas 5 and 6, the advantage of A is negligible. ��

Lemma 5. If A is a successful adversary of Type I, there exists a PPT simulator
B attacking the underlying KDM-IBE scheme with non-negligible probability.

Lemma 6. If A is a successful adversary of Type II, there exists a PPT simulator
B attacking the underlying RIBE scheme with non-negligible probability.

Remark 1. Especially, our RIBE construction Π is even d-KDM-secure if the
underlying IBE scheme k.Π is d-KDM secure, where d is the private key clique
size.

5 KDM Security for RIBE with the Decryption Key

In this section, we present a concrete construction for KDM-secure RIBE with
the decryption key in the selective chosen-identity model.
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5.1 Our KDM-RIBE Scheme

In our construction, we use the instance of [1] to deal with user’s identity and
another IBE instance to handle the time. As in [1], we use an additive group
G = Z

n
q and a ring R = Zq[x]/(F (x)), where F (x) is a monic and irreducible

polynomial with degree n and G is an R-module5. Let p be the smallest prime
divisor of q, and we define U = {u0 = 0, u1, u2, . . . } ⊆ R as the set consisting
of all the polynomials having coefficients in Zp, which makes |U | = pn ≥ 2n and
ui − uj a unit for any i �= j. (See detailed discussion in [1].)

Suppose identity id and time t are encoded into U\{0} respectively and our
RIBE scheme from lattices is described below.

– (PP,MK,RL,ST) ← Setup(1n, N): On input a security parameter n and a
maximal number N of users, perform the following steps:
1. Sample R1,R2 ← Dm×w

Z,ω(
√
log n)

, choose uniformly random A r← Z
n×m
q ,

y r← Z
n
q and let Ã1 = AR1, Ã2 = AR2 ∈ Z

n×w
q .

2. Let RL be an empty set and BT be a binary-tree with at least N leaf
nodes, and set ST:=BT.

3. Output RL, ST, public parameters PP = (A, Ã1, Ã2,y) and a master
secret key MK = {R1,R2}.

– (SKid,ST) ← PriKeyGen(PP,MK, id,ST): On input public parameters PP,
a master secret key MK, an identity id ∈ U\{0} and a state ST, it picks an
unassigned leaf node υ from BT and stores id in that node. It then performs
the following steps:
1. For any θ ∈ Path(υ), if yθ,1,yθ,2 are undefined, pick yθ,1

r← Z
n
q , set

yθ,2 := y−yθ,1 and store them in the node θ. Set Aid := [A|(id)G− Ã1].
Sample z0 ← Dn

Z,r, eθ,1 ← DΛ⊥
z0−yθ,1

(Aid),r so that z0 − Aideθ,1 = yθ,1.

2. Output SKid := {(θ, eθ,1)}θ∈Path(υ).
– KUt ← KeyUpd(PP,MK, t,RL,ST): On input public parameters PP, a mas-

ter secret key MK, a time t ∈ U\{0}, a revocation list RL and a state ST, it
performs the following steps:
1. For any θ ∈ KUNodes(BT,RL, t)6, if yθ,1,yθ,2 are undefined, pick yθ,1

r←
Z

n
q , set yθ,2 := y−yθ,1 and store them in the node θ. Set At := [A|tG−

Ã2]. Sample eθ,2 ← DΛ⊥
−yθ,2

(At),r, so that −Ateθ,2 = yθ,2.

2. Output KUt := {(θ, eθ,2)}θ∈KUNodes(BT,RL,t).
– DKid,t/⊥ ← DecKeyGen(PP,SKid,KUt): On input public parameters PP, a

private key SKid := {(i, ei,1)}i∈I and update key KUt := {(j, ej,2)}j∈J for some
sets of nodes I and J, it runs the following steps:

5 Scalar Multiplication R×G → G is defined by identifying each a = (a0, · · · , an−1)
t ∈

G with the polynomial a(x) = a0 +a1x+ · · ·+an−1x
n−1 ∈ R, multiplying in R, and

then mapping back to G.
6 Due to limit page, we omit the description of KUNodes. Refer to the concrete algo-

rithm in [4]. It takes as input a binary-tree BT, a revocation list RL and time t, and
outputs a set of nodes.
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1. ∀(i, ei,1) ∈ SKid, ∀(j, ej,2) ∈ KUt, if ∃(i, j) s.t. i = j, DKid,t ← (ei,1, ej,2),
else if SKid and KUt do not have any node in common, DKid,t ← ⊥.

2. Output DKid,t := {(ei,1, ei,2)}i∈I∩J.
– CTid,t ← Enc(PP, id, t, μ): On input public parameters PP, an identity id ∈

U\{0}, a time t ∈ U\{0}, and a message μ ∈ Zp:
1. Set Fid,t := [A|(id)G − Ã1|tG − Ã2] ∈ Z

n×(m+2w)
q .

2. Choose x0 ← Dn
Z,r, x(1)

1 ← Dm
Z,r, x(2)

1 ← Dw
Z,γ ,x(2)

2 ← Dw
Z,γ , x2 ← DZ,γ ,

and set xt
1 := [(x(1)

1 )t|(x(2)
1 )t|(x(2)

2 )t] ∈ Z
1×(m+2w)
q .

3. Compute c0 ← xt
0y + x2 + p · μ ∈ Zq, c1 ← xt

0Fid,t + xt
1 ∈ Z

1×(m+2w)
q .

4. Output the ciphertext CTid,t := (c0, c1) ∈ Zq × Z
1×(m+2w)
q .

– m ← Dec(PP,DKid,t,CTid,t): On input public parameters PP, a decryption
key DKid,t := (e1, e2), and a ciphertext CTid,t := (c0, c1), it runs the following
steps:
1. Parse c1 as [c1,0|c1,1|c1,2] ∈ Z

1×m
q × Z

1×w
q × Z

1×w
q .

2. Compute μ′ ← c0 + [c1,0|c1,1]e1 + [c1,0|c1,2]e2.
3. Output μ ∈ Zp s.t. μ′ is closest to p · μ mod q.

– RL ← KeyRev(id, t,RL,ST): On input an identity id, a time t, a revocation
list RL and a state ST, the algorithm adds (id, t) to RL for all nodes associated
with identity id and returns RL.

5.2 Correctness and Security

We can set the parameters as follows: m = Θ(n log q), Gaussian parameter r
needs to be large enough for Gaussian sampling i.e. r ≥ max{s1(R1), s1(R2)} ·
ω(

√
log n) = O(

√
m +

√
w) · ω(

√
log n)2 = O(

√
m) · ω(

√
log n)2. On the other

hand, the hardness of LWE requires r ≥ 2
√

n. For the security proof, we need
γ′ ≥ O(m)·r2 ·ω(

√
log n) and let γ =

√
r2 + 2γ′2, p = γ ·poly(n) for a sufficiently

large poly(n) term to ensure correctness and modulus q = p2. Now we prove the
correctness.

μ′ = c0 + [c1,0|c1,1]e1 + [c1,0|c1,2]e2

= p · μ + xt
0z0 + x2 + [(x(1)

1 )t|(x(2)
1 )t]e1 + [(x(1)

1 )t|(x(2)
2 )t]e2.

Thus, the decryption is correct if the error term |xt
0z0 +x2 +[(x(1)

1 )t|(x(2)
1 )t]e1 +

[(x(1)
1 )t|(x(2)

2 )t]e2| < p
2 . By the Cauchy-Schwartz equality and Lemma 2, it holds

except with negligible probability.

Theorem 3. The above RIBE scheme is KDM-sID-CPA secure with the
decryption key with respect to the affine functions over Zp under the above
parameters under the LWE assumption.

Remark 2. Our scheme is only 1-KDM-sID-CPA secure and it seems hard to
prove the d-KDM using our proof strategy. In our simulation of Type I, we
generate the public parameter y by setting y = yid∗ + yt∗ with yid∗ obtained
from the challenger and yt∗ from our computation. However, when considering
the d-KDM security, it needs yid∗

1
, · · · ,yid∗

d
for the different private keys, which

seems hard for us to generate the y, thus making our proof fail.
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6 KDM Security for IBE

In this section, we present an efficient KDM-ID-CPA secure IBE scheme in the
random oracle model, which can be used as a component of our generic con-
struction of KDM-secure RIBE in Sect. 4.

6.1 KDM-IBE Scheme

The plaintext space is Zp. The secret key clique size of scheme is d, the parameter
w = n�log q�, and the random oracle is H : U\{0} → Z

n
q , where U\{0} is the

identity space defined as before. The concrete construction is as follows:

– (PP,MSK) ← Setup(1n, d): On input the security parameter n and secret
key clique size d, perform the following steps:
1. Sample R ← Dm×w

Z,ω(
√
log n)

. Choose a uniform random matrix A r← Z
n×m
q ,

and let Ã = −AR ∈ Z
n×w
q .

2. The public parameters is PP = {A, Ã}. The master secret key is MSK =
R.

– SKid ← Ext(PP,MSK, id): On input the public parameters PP, identity id ∈
U\{0}, and master secret key MSK, it performs the following steps:
1. Set Aid = [A|(id)G + Ã] ∈ Z

n×(m+w)
q and yid = H(id) ∈ Z

n
q .

2. Sample z0 ← Dn
Z,r, z1 ← Dm+w

Λ⊥
z0−yid

(Aid),σ
such that yid = z0 − Aidz1.

3. Output SKid := z1.
– CT ← Enc(PP, id, μ): On input the public parameters PP, identity id ∈ U\{0}

and message μ ∈ Zp, perform the following steps:
1. Let Aid = [A|(id)G + Ã] and yid = H(id) ∈ Z

n
q .

2. Choose x0 ← Dn
Z,r,x1 ← Dm+w

Z,r and x2 ← DZ,r. Compute ct =

xt
0[Aid|yid] + [xt

1|x2] + [0|p · μ] ∈ Z
1×(m+w+1)
q .

3. Output CT := ct.
– μ ← Dec(PP,SKid,CT): On input the public parameters PP, private key SKid

and ciphertext CT, perform the following steps:

1. Compute μ′ = ct

[
z1
1

]

∈ Zq.

2. Output the μ ∈ {0, . . . , p−1} = Zp such that μ′ is closest to p · μ mod q.

By Lemma 2, we set m = Θ(n log q), and Gaussian parameter r ≥ 2
√

n to
satisfy the reductions from LWE to worst-case lattice problems [17] and σ ≥
s1(R) · ω(

√
log n) ≥ O(

√
m) · ω(

√
log n)2 and set σ = r · O(

√
m + ω) · ω(

√
log n).

For correctness, we let message space size p ≥ σ2(n + m + w) · ω(
√

log n) and
q = p2.
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6.2 Security of KDM-IBE Scheme

We analyze the security in both the classical random oracle and quantum random
oracle model.

Theorem 4. The IBE system described above is d-KDM-ID-CPA secure with
the affine functions over Zp for the arbitrary constant d in the classical random
oracle model under the LWE assumption.

In the quantum random oracle model (QROM), similar to [22], replacing the
random oracle with a semi-constant distribution SCλ

7, we can get the 1-KDM
security in the QROM. However, when extending to the d-KDM security in the
QROM, such technique fails. The main obstacle is how to embed d challenges
simultaneously. When plugging d challenges to the random oracle queries like
[22], the adversary may detect its non-randomness. In details, we can define a d-
leveled semi-constant distribution SCd,λ, which makes d patches with d constant
values with some probability and others are random values. By Corollary 4.3 in
[22], there is at most a distance 8

3dqH
4λ2 between SCd,λ and the true random

oracle. However, in the security proof, compared to the adversary’s advantage
O(λd), this distance seems too large. Thus, it makes the original proof strategy
fail. Besides, Katsumata et al. [13] provided a tighter security reduction for
GPV-IBE in QROM by programming the random oracle the same way for all
identities. However, it seems not easy to apply their techniques to our setting.
We leave the d-KDM security in the quantum world as the further work.
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