
Community Discovery of Attribution
Trace Based on Deep Learning Approach

Jian Xu1,2, Xiaochun Yun1,2,3, Yongzheng Zhang1,2(B), and Zhenyu Cheng1,2

1 Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China
{xujian,zhangyongzheng,chengzhenyu}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100093, China

3 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing 100093, China

yunxiaochun@cert.org.cn

Abstract. In order to prevent potential network crime and halt attack-
ers’ operation further, collecting information to profile attackers is help-
ful. Because this exposes the identity of attackers, as well as provides
IOC (Indicator of Compromise) to confirm whether devices have been
compromised. In this information searching procedure, finding unknown
information based on the existing ones is of crucial importance, because
it leads to a more comprehensive profile about the attackers. Usually,
these information pieces about a particular attacker form a tight con-
nected community. Thus, finding the correct community label for the
new incoming information piece based on these existing ones is pivotal
for iteratively discovering more unknown information about the attacker.
To facilitate this process, we propose to adopt the promising deep learn-
ing method to community classification on attribution traces. First, we
propose to employ deep learning on extracting attribution trace pattern
and then use the fine-tuned DBN (Deep Belief Network) to model the
existing communities. At last, we experimentally illustrate the effective-
ness of the DBN model in finding the correct community labels by feed-
ing it with test information pieces. The results demonstrate that deep
learning is a powerful means for identifying the community label.

Keywords: Deep learning · Attribution trace · Network analysis
Community discovery

1 Introduction

With the highly developed global internet, a variety of network attacks are
appearing daily, and this number is increasing [23,25]. To counter these threats,
Network traceback is a sound method, because it directly leads to the expo-
sure of attackers. For the real application, supposing to continuously monitor
the APT1 organization [22], we collect information pieces about the attackers,
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 342–357, 2018.
https://doi.org/10.1007/978-3-030-01950-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_20&domain=pdf


Community Discovery of Attribution Trace 343

such as malware MD5, IP address, email addresses used by them from public
reports, Google, malware reverse engineering, and compromised device forensic.
These information pieces are combined as traceback network to profile the APT1
organization and its attackers. We could exploit this traceback network to verify
if machines are compromised by APT1 organization and its attackers through
comparing the malware MD5 information pieces that are testified belonging to
APT1 traceback network with the file MD5 found in end machine. If there exists
a match, it indicates this machine has been compromised by this organization.
The malware MD5 here we used are called the IOC (Indicator of Compromise).
There are variety forms of IOCs, such as MD5, file existence, cookies, etc.

In general, tight connected information pieces are connected as relevant cir-
cles [24] and stay as a compact community. There exist more connections within
the community rather than between communities. The more compact the com-
munity is, the more related these information pieces are to another. In the attri-
bution trace network, these pieces within the community are strong relevant
to the person or the organization we are investigating, while others may not
much relevant. So as to continuously add new information pieces into this trace-
back network for comprehensive organization profiling, We iteratively research
these information pieces within the community to discover other relevant but
unknown pieces which possibly have been ignored hitherto by analyzers. We
also have to determine whether the new incoming information piece belongs to
this traceback network or not. Therefore, finding the correct community label
for the information piece is of crucial importance as they may help to uncover
previously unknown information about the attackers.

Deep learning, as the cutting-edge machine learning method, is very effective
in extracting pattern. The pretraining selects better pattern layer by layer auto-
matically. And these patterns extracted by deep learning are usually superior
to hand-picked features [12]. Additionally, patterns extracted by pretraining is
resistant to breakings launched by attackers. For example, in the past, once the
features hand-picked by investigators were analyzed and understood, the attack-
ers usually will modify their implemented features to escape the detection, which
renders the previous research works ineffective and finally avoids the traceback
mechanism. Based on these grounds, we employ pretraining to extract the com-
munity patterns from attribution trace network and model these communities
through fine-tuning this model, powering the deep learning model to assign the
new piece to the right community.

Our paper proposes a deep learning approach to find the correct community
label for information pieces to fulfill the purpose of network attack traceback.
To demonstrate the effectiveness of this approach, we use the Enron emails
communication dataset to test the model trained by deep learning.

In summary, we make the following contributions to attack traceback in this
paper:

– We utilize pretraining to extract connection patterns from both the connec-
tion weight and the connection structure of the trace network and demon-
strate that the extraction of network trace pattern implemented by deep



344 J. Xu et al.

learning, which learns optimized deep hierarchical representation. This over-
comes the shortcomings accompanied with previous researches, which merely
focus on individual features, such as vertex centrality, closeness centrality,
eigenvector centrality and clustering coefficients.

– We validate the effectiveness of the deep learning model against the real email
communication dataset. And hyper-parameters (i.e. L2weight and sparsity),
which greatly influence the model, are also discussed and optimized.

The rest of the paper is organized as follows. In Sect. 2, related literatures are
reviewed, including the methods based on mesoscopic features, block-modeling
and NMF (Nonnegative Matrix Factorization). Our deep learning approach are
presented in Sect. 3. We outline our experiments in Sect. 4, and present experi-
mental results. We close with a discussion about the work in Sect. 5.

2 Related Work

Community discovering has been extensively investigated in social network
research area [1,3,5]. However, adopting community discovery to attribution
trace network is a relatively emerging research area.

The traditional methods are usually based on the mesoscopic features, e.g.
modularity, network vertex degree and connection weights. Seldom concerns have
been given to applying deep learning for trace community discovery. Blondel et
al. introduced an efficient modularity-based algorithm which finds communities
in large networks [2].

Ferrara analyzed the community structure of the Facebook social network
using the mesoscopic feature. It included the statistical features of the meta-
network, such as density, average degree, connection weight, and it unveiled
the communities representing the aggregation units where users stay together
and interact [7]. Emilio Ferrara also presented LogAnalysis, which is a semi-
supervised detection of criminal communities in networks reconstructed from
phone call records. It analyzed degree centrality, vertex between centrality,
closeness centrality, eigenvector centrality and clustering coefficient to profile
the criminal communities. The system unveiled a few primary characteristics of
criminal communities in real world phone call networks [8]. Most of their works
focused on employing local features of vertex to detect community structures.
Our work mainly utilizes the connection structure and connection weights of
vertices.

De Meo et al. worked on methods to determine whether two vertices belong
to the same community according to their similarity, which is based on the
knowledge of common connected vertices or vertex group, as well as the anal-
ysis of social events in which users are involved [6]. They also proposed CON-
CLUDE (Complex Network Cluster Detection). It couples the accuracy of global
approaches with the scalability of local methods by figuring out the edge impor-
tance which keeps the network connected. This edge centrality enables vertices
mapping to Euclidean space. And the distance among the points in this space



Community Discovery of Attribution Trace 345

is employed to discover communities [15]. Their work is somewhat similar to
ours, we both exploits the vertex similarity to determining whether two vertices
belongs to the same community. However, they used features of the edge central-
ity, while we employ deep learning to extract representations from connection
structure.

Chen et al. tried to uncover crime community by using hierarchical cluster-
ing, and they exploited block-modeling to confirm the inter-connection among
communities [4]. Their method is mainly a community cluster, while ours devotes
to train deep network to recognize vertices belonging to the same community.

He et al. [9] and Jin et al. [10] employed stochastic model to detect com-
munities through nonnegative matrix factorization. It aimed to find a nonneg-
ative membership matrix to reconstruct the adjacency matrix of the network.
Their objective functions are usually based on square loss function and Kullback-
Leibleer divergence. Their work used matrix factorization to discover community
structures, while our approach can adapt the community model to new training
vertices and continuously improve the community abstraction.

We are aware of Ishai Rosenberg’ work, they proposed DeepAPT [20] to
attribute malwares to its national developers using Deep Neural Networks
(DNN). They recorded the running behaviors of malware in sandbox as raw
input to the neural network, from which the DNN extracted features about the
malwares. They tested set of 1,000 Chinese and Russian developed malwares,
and achieved accuracy rate of 94.6%. Our work is different from theirs because
we focus on profiling the attackers and their organization through continuously
information mining. While their work concentrated on discovering the author-
ship for binary malware code.

3 Method

In this section, we propose the deep learning method, including the embedding
preprocessing in Sect. 3.2, the deep learning in Sect. 3.3.

3.1 Definition

Attribution trace is defined as the abstract of attributable information piece.
It is defined as a tuple, (vi, vj , eij), which contains two vertices vi, vj and their
connection eij . By combining traces with the common vertex, we define the trace
network as a network G = (V,E), where V is the set of all vertices, and E is
the set of all connections. The network is a collection of all vertices and their
connections.

3.2 Vertex Embedding

The input dimension of the deep learning is constant in both training and testing
stages. Thus, the vertices in the attribution trace network should map into a
space where each vertex’s feature dimension is the same. And this mapping



346 J. Xu et al.

function is requested to reserve the community characters of each vertex. To
achieve this purpose, we utilize Deepwalk to embed vertices in the attribution
trace network. The dimension of the embeddings is constant, which serves as the
input of our deep learning model.

Deepwalk learns embedding of trace vertices by encoding their connection
relations into a continuous vector space [18]. For each vertex in the trace net-
work, the walk begins from itself, then adds a new vertex randomly chosen from
the neighbors of the last visited vertex until the maximum walk length is met.
Deepwalk then uses Word2vec to model and update the embedding of the ver-
tices. Word2vec first represents each vi ∈ V as one-hot vector. Given a vertex
walk Wn = (v0, v1, . . . , vn) in the random walks, where vi ∈ V , and V is the
set of trace vertices, Word2vec will maximize the Pr(vn|v0, v1, . . . , vn−1) over
all the walks in the random walk set by exploiting neural network to predict
the following vertex in each random walk [16]. After this process, the weights of
hidden layer are used to present each vertex as a vector.

Deepwalk is a particularly computationally-efficient predictive model for
learning vertex embeddings from the random walks, because if two vertices have
the same connection context in the network, they tend to generate the simi-
lar random walks. It then embeds vertices in a continuous vector space where
connection context similar vertices are mapped to nearby points. This captures
the neighborhood similarity and community membership of each vertex in the
attribution trace network.

The original implementation of Deepwalk does not exploit the connection
weights among vertices. In our paper, we choose a new vertex in the random
walk process with the probability proportional to their connection weights, which
means if an adjacent vertex has greater weight than other adjacent vertices, it
has a bigger chance that the chain walks to this vertex.

Algorithm 1. Deepwalk algorithm with connection weight
Input: G(V,E), dimension, walk.length,
Output: embeddings
1: walks ← ∅
2: for all vi ∈ V do
3: walk ← ∅
4: walk.add(vi)
5: vcur ← vi
6: for i in range(walk.length) do
7: vnext = rand(vcur.adj, weights)
8: walk.add(vnext)
9: vcur ← vnext

10: end for
11: end for
12: embeddings = word2vec(walks, dimension)



Community Discovery of Attribution Trace 347

The Deepwalk algorithm with connection weight is illustrated in Algorithm1.
It first implements random walks starting from each vertex in the network with
the possibility proportional to the connection weight. And all the random walks
generated in the first step constitute the walk set which the Word2vec model
works on. Then Word2vec model consumes these random walks to update the
vertex embeddings. In our research, we set the walk length to 15 vertices, and
200 walks are generated for each vertex. The final embedding dimension is 160.

3.3 Deep Learning

Deep learning is particularly helpful for extracting pattern from complex data
[11]. This character especially suits the goal that we classify trace network com-
munity. Because the community character of attribution trace is a complex data
format that is encoded as the connection structure and connection weight among
different traces. The deep learning model extracts the pattern optimized for the
community character through layer by layer pretraining. The training procedure
of deep learning extracts the patterns which are perfect representations of ver-
tex’s community character. The training procedure contains two steps, pretrain-
ing and fine-tuning. The core unit of the pretraining stage is the autoencoder.

1x

3x

2x

4x

dx

1h

2h

rh

1̂x

2̂x

4̂x

3̂x

d̂x

Fig. 1. Autoencoder unit

An autoencoder is comprised of an encoder and a decoder. The structure
of autoencoder is depicted in Fig. 1. The encoder transfers the input to hidden
pattern represented by the hidden layer output, while the decoder attempts to
reverse this process by mapping the hidden pattern to its original input. We
consider the vertex embeddings extracted by Deepwalk as x ∈ R

Dx , then the
autoencoder tries to replicate the input as x̂ according to Eq. 1.

x̂ = hd{wd(he(wex + be)) + bd)} (1)

where h is the transfer function, w is the weight matrix and the b is the bias
vector. The superscript e stands for the encoder layer, while the superscript d
stands for the decoder layer.



348 J. Xu et al.

The autoencoder learns its weights and biases by reconstructing the input
through optimizing the cost function. Equation 2 is the cost function. The deep
learning model updates the weights and biases through minimizing this cost
function. The weights of the hidden layer learnt in this way are close to the
global optimal weights, which are later used to transfer the input to the latent
representations.

E =
1
N

N∑

n=1

D∑

d=1

(xdn − x̂dn)2 + λΩweights + βΩsparsity (2)

where N is the number of vertices in every training batch, D is the vertex dimen-
sion that is determined by Deepwalk’s parameter, Ωweights is the L2 weight regu-
larization and Ωsparsity is the sparsity regularization. λ and β stand respectively
for the coefficients of the L2 weight regularization and the sparsity regularization.

The L2 weight regularization is helpful in keeping the weights small. This is
accomplished by summing the square of the weights. The overall term will be
punished if this summation is large. This will prevent the model from overfitting
the training traces [17].

Ωweights =
1
2

L∑

l

N∑

j

D∑

i

(wl
ji)

2 (3)

where D is the vertex dimension, N is the number of vertices in each training
batch and L is the number of neurons in the hidden layer.

The sparsity regularization penalizes the activation of each hidden neuron,
ρ̂i, deviating significantly from the hyper-parameter, ρ, by imposing penalty
term to the cost function. It will punish the cost function when the average
activation value, ρ̂i, of the reconstruct layer neuron is swayed much from the
desired value, ρ.

Ωsparsity =
D∑

i=1

ρlog(
ρ

ρ̂i
) + (1 − ρ)log(

1 − ρ

1 − ρ̂i
) (4)

where ρ is a hyper-parameter to which we would like the average activation of
each hidden neuron to be close, ρ̂ is the activation of each hidden neuron. Here
we use the Kullback-Leibler divergence function [13] as a difference measurement
of ρ̂i and ρ. The output of this function equals 0 when ρ̂i and ρ are the same. D
is the number of hidden neurons.

DBN is composed of a stack of encoders with a softmax layer as the final
layer. These encoders are the front part of the pretrained autoencoders. The
structure of DBN is demonstrated in Fig. 2. In DBN, each layer’s input serves as
the visible layer, output serves as the hidden layer. Each hidden layer serves as
the visible layer of the next layer [21]. DBN fulfills the training process through
three steps. The first step is pretraining, which goes layer by layer. It employs
unsupervised training to update the weights of the hidden units in each layer,



Community Discovery of Attribution Trace 349

1x

3x

2x

4x

dx

1x

3x

2x

4x

dx

encoder

visible layer hidden layer

Softmax layer

hidden layersinput output

1
1h

1
2h

1
rh

2
1h

2
2h

2
rh

3
1h

3
2h

3
rh

Fig. 2. DBN network

outputs the hidden patterns. During this step, each hidden layer in the DBN is
considered as an autoencoder. Then it combines all the encoders trained in the
first step and adds a softmax layer. The softmax layer squashes the output of the
last hidden layer into vector σ(z) of real values, where each entry is in the range
(0, 1), and all the entries add up to one. Equation 5 is the softmax function.

σ(z)j =
ezj

∑K
k=1 ezk

for j = 1, . . . , K (5)

After the pretraining stage, a fine-tuning process is launched using the train-
ing traces and their community labels in a supervised training manner to re-train
the whole neural network. This process treats all layers of the stacked autoen-
coders as a single model and precisely adjust the model weights to fit the training
traces. This fine-tuning process utilizes the cross-entropy as the cost function,
which is displayed in Eq. 6.

E(W, b) = − 1
N

N∑

i=1

[yi ln ŷi + (1 − yi) ln(1 − ŷi)] (6)

where N is the number of items in each training batch, the sum is over all
training traces, and y is the corresponding target community class label. ŷ is the
predicted community label of the deep learning model.

In this work, we use the backpropagation algorithm to compute the gradients
for all layers displayed through Eqs. 7 to 10.

δnl = −(∇anl E) • f
′
(z(nl)) (7)

δl = [(W l)T δ(l+1)] • f
′
(z(l)) (8)

∇W (l)E(W, b;x, y) = δ(l+1)(a(l))T (9)

∇b(l)E(W, b;x, y) = δ(l+1) (10)



350 J. Xu et al.

Where • denotes the element-wise product operator, a(l) is the output pattern
vector in layer l, δ measures how much the node accounts for any errors in the
final community output. f(z) denotes the activation function of each layer. The
algorithm first performs a feedforward pass. Outputs, a(l), of the hidden layer as
well as the final are computed using each layer’s forward propagation equation.
Then ∇WE(W, b;x, y) and ∇bE(W, b;x, y) are the partial derivatives and they
are calculated from the last layer back to the first layer. Finally, the W and b
are updated according to Eqs. 11 and 12.

Wij = Wij − α
∂

∂Wij
E(W, b) (11)

bi = bi − α
∂

∂bi
E(W, b) (12)

After this training process, the network predict the labels for the test vertices.

4 Experiment

In this section, we first introduce the dataset we are going to investigate, and
then we prune the dataset to extract the trace network. Deepwalk will be uti-
lized to embed these vertices in the trace network. And the ground truth is
obtained by applying modularity algorithm. We also discuss the optimization
of the hyper-parameters of the deep learning model. And the model is trained
from the test traces by applying these parameters. We finally present the deep
learning’s prediction result.

In this work, we use the Enron email dataset to prove the effectiveness of
the proposed method [14]. This dataset contains 517,431 emails from 150 users
distributed in 3,500 folders. Each email holds the sender and the receiver’s email
address, sent date and time, subject, email content and technical details about
the email. The 150 users are mostly the Enron senior management members.
We extract the email addresses and their connections from the raw email con-
tents, and the extracted dataset contains 79,562 distinctive email addresses and
310,976 communications among them. After this, we further purge this dataset
by dropping these emails that are not ended with @enron.com, limiting this
investigation to the Enron company. By this time, the dataset is left with 32,190
addresses and 200,534 connections. Each of the connection bears a weight stand-
ing for the number of emails communicated by the two email addresses. And we
consider the communication undirected, which means the connection weight is
the summation number of two direction sent mails. The summary of the dataset
is illustrated in Table 1.

We combine these traces in this pruned dataset to compose the trace network
we are going to investigate. To evaluate the deep learning model’s effectiveness,
we employ the modularity algorithm to partition the traces in order to act as
the ground truth of our deep learning approach. Modularity separates vertices
to communities according to the density of connection within communities. It



Community Discovery of Attribution Trace 351

Table 1. Dataset summary

Dataset Vertices Connections

Original dataset 79,562 310,976

Restrain to @enron.com 32,190 200,534

assumes that a community contains dense connections between vertices within
the community, while there are sparse connections among different communities.
The community modularity is defined in Eq. 13

Q =
1

2m

∑

vw

[
Avw − kvkw

2m

]
δ(cv, cw) (13)

In the equation, kv is the degree of v and kw is the degree of w. m is the
total number of connections in the trace network; Avw is the actual number of
connections between vertex kv and kw. Q is the modularity index. δ(cv, cw) is a
function that equals 0, when vertices v and w are in different communities, and
equals 1, when they reside in the same community. cv and cw are the community
label for v and w, respectively.

The modularity algorithm tries to assign traces to different communities by
maximizing the modularity index according to Eq. 13. We employ this modular-
ity algorithm to partition the Enron dataset into communities. The communities
found by this algorithm is depicted in Fig. 3.

Fig. 3. Modularity based communities

From Fig. 3, we could figure out that most communities rarely contain email
addresses. Most traces are included in a few large communities. More precisely,
it is shown that the 10 biggest communities each contain over 250 vertices.
Additionally, the 149 senior members (There exists a duplicated address in the
original 150 email addresses) are scattered in these 10 communities. Based on this



352 J. Xu et al.

Fig. 4. Email communities

observation, we further limit the dataset to the 10 largest communities. These
vertices pertaining to the 10 communities are reserved. It leaves us a dataset with
19,995 vertices and 196,197 connections. We apply this dataset as the ground
truth to evaluate the effectiveness of community discovering based on the deep
learning approach. Figure 4 is an illustration of the communities separated by
modularity algorithm. Table 2 is a breakdown of the statistics about the 10
communities.

The DBN we employed is made up of two encoders as the hidden layers and
a softmax layer as the output layer. The number of neurons for the first and
second hidden layers are 100 and 80 respectively. The summary of the network
parameters is displayed in Table 3.

Table 2. 10 large communities

Community ID Email
addresses

Senior manager
emails

1 3,029 55

20 1,133 41

93 3,779 9

102 3,263 2

510 696 1

513 2,322 16

514 1,514 4

2191 1,689 7

2198 2,390 13

2618 180 1

Table 3. DBN parameter

Parameter Value

Hidden layer Train function trainscg

Cost function msesparse

L2weight 1.5583e−5

Sparsity 0.0485

Softmax layer Train function trainscg

Cost function crossentropy

Fine tune Train function trainscg

Cost function crossentropy



Community Discovery of Attribution Trace 353

Fig. 5. Hyperparameters

We use scaled conjugate gradient backpropagation (SCG) as the training
function for all layers. It updates weights along the conjugate directions which
produces a faster convergence. The msesparse is a mean squared error function
adjusted by L2 weight and sparsity regularization according to Eq. 2 we have
discussed in Sect. 3.3. The softmax layer and the final fine-tune stage are both
supervised learning process, thus we adopt cross-entropy function to measure
the difference between the prediction and the target.

The hyper-parameters, L2weight Regularization and Sparsity Regularization,
influence the prediction greatly, which is significant for the DBN to work prop-
erly. Thus, we conduct experiment to find the optimal values by trying different
configurations. The search range for L2weight Regularization is [1e−5, 1e−4]
and Sparsity Regularization is [1e−5, 1e−1]. This optimization process iterates
30 times. The results are depicted in Table 4. Figure 5 is the plot of the objective
value we are trying to minimize.

Table 4. Hyper-parameter optimization

Iter L2weight Sparsity Objective Iter L2weight Sparsity Objective Iter L2weight Sparsity Objective

1 9.43E−05 0.000104 0.0794 11 1.05E−05 0.00893 0.0643 21 1.02E−05 0.00679 0.0764

2 5.73E−05 0.0272 0.0643 12 1.71E−05 0.0317 0.0814 22 1.01E−05 0.00514 0.0663

3 1.26E−05 0.000397 0.0683 13 1.01E−05 0.00677 0.0583 23 1.01E−05 0.00835 0.0734

4 1.59E−05 0.0309 0.0613 14 1.54E−05 0.0273 0.0633 24 1.01E−05 0.00513 0.0583

5 4.61E−05 0.0394 0.0653 15 1.02E−05 0.00458 0.0643 25 4.59E−05 0.0393 0.0653

6 1.00E−05 0.00846 0.0603 16 1.56E−05 0.0486 0.0653 26 1.56E−05 0.0485 0.0573

7 1.01E−05 0.0173 0.0804 17 4.38E−05 0.0134 0.0754 27 4.31E−05 0.00709 0.0623

8 4.27E−05 0.00707 0.0633 18 1.00E−05 0.00622 0.0663 28 4.37E−05 0.00715 0.0663

9 3.36E−05 0.00964 0.0754 19 1.02E−05 0.00772 0.0744 29 1.61E−05 0.0309 0.0754

10 1.04E−05 0.00833 0.0633 20 1.02E−05 0.00657 0.0683 30 5.78E−05 0.0271 0.0693



354 J. Xu et al.

(a) 95% training vertices (b) 5% training vertices

Fig. 6. Recognition result

From Fig. 5 and Table 4, we could conclude the proper values of L2weight and
Sparsity are 1.5583e−05 and 0.0485, the corresponding minimized error objective
is 0.0573.

To evaluate the model, we randomly choose 95% of 19,995 vertices from each
of the 10 communities to train the DBN network, and then we use the remaining
5% vertices to test the prediction of the learnt deep learning model. The result
is quiet promising, and it is demonstrated in Fig. 6(a). The model predicts the
community label correctly for 94.3% of test vertices.

And then we further delve into evaluating the effectiveness of this deep learn-
ing network when it is fed with small percent of training vertices. We randomly
choose only 5% of 19,995 vertices from each of the 10 communities as the train-
ing samples in this configuration. And the result is promising, the deep learning
network performs very well even under this harsh condition. The result is demon-
strated in Fig. 6(b). It assigns the community label correctly for 82.3% of 18,996
test vertices.

To demonstrate the effectiveness of deep learning approach, we compare our
approach with the kNN (k nearest neighbor) classification [19]. We set the param-
eter of kNN to 4 neighbors. The same training and testing dataset setting is used
to test kNN. The results are presented in Fig. 7(a) and (b). The overall accuracy
is 54.8% when kNN is trained with 95% of vertices, and it drops to 43.2% when
trained with 5% of vertices.

The accuracy of kNN depends on the parameter choice of k nearest neighbors.
Usually, larger value reduces effect of the noise, but make boundaries between
classes less distinct. To mitigate the effects of this parameter, we alternate the
nearest neighbors from 1 to 10 in order to test the capability of kNN. The result
is in Table 5. It shows the accuracy fluctuates around 55%, and the kNN can at
best achieve accuracy of 55.68% when the nearest neighbors are set to 7.



Community Discovery of Attribution Trace 355

(a) 95% training vertices, k=4 (b) 5% training vertices, k=4

Fig. 7. kNN recognition result

Table 5. kNN optimization (95% training vertices)

Neighbors 1 2 3 4 5

Accuracy 54.47% 51.46% 55.08% 54.77% 55.58%

Neighbors 6 7 8 9 10

Accuracy 55.58% 55.68% 54.87% 54.57% 54.47%

Seen from results of both deep learning and kNN, deep learning is stronger in
extracting community patterns and finding the right community for new traces
with great higher accuracy.

5 Conclusion

In conclusion, we proposed a deep learning based approach to discover the com-
munity label of attribution traces. The experimental results show that although
trained with a small training set, this approach still could produce the promis-
ing result. It demonstrates that the deep learning method is applicable in the
network-based trace analysis, and it would become a prominent method for trace
analysis because of the following reasons. First, deep learning methods use pre-
training to automatically extract the patterns, which are hand-picked by experts
in the past. The extracted patterns usually perform better than the hand-picked
patterns, because the pretraining considers all features that could be utilized
to generate patterns. Second, this pretraining and classifying process are not
easy to break. Thus, it is hard for attackers to modify features to avoid being
detected, so attacker will not come out with countermeasures to avoid this trace-
back mechanism. It is worth noting that we used relatively small deep learning
structure with 2 hidden layers of 100 and 80 respectively. The result would



356 J. Xu et al.

become much more promising if we deeper the layers and enlarge the neurons
with more training iterations. In our future works, we would further rank vertex
importance within the community. Rather than limited to the email communi-
cation connections, we also would consider to construct the trace network from
variety of connections, such as sharing the same IP address, co-authoring the
malware, attending the conference, working for the same organization, etc.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (No. U1736218).

References

1. Bedi, P., Sharma, C.: Community Detection in Social Networks. Wiley, Hoboken
(2016)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. 2008(10), 155–168 (2008)

3. Catanese, S., Ferrara, E., Fiumara, G.: Forensic analysis of phone call networks.
Soc. Netw. Anal. Min. 3(1), 15–33 (2013)

4. Chen, H., Chung, W., Xu, J.J., Wang, G., Qin, Y., Chau, M.: Crime data mining:
a general framework and some examples. Computer 37(4), 50–56 (2004)

5. Chopade, P., Zhan, J., Bikdash, M.: Node attributes and edge structure for large-
scale big data network analytics and community detection. In: IEEE International
Symposium on Technologies for Homeland Security, pp. 1–8 (2015)

6. De Meo, P., Ferrara, E., Fiumara, G.: Finding similar users in Facebook, pp. 303–
324 (2011)

7. Ferrara, E.: A large-scale community structure analysis in Facebook. EPJ Data
Sci. 1(1), 1–30 (2012)

8. Ferrara, E., Meo, P.D., Catanese, S., Fiumara, G.: Detecting criminal organizations
in mobile phone networks. Expert Syst. Appl. 41(13), 5733–5750 (2014)

9. He, D., Liu, D., Jin, D., Zhang, W.: A stochastic model for detecting heterogeneous
link communities in complex networks (2015)

10. Jin, D., Chen, Z., He, D., Zhang, W.: Modeling with node degree preservation can
accurately find communities. New Media Soc. 18(7), 1293–1309 (2016)

11. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based
image retrieval. In: Proceedings of the European Symposium on Artificial Neural
Networks, ESANN 2011, Bruges, Belgium, 27–29 April 2011 (2012)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: International Conference on Neural Information
Processing Systems, pp. 1097–1105 (2012)

13. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

14. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6(1), 29–123 (2008)

15. Meo, P.D., Ferrara, E., Fiumara, G., Provetti, A.: Mixing local and global infor-
mation for community detection in large networks. J. Comput. Syst. Sci. 80(1),
72–87 (2014)

16. Mikolov, T., et al.: Efficient estimation of word representations in vector space. In:
International Conference on Learning Representations, pp. 1–12 (2013)



Community Discovery of Attribution Trace 357

17. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strat-
egy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)

18. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations, pp. 701–710 (2014)

19. Peterson, L.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)
20. Rosenberg, I., Sicard, G., David, E.O.: DeepAPT: nation-state APT attribution

using end-to-end deep neural networks. In: Lintas, A., Rovetta, S., Verschure,
P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 91–99. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68612-7 11

21. Schölkopf, B., Platt, J., Hofmann, T.: Greedy layer-wise training of deep networks.
In: International Conference on Neural Information Processing Systems, pp. 153–
160 (2006)

22. Segal, A.: Mandiant: APT1: exposing one of china’s cyber espionage units
23. Wheeler, D.A., Larsen, G.N.: Techniques for cyber attack attribution (2003)
24. Xu, J., Yun, X., Zhang, Y., Sang, Y., Cheng, Z.: NetworkTrace: probabilistic rel-

evant pattern recognition approach to attribution trace analysis. In: 2017 IEEE
Trustcom/BigDataSE/ICESS, pp. 691–698, August 2017. https://doi.org/10.1109/
Trustcom/BigDataSE/ICESS.2017.301

25. Yao, S., Chen, J., Du, R., Deng, L., Wang, C.: A survey of security network coding
toward various attacks. In: IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 252–259 (2014)

https://doi.org/10.1007/978-3-319-68612-7_11
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.301
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.301

	Community Discovery of Attribution Trace Based on Deep Learning Approach
	1 Introduction
	2 Related Work
	3 Method
	3.1 Definition
	3.2 Vertex Embedding
	3.3 Deep Learning

	4 Experiment
	5 Conclusion
	References




