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Abstract. Even though Verifier-local revocation mechanism seems to
be the most flexible revocation method that suits for any size of groups
it could not reach strong security yet. Verifier-local revocation technique
needs to update only the verifiers with revocation messages when a mem-
ber is revoked while most of the revocation mechanisms require to re-
initialize the group or track changes of the group. The first lattice-based
group signature scheme with verifier-local revocability was suggested by
Langlois, Ling, Nguyen, and Wang (PKC 2014). However, their scheme
relies on a weaker security notion. On the other hand, Bellare, Mic-
ciancio, and Warinschi (EUROCRYPT 2003) proposed formal security
definitions called full-anonymity and full-traceability for static groups.
Achieving full-anonymity for schemes with verifier-local revocation is
technically challenging because those schemes use a token system. This
paper provides a scheme with verifier-local revocation that achieves the
full-anonymity and full-traceability.

Keywords: Lattice-based group signatures · Verifier-local revocation
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1 Introduction

In the setting of group signatures introduced by Chaum and van Heyst [9],
group members can generate signatures for the group anonymously (anonymity).
On the other hand, the group manager can extract the identity of the group
member who created the signature (traceability). Thus, the original group sig-
nature scheme has two core requirements, anonymity and traceability. Later
more requirements such as unlinkability, unforgeability, and framing resistance
have been proposed. However, the precise meaning of those requirements not
always clear and sometimes their meaning overlap each other. Bellare et al. [2]
(BMW03 model) proposed strong and formal definitions for the core require-
ments of the group signatures with two security notions called, full-anonymity
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 287–302, 2018.
https://doi.org/10.1007/978-3-030-01950-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_17&domain=pdf


288 M. N. S. Perera and T. Koshiba

and full-traceability. The full-anonymity and the full-traceability, which imply all
the existing security notions provide a conceptual simplification since it requires
to check only two security properties in a group signature scheme. However, the
BMW03 model is for static groups, not for dynamic groups. In real-life almost
all the group settings are stateless. Thus, member registration and member revo-
cation requirements are essential when applying the group signature schemes in
practice.

When a member is misbehaved, he should be punished. For instance, if a
member issued a signature for an unnecessary document, he should be removed
from the group. Member revocation in group signature schemes requires restrict-
ing members signing in future after revoking them. There are several member
revocation methods. For instance, one revocation method is generating and dis-
tributing new keys for each member and verifiers or requesting each member to
update their keys and generating the group public key newly. Since this requires
to update all the unrevoked members and the verifiers, it is inconvenient to
implement practically. Bresson et al. [5] suggested another revocation technique
by extending the signing procedure of the scheme given in [8]. Their revocation
method requires signers to proof at the zero-knowledge that his identity is not
in the public list of revoked identities. However, this method causes the linear
growth of the size of the group signatures with the number of revoked members.
Thus it is a burden for the signers. Brickell [6] proposed a revocation method
called Verifier-local revocation (VLR), which was subsequently formalized by
Boneh et al. [4] in their scheme. VLR requires to pass revocation messages only
to the verifiers when a member is revoked. In real-life scenarios, since the number
of verifiers is much less than the number of members, passing messages only to
the verifiers are efficient than any other revocation technique. Most of the group
signature schemes (e.g., [3,16]) operate in the bilinear map setting which will be
insecure once quantum computers become a reality.

Lattice-based cryptography is the most prominent solution for the post-
quantum cryptography. It provides provable security under worst-case hardness
assumptions. Gorden et al. [11] suggested the first lattice-based group signature
scheme. However, the sizes of both the group public key and the signature in
their scheme increase with the number of members (N) (linear-barrier prob-
lem). Thus, it cannot apply to large groups. Then Camenisch et al. [7] presented
a lattice-based group signature scheme with anonymous attribute token system,
which still experiences the linear-barrier problem. Later, Languillaumie et al.
[13] presented a scheme with a solution to the linear-barrier problem. However,
the first three lattice-based group signature schemes follow LWE-based PKE
(public-key encryption) scheme, and they are only for static groups.

Langlois et al. [14] proposed the first lattice-based group signature scheme
which facilitates member revocation and free of LWE-based PKE. They have
used VLR as the member revocation technique, and their scheme is more effi-
cient while based on weaker security assumptions. In terms of security, their
scheme satisfies a weaker security notion called selfless-anonymity. The VLR
group signature schemes cannot employ the full-anonymity described in the
BMW03 model directly because VLR group signature schemes use a token



Achieving Full Security for Lattice-Based Group Signatures with VLR 289

system to manage member revocation. Thus, each member has a token other
than their secret signing key. In the full anonymity game between a challenger
and an adversary as described in the BMW03 model, all the member secret sign-
ing keys are given to the adversary at the beginning. In VLR group signature
schemes, revocation tokens cannot be given to the adversary because he can
identify the signer of a signature using tokens. Other than that, secret signing
keys cannot be given to him because he can derive the revocation token from
the secret signing keys.

The present lattice-based VLR group signature schemes raise a problem, that
is whether it is possible to design a VLR lattice-based group signature scheme
in the BMW03 model that achieves the full-anonymity.

1.1 Our Contribution

The lattice-based VLR group signature scheme in [14] relies on the selfless-
anonymity. Stronger security for VLR schemes can be achieved in two ways. One
approach is by using a restricted-version of full anonymity. The other process is
changing the methods in the scheme. We provide a new group signature scheme
that can achieve the full-anonymity using the second method.

The previous lattice-based group signatures failed to obtain the full-
anonymity because anyone possessing revocation tokens can execute signature
verification algorithm and confirm whether the relevant member created the
signature or not. For instance, in the anonymity game between a challenger
and an adversary, if the adversary knows the revocation tokens of the challeng-
ing indices, then he can execute Verify with revocation tokens he has. If Verify
returns Invalid, then he knows that the owner of the revocation token generated
the signature. Thus, this leads to an assumption that the verifiers should not
see the revocation tokens, especially the challenging indices’ revocation tokens.
Based on this assumption, new security notions were proposed [18,19]. However,
none of them are as strong as full-anonymity because they do not provide all the
revocation tokens to the adversary. Thus those security notions are restricted
version of full-anonymity.

This paper suggests a scheme that can provide all the revocation tokens to
the adversary even the challenged indices’ revocation tokens. In original VLR
schemes, when revoking a member, the group manager adds the revoking mem-
ber’s token into a list called revocation list (RL) and passes RL to the verifiers.
Thus, Verify has an additional input RL, and the verifiers have to check whether
the singer’s revocation token is not in the list other than verifying the signa-
ture. We suggest a new revocation method for VLR schemes that the group
manager has to sign each revocation token before adding to RL. On the other
hand, at the signature verification, the verifier has to check whether the revo-
cation tokens in the list are signed by the group manager other than checking
the signer’s revocation token is not in the list and signature is valid. Thus, even
the adversary obtains any revocation token he cannot execute Verify because the
adversary does not know the group manager’s secret key. Now, we can apply the
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full-anonymity for our VLR group signature scheme and provide all the mem-
ber secret signing keys and revocation tokens including the challenging indices’
details to the adversary at the full-anonymity game.

As a result, we deliver a new lattice-based group signature scheme using VLR
with new revocation and verification methods, that satisfies the full-anonymity.

2 Preliminaries

2.1 Notations

For any integer k ≥ 1, we denote the set of integers {1, . . . , k} by [k]. We denote
matrices by bold upper-case letters such as A, and vectors by bold lower-case
letters, such as x. We assume that all vectors are in column form. While the
concatenation of matrices A ∈ R

n×m and B ∈ R
n×k, is denoted by [A|B] ∈

R
n×(m+k) the concatenation of vectors x ∈ R

m and y ∈ R
k is denoted by

(x‖y) ∈ R
m+k. If S is a finite set, b

$← S means that b is chosen uniformly at
random from S.

Throughout this paper, we present the security parameter as n and the max-
imum number of members in a group as N = 2� ∈ poly(n). We choose other
parameters as in scheme [14] as given in Table 1.

Table 1. Parameters of the scheme

Parameter Value or asymptotic bound

Modulus q ω(n2 log n)

Dimension m ≥2n log q

Gaussian parameter σ ω(
√

n log q log n)

Integer norm bound β �σ · logm� s.t. (4β + 1)2 ≤ q

Number of decomposition p �log β� + 1

Sequence of integers: β1, β2, β3, . . . , βp
β1 = �β/2�; β2 = �(β − β1)/2�;

β3 = �(β − β1 − β2)/2�; . . . ; βp = 1

Number of protocol repetitions t ω(log n)

Let H: {0, 1}∗ → {1, 2, 3}t, and G: {0, 1}∗ → Z
n×m
q be hash functions, mod-

eled as random oracles. We use one-time signature scheme OT S = (OGen, OSign,
OVer), where OGen is the key generation algorithm of OT S key pair (ovk, osk),
OSign is signature generation and OVer is signature verification functions.

2.2 Lattices

Let q be a prime and B = [b1| · · · |bm] ∈ Z
r×m
q be linearly independent vectors

in Z
r
q. The r-dimensional lattice Λ(B) for B is defined as

Λ(B) = {y ∈ Z
r | y ≡ Bx mod q for some x ∈ Z

m
q },
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which is the set of all linear combinations of columns of B and m is the rank
of B.

We consider a discrete Gaussian distribution for a lattice. The Gaussian
function centered in a vector c with parameter s > 0 is defined as ρs,c(x) =
e−π‖(x−c)/s‖2

and the corresponding probability density function proportional to
ρs,c is defined as Ds,c(x) = ρs,c(x)/sn for all x ∈ R

n. The discrete Gaussian dis-
tribution with respect to a lattice Λ is defined as DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) =
ρs,c(x)/ρs,c(Λ) for all x ∈ Λ. Since Z

m is also a lattice, we can define a discrete
Gaussian distribution for Z

m. By DZm,σ, we denote the discrete Gaussian dis-
tribution for Z

m around the origin with the standard deviation σ.

2.3 Lattice-Related Properties

The security of our scheme depends on the hardness of Learning With Errors
(LWE) and two homogeneous and Inhomogeneous Short Integer Solution
Problems (SIS and ISIS).

Definition 1 (LWE [17]). LWE is parametrized by n,m ≥ 1, q ≥ 2, and χ.
For s ∈ Z

n
q , the distribution As,χ is obtained by sampling a ∈ Z

n
q uniformly at

random and e ← χ, and outputting the pair (a,aT · s + e).

There are two versions of LWE problem, Search-LWE and Decision-LWE. While
Search-LWE requires to find the secret s, Decision-LWE requires to distinguish
LWE samples and samples chosen according to the uniform distribution. We use
the hardness of Decision-LWE problem.

For a prime power q, b ≥ √
nω(log n), and distribution χ, solving LWEn,q,χ

problem is at least as hard as solving SIV Pγ (Shortest Independent Vector Prob-
lem), where γ = Õ(nq/b) [21].

Definition 2 (SIS [17,21]). Given m uniformly random vectors ai ∈ Z
n
q , form-

ing the columns of a matrix A ∈ Z
n×m
q , find a nonzero vector x ∈ Λ⊥(A) such

that ||x|| ≤ β and Ax = 0 mod q.

Definition 3 (ISIS [14]). Given m uniformly random vectors ai ∈ Z
n
q , forming

the columns of a matrix A ∈ Z
n×m
q , find a vector x ∈ Λ⊥

u (A) such that ||x|| ≤ β.

For any m, β = poly(n), and for any q ≥ β · ω(
√

n log n), solving SISn,m,q,β

problem or ISISn,m,q,β problem with non-negligible probability is at least as
hard as solving SIV Pγ problem, for some γ = Õ(β

√
n) [10].

2.4 Lattice-Related Algorithms

We use a randomized nearest-plane algorithm, called, SampleD [10,15] and
preimage sampleable trapdoor functions (PSTFs) GenTrap [1,10,15].

– SampleD(R, A, u, σ) outputs x ∈ Z
m sampled from the distribution DZm,σ

for any vector u in the image of A, a trapdoor R and σ = ω(
√

n log q log n).
The output x should satisfy the condition A · x = u mod q.
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– GenTrap(n, m, q) is an efficient randomized algorithm that outputs a matrix
A ∈ Z

n×m
q and a trapdoor matrix R for given any integers n ≥ 1, q ≥ 2, and

sufficiently large m = 2n log q. The distribution of the output A is negl(n)-far
from the uniform distribution.

2.5 VLR Group Signature

The VLR group signature scheme consists of three PPT algorithms [4] since the
implicit tracing algorithm is used to trace the misbehaved users.

– KeyGen(n, N ): This randomized PPT algorithm takes as inputs the secu-
rity parameter n and the maximum number of group members N, and
outputs a group public key gpk, a vector of user secret keys gsk =
(gsk[0],gsk[1], . . . ,gsk[N − 1]), and a vector of user revocation tokens grt
= (grt[0],grt[1], . . . ,grt[N − 1]).

– Sign(gpk, gsk[d ], M ): This randomized algorithm takes a secret signing key
gsk[d ] and a message M ∈ {0, 1}∗ as inputs and returns a signature Σ.

– Verify(gpk, RL, Σ, M ): This deterministic algorithm verifies whether the
given Σ is a valid signature using the given group public key gpk and the
message M. Then validates that the signer not being revoked using RL.

Implicit Tracing Algorithm: Any VLR group signature scheme has an implicit
tracing algorithm that uses grt as the tracing key and traces a signature to
at least one group user who generated it. For an input valid signature Σ on a
message M run Verify(gpk, RL, Σ, M ) for each i = 0, . . . ,N − 1. It outputs
the index of the first user for the verification algorithm returns invalid. The
tracing algorithm fails if this algorithm verifies properly for all users on the
given signature.

3 Definitions of the Security Notations

In this section first, we describe the core requirements presented in the original
group signatures. Then we define the full-anonymity and the full-traceability
delivered in the BMW03 model. Later, we describe the selfless-anonymity notion
provided in the group signatures with VLR. Finally, we discuss the reasons for the
difficulties of achieving the full-anonymity for the existing VLR group signature
schemes.

Simply saying,

– Anonymity requires that no adversary without group manager’s key recovers
the identity of the user from its signature, which is generated by one of the
indices from two indistinguishable indices.

– Traceability requires that no adversary forges a signature that cannot be
traced.
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3.1 Full Anonymity and Full Traceability

Bellare et al. [2] delivered a standard security model (BMW03 model) for group
signatures with two strong security properties, full anonymity and full traceabil-
ity. Definitions of the full anonymity and full traceability are provided below.

Full Anonymity

The full-anonymity game between a challenger and an adversary is as follows.
The adversary is strong as he has given all the member secret keys. At the
beginning of the game, all the user secret keys gsk and the public key gpk are
given to the adversary, and he can see the outcome of the tracing algorithm.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk, gmsk, gsk).
Then gives (gpk, gsk) to the adversary A.

– Query Phase: The adversary A can access the opening oracle, which results
with Open(gmsk, M, Σ) when queried with a message M and a signature Σ.

– Challenge Phase: The adversary A outputs a message M and two distinct
identities i0, i1. The challenger C selects a bit b $← {0,1}, generates a signature
Σ∗, and sends to the adversary A. The adversary still can query the opening
oracle except the signature challenged.

– Guessing Phase: Finally, A outputs a bit b′, the guess of b. If b′ = b, then
the adversary A wins.

Definition 4. Let A be an adversary against the anonymity of a group signature
scheme GS. The advantage of A in the above full-anonymity game is

Advanon
GS,A(n,N) = |Pr[Expanon

GS,A(n,N) = 1] − 1/2|.

A group signature scheme is full-anonymous if Advanon
GS,A is negligible.

Full Traceability

As explained in [2] the group public key gpk and the group manager’s secret
key gmsk are given to the adversary A at the beginning of the game, and the
adversary A makes queries as the following game.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk, gmsk, gsk).
Then gives gpk and gmsk to the adversary A and sets U ← ∅.

– Query Phase: The adversary A can do the following queries.
1. Signing: The adversary A requests a signature for any message M and

user index i, and the challenger C returns Σ = Sign(gpk, gsk[i ], M ).
2. Corruption: The adversary A queries for the secret key of any user i. The

challenger C adds i to U and returns gsk[i ].
– Challenge Phase: A outputs a message M∗ and a signature Σ∗.
– The forgery adversary A wins if the followings are true.

1. Σ∗ is accepted as a valid signature on the message M∗.
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2. Σ∗ traces to some user outside the coalition U or tracing algorithm fails.
3. Σ∗ not obtained by signing on M∗.

Definition 5. Let A be an adversary against the traceability of a group signature
scheme GS. The advantage of A in the above full-traceability game is

Advtrace
GS,A(n,N) = Pr[Exptrace

GS,A(n,N) = 1].

A group signature scheme is full-traceable if Advtrace
GS,A is negligible.

3.2 Selfless-Anonymity

Selfless-anonymity is a relaxed anonymity, and it differs from the full-anonymity
by the limitations it has. The selfless-anonymity provides none of the member
secret keys to the adversary, but only the group public key is given. However,
even with these weaknesses, the selfless-anonymity facilitates any member to
determine whether his secret signing key is used to generate a particular signa-
ture if he forgets whether he signed the message.

The selfless-anonymity game between a challenger and an adversary is as
follows.

The adversary in the selfless-anonymity game is weaker than the adversary
in the full anonymity game since the adversary has not given any secret key in
the selfless-anonymity game. The adversary has to determine which of the two
adaptively chosen keys generated the challenging signature.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk, gsk, grt).
Then gives gpk to the adversary A.

– Query Phase: The adversary A can make the following queries.
1. Signing: The adversary A requests a signature for any message M ∈

{0, 1}∗ with any user index i, and C returns Σ = Sign(gpk, gsk[i ], M ).
2. Corruption: The adversary A queries for the secret key of any user i, and

the challenger C returns gsk[i ].
3. Revocation: The adversary A queries for the revocation token of any user

i, and the challenger C returns grt[i ].
– Challenge Phase: The adversary A outputs a message M∗ and two distinct

identities i0, i1, such that A did not make the corruption or revocation queries
for i0, i1. The challenger C selects a bit b $← {0, 1}, computes signature
Σ∗=Sign(gpk,gsk[ib],M∗) for ib, and sends the challenging signature Σ∗ to
the adversary A.

– Restricted Queries: Even after the challenge phase the adversary A can
make queries but with following restrictions.

• Signing: The adversary A can query as before.
• Corruption: The adversary A cannot query for i0 or i1.
• Revocation: The adversary A cannot query for i0 or i1.

– Guessing Phase: Finally, the adversary A outputs a bit b′, the guess of b.
If b′ = b, then A wins.
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Definition 6. Let A be an adversary against the anonymity of a VLR group sig-
nature scheme DGS. The advantage of A in the above selfless-anonymity game is

Advanon
DGS,A(n,N) = |Pr[Expanon

DGS,A(n,N) = 1] − 1/2|.

A VLR group signature scheme is selfless-anonymous if Advanon
DGS,A is

negligible.

3.3 Difficulties of Achieving the Full-Anonymity for VLR Schemes

The full-anonymity is suggested for static groups. Thus, members have only
secret signing keys. Even the secret signing key is used to generate signatures,
by using the secret signing keys nobody can guess the signer. But the members
in VLR schemes have another secret attribute called revocation token. Revealing
revocation tokens to the outsiders makes the scheme insecure. For instance, if an
adversary knows the user i0’s revocation token grt[i0], then the adversary can
confirm whether the user i0 generated the given signature or not by executing
Verify by replacing RL with grt[i0] as depicted in Fig. 1. According to the full-
anonymity game in Fig. 1 if Σb is generated by user i0, then Verify return Res as
Invalid for i0. Thus it confirms that user i0 generated the signature. Moreover,
since VLR group signatures derive the revocation tokens from the secret signing
keys, the selfless-anonymity also restricts revealing the secret signing keys.

Fig. 1. Full anonymity for VLR schemes

Because of these reasons, to obtain stronger security for VLR group signature
schemes, we need a restricted version of full anonymity or new scheme with
different methods.

4 New Lattice-Based VLR Scheme

The new scheme requests the group manager to sign revoking member’s token
before adding to the revocation list RL. Thus the group manager signs the revok-
ing member’s revocation token grt using the group manager secret key gmsk.
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Accordingly, at the signature verification, the verifier has to check whether the
revocation tokens in RL are signed by the group manager. For this, the verifier
executes Verify with the group manager’s public key. Because of this reason an
adversary who knows the revocation token of any member i cannot replace RL
in Verify(gpk, M, Σ, RL) with the i ’s revocation token grt[i ] and check whether
the user i generated the signature or not. The signature verification algorithm
rejects verifying the given signature because the adversary is providing a revo-
cation token which is not signed by the group manager.

In the full-anonymity game depicted in Fig. 1 when the adversary tries to
execute Verify with the revocation token of i0 and i1 he gets Invalid as the
response in both cases because he fails to provide tokens with the group man-
ager’s signature. Thus, the adversary cannot understand the signer of the given
signature. Therefore, the new scheme can employ the full-anonymity by giving
all the members’ secret signing keys and tokens to the adversary.

4.1 Description of the Scheme

We use the scheme in [14] as the base and construct our new scheme as follows.
Key Generation: This randomized algorithm KeyGen(n, N ) works as below.

1. Run PPT algorithm GenTrap(n, m, q) to get A0 ∈ Z
n×m
q and a trapdoor TA.

2. Sample u $← Z
n
q and Ab

i
$← Z

n×m
q for each b ∈ {0, 1} and i ∈ [
].

3. Set the matrix A = [A0|A0
1|A1

1| . . . |A0
� |A1

� ] ∈ Z
n×(2�+1)m
q .

4. Run GenTrap(n,m,q) to obtain B ∈ Z
n×m
q and a trapdoor TB.

5. For each group member select a 
-bit string as the index d and generate secret
signing keys and revocation tokens as below.
(a) Let d = d[1] . . . d[
] ∈ {0, 1}� be the binary representation of index d.
(b) Sample vectors xd[1]

1 , . . . ,xd[�]
� ←↩ DZm,σ.

(c) Compute z =
∑�

i=1 Ad[i]
i · xd[i]

i mod q.
(d) Get x0 ∈ Z

m ← SampleD(TA,A0,u − z, σ).
(e) Let x1−d[1]

1 , . . . ,x1−d[�]
� be zero vectors 0m.

(f) Define x = (x0||x0
1||x1

1|| . . . ||x0
� ||x1

�) ∈ Z
(2�+1)m.

If ||x||∞ ≤ β then proceed else repeat from (b).
(g) Let the user secret signing key be gsk[d ] = x(d) and revocation token be

grt[d ] = A0 · x0 ∈ Z
n
q .

Finally we obtain, the group public key gpk = (A,B,u), the group manager’s
secret key gmsk = TB, the group manager’s public key gmpk = B, group
members’ secret signing keys gsk = (gsk[0], gsk[1],. . . , gsk[N − 1]), and their
revocation tokens grt = (grt[0], grt[1],. . . , grt[N − 1]).

Signing: The randomized algorithm Sign(gpk,gsk,M) generates Σ on a
message M as follows.

1. Generate a one-time-signature OT S key pair (ovk, osk) using OGen.

2. Sample ρ
$← {0, 1}n, let V = G(A,u,M, ρ) ∈ Z

m×n
q .
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3. Sample e ← χm.
4. Compute v = V · (A0 · x0) + e mod q (||e||∞ ≤ β with overwhelming prob-

ability and (A0 · x0) is the revocation token grt of user i).
5. Repeat the zero knowledge interactive protocol of the commitment described

in Sect. 4.2 t = ω(log n) times with the public parameter (A, u, V, v) and
prover’s witness (x, e) to make the soundness error negligible and proof
that user is certified. Then make it non-interactive using the Fiat-Shamir
heuristic as a triple, Π = ({CMT (k)}t

k=1, CH, {RSP (k)}t
k=1), where CH =

({Ch(k)}t
k=1) = H(M,A,u,V,v, {CMT (k)}t

k=1) ∈ {1, 2, 3}t.
6. Compute OT S; sig = OSig(osk,Π).
7. Output signature Σ = (ovk,M, ρ,v,Π, sig).

Verification: Verify(gpk, M, Σ, RL = {{ui}i}) verifies the given signature
Σ is valid on the given message M and signer is a valid member as follows.

1. Parse the signature Σ as (ovk,M, ρ,v,Π, sig).
2. If OVer(ovk,Π, sig) = 0 then return 0.
3. Get V = G(A,u,M, ρ) ∈ Z

m×n
q .

4. Parse Π as ({CMT (k)}t
k=1, {Ch(k)}t

k=1, {RSP (k)}t
k=1).

5. If (Ch(1), . . . , Ch(t)) �= H(M,A,u,V,v, {CMT (k)}t
k=1) return 0 else proceed.

6. For k = 1 to t run the verification steps of the commitment scheme to validate
RSP (k) with respect to CMT (k) and Ch(k). If any of the conditions fails then
output invalid and hold.

7. For each ui ∈ RL,
(a) Parse ui as (grti, Σrti).
(b) Check whether grti is signed by the group manager by executing Ver-

ify(gmpk,grti, Σrti), where gmpk is the group manager’s public key. If
Verify(gmpk,grti, Σrti), returns Invalid then return Invalid.

(c) Compute e′
i = v−V ·grti mod q to check whether there exists an index

i such that ||e′
i||∞ ≤ β. If so return invalid.

8. Return valid.

Revoke: The algorithm Revoke(gpk, gmsk, grt[i ], RL) takes the group man-
ager’s secret key gmsk, revoking member’s revocation token grt[i ], and latest
revocation list RL and proceeds as follows.

1. Generate a signature for the revoking token as Σrti = Sign(gmsk, grt[i ]).
2. Add revoking token and generated signature to RL, RL ← RL ∪ (grti, Σrti).
3. Return RL.

4.2 The Underlying ZKAoK for the Group Signature Scheme

Zero-Knowledge Interactive Protocol is the main building block of the scheme as
it allows a signer to argue that he is a certified group member who has a valid
secret key and who has not been revoked.

Let COM be the statistically hiding and computationally binding commit-
ment scheme described in [12].
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Our scheme can be seen as an adaptation of [14]. Thus we can use the protocol
described in [14]. We use matrix A = [A0|A0

1|A1
1| . . . |A0

� |A1
� ] ∈ Z

n×(2�+1)m
q ,

V ∈ Z
m×n
q , u ∈ Z

n
q , and v ∈ Z

m
q as the public parameters. The witness of

the prover is the vector x(d) = (x0||x0
1||x1

1||...||x0
� ||x1

�) ∈ Σ(2�+1)m for some
d ∈ {0, 1}� and vector e ∈ Z

m. While keeping prover’s identity d in secret he
has to convince the verifier that,

1. A · x = u mod q and d is hidden in x(d).
2. ||e||∞ ≤ β and V · (A0 · x0) + e = v mod q.

5 Analysis of the Scheme

This paper provides a new scheme that satisfies the full-anonymity. However,
the restricted versions of full-anonymity called almost-full anonymity [19] and
dynamical-almost-full anonymity [18] are efficient than the proposed scheme
because those schemes do not require the group manager to sign member revok-
ing tokens. Moreover, in the selfless-anonymity, any user can check whether he
created a particular signature or not. But in the proposed scheme this is not
possible since the users do not know the group manager’s secret key. However,
in terms of security, the new scheme is much stronger than any other security
applied for VLR schemes.

5.1 Correctness

For all gpk, gmsk, gmpk, gsk, and grt,
Verify(gpk,M,Sign(gpk,gsk[i],M), RL) = Valid ⇐⇒ grt[i] /∈ RL and
For all (grti, Σrti) in RL, Verify(gmpk,grti, Σrti) = Valid.

Verify in the proposed scheme only accepts signatures generated on given
messages and which are only generated by active members. If the revocation
token of the signer is in RL, then his signature is not accepted by Verify. Sim-
ilarly Sign also checks whether the signer can satisfy those requirements. The
underlying interactive protocol confirms that only active members can generate
signatures and signers have to possess valid secret signing key.

5.2 Anonymity

Theorem 1. In the random oracle model, the proposed scheme is full anony-
mous based on the hardness of Decision-LWEn,q,χ problem.

Proof. We define a sequence of games conducted between a challenger C and an
adversary A, where the advantage of the adversary is negligible in the last game.
Game 0 is the original full-anonymity game which provides all the members’
secret signing keys and revocation tokens to the adversary at the beginning. The
adversary can request the index of the signer by giving a signature. We prove that
the games are indistinguishable, based on OT S, the zero-knowledge property of
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the underlying argument system, and the hardness of the Decision-LWEn,q,χ

problem. Game 4 is the last game which is independent of the bit b ∈ {0, 1}.

Game 0: The challenger C runs KeyGen(1n, 1N ) to obtain the group public key
gpk = (A,B,u), the group manager’s secret key gmsk =TB, the group man-
ager’s public key gmpk = B, group members’ secret signing keys gsk = (gsk[0],
gsk[1],. . . , gsk[N − 1]), and their revocation tokens grt = (grt[0], grt[1],. . . ,
grt[N − 1]). The challenger C gives the group public key gpk and all the group
members’ secret keys gsk and revocation tokens grt to the adversary A. In the
query phase, A can request to reveal index of the signer for any signature. In
the challenge phase, the adversary A sends two indices (i0, i1) together with a
message M∗ and the challenger C generates and sends back the challenging sig-
nature Σ∗ = (ovk,M∗, ρ,v,Π, sig) for a random bit b ← {0, 1}. The adversary’s
goal is to identify which index is used to generate the challenging signature. A
returns b′. If b′ = b then the experiment returns 1 or 0 otherwise.

Game 1: In this game, the challenger C makes a slight modification with respect
to Game 0. In the real experiment (Game 0) the one-time key pair (ovk, osk)
is generated at the signature generation. In this game, C generates the one-time
key pair (ovk∗,osk∗) at the beginning of the game. If the adversary A accesses
the opening oracle with a valid signature Σ = (ovk,M, ρ,v,Π, sig), where ovk =
ovk∗, C returns a random bit and aborts. However, A comes up with a signature
Σ, where ovk = ovk∗ contradicts the strong unforgeability of OT S, and since
ovk∗ is independent of the adversary’s view, the probability of ovk = ovk∗ is
negligible. Even after seeing the challenging signature if A comes up with a valid
signature Σ where ovk = ovk∗, then sig is a forged one-time signature, which
defeats the strong unforgeability of OT S. Thus, we assume that A does not
request for opening of a valid signature with ovk∗ and the challenger aborting
the game is negligible.

Game 2: In this game, without honestly generating the legitimate non-
interactive proof Π, the challenger C simulates the proof Π∗ without using the
witness. C invokes the simulator for each k ∈ [t] and then programs the random
oracle H accordingly. The challenging signature Σ∗ = (ovk∗,M∗, ρ,v,Π∗, sig) is
statistically close to the challenging signature in the previous game because the
argument system is statistically zero-knowledge. Thus Game 2 is indistinguish-
able from Game 1.

Game 3: In this game, the challenger C replaces the original revocation token by
a vector sampled uniformly random. The original game has v = V · grt[ib] + e
mod q, where V is uniformly random over Z

m×n
q and e is sampled from the

error distribution χ. In this game C samples a vector t $← Z
n
q uniformly and

computes v = V · t + e mod q. The challenger C replaces only the revocation
token grt[ib] with t. The rest of the game is same as Game 2. Thus, the two
games are statistically indistinguishable.

Game 4: Game 3 has v = V · t + e1 mod q. In this game the challenger
C makes v truly uniform by sampling y $← Z

m
q and setting v = y. Thus,
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C makes revocation token totally independent of the bit b. In Game 3, (V, v)
pair is a proper LWEn,q,χ instance. Thus, the distribution of the pair (V, v)
is computationally close to the uniform distribution over Z

m×n
q × Z

m
q . Game

3 and Game 4 are indistinguishable, under the assumption of the hardness of
LWEn,q,χ problem. If the adversary can distinguish v from y, then he can solve
Decision-LWE problem.

Hence, these games prove that the new scheme is secure with full anonymity.

5.3 Traceability

Theorem 2. Based on the hardness of SIS∞
n,(�+1)·m,q,2β problem, the proposed

scheme is traceable, in the random oracle model.

We construct a PPT algorithm F that solves SIS problem with non-negligible
probability. The forgery F is given the verification key (A, u) and then he
generates the key pair (B, TB). The forgery F passes gpk = (A, u, B) and
gmsk = TB and responds to the A’s queries as follow.

– Signatures queries: If A queries signature of user d on a random message
M, then F returns simulated Σ = Sign(gpk,gsk[d],M).

– Corruption queries: The corruption set CU is initially set to be empty.
If A queries the secret key of any user d, then F adds d to the set CU and
returns gsk[d].

– Queries to the random oracles H,G are handled by consistently returning
uniformly random values in {1, 2, 3}t. For each k ≤ qH, we let rk denote the
answer to the k -th query.

Finally, A outputs a message M∗, revocation data RL∗ and a non-trivial
forged signature Σ∗, which satisfies the requirements of the traceability game,
where Σ∗ such that Verify(gpk,M∗, Σ∗,RL∗) = Valid and implicit tracing algo-
rithm fails, or returns a user index j∗ outside of the coalition CU\RL∗.
F exploits the forgery as below.

We require that the adversary A always queries H on input
(M∗,A,u,V∗,v∗, {CMT (k)}t

k=1). As a result, with probability at least ε − 3−t,
there exists certain κ∗ ≤ qH such that the κ∗-th oracle queries involve the
tuple (M∗,A,u,V∗,v∗, {CMT (k)}t

k=1). For any fixed κ∗ run A many times and
input as in the original run. For each repeated run, A returns same output
r′
κ∗ , . . . , r′

κ∗−1 for the first κ∗ − 1 queries as in initial run and from the κ∗-th

query onwards return fresh random values r′
κ∗ , . . . , r′

qH
$← {1, 2, 3}t. The forking

lemma [[20], Lemma 7] implies that, with probability larger than 1/2, algorithm
F can obtain a 3-fork involving tuple (M∗,A,u,V∗,v∗, {CMT (k)}t

k=1) after less
than 32 · qH/(ε − 3−t) executions of A. Let the responses of F with respect to
the 3-fork branches be

r
(1)
κ∗ = (Ch

(1)
1 , . . . , Ch

(1)
t ); r(2)κ∗ = (Ch

(2)
1 , . . . , Ch

(2)
t ); r(3)κ∗ = (Ch

(3)
1 , . . . , Ch

(3)
t ).
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A simple calculation shows that Pr[∃j ∈ {1, . . . , t} : {Ch
(1)
i , Ch

(2)
i , Ch

(3)
i }] =

{1, 2, 3}1 − (7/9)t.
Under the condition of the existence of such index i, one parses the 3 forgeries

corresponding to the fork branches to obtain (RSP
(1)
i , RSP

(2)
i , RSP

(3)
i ).

Then by using the knowledge extractor ζ of the underlying argument system,
we can extract vectors (y, e). These vectors satisfy the followings.

1. y = (y0||y0
1||y1

1|| . . . ||y0
� ||y1

�) for some d ∈ {0, 1}�, and A · y = u mod q.
2. ||e∗||∞ ≤ β and V∗ · (A0 · y0) + e∗ = v∗ mod q.

Remaining proof is same as the proof given in [14]. Thus finally, we can obtain
a vector, which is a valid solution to the SIS problem. This concludes the proof
of traceability.

6 Conclusion

This paper provides a new scheme with new methods for member revocation
and signature verifications. As a result, the proposed scheme was able to achieve
the full-anonymity becoming the first lattice-based group signature scheme with
VLR that achieves the full-anonymity in comparison with known lattice-based
group signature schemes. However, the group manager has to sign every revoking
members’ s token. This leads to an open problem because the security of the
scheme depends on the trust of the group manager. If the group manager’s
information is revealed, then the scheme is not secure.
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