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Abstract. Encrypted computing is an emerging approach to security
and privacy of user data on a computing system with respect to the oper-
ating system and other powerful insiders as adversaries. It is based on a
processor that ‘works encrypted’, taking encrypted inputs to encrypted
outputs while data remains in encrypted form throughout processing.
An appropriate machine code instruction set is required, plus an ‘obfus-
cating’ compiler, and then the three part system provably provides cryp-
tographic semantic security for user data, given that the encryption is
independently secure. In other words, encrypted computing does not
compromise the encryption. This paper presents the developing theory.
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1 Introduction

This paper describes an emerging approach to provable security for user data
against the operator, operating system and other powerful insiders in a com-
puting system: encrypted computing. By that is meant that the processor takes
inputs and produces outputs in encrypted form and observations via the pro-
gramming interface of its internal states show only encrypted data. Our aim in
this document is to project the developing theory. Engineered boundaries have
fallen short as security barriers in the past, as recent attacks [14] on Intel’s
flagship SGXTM [1] architecture for secure computing attest. The mathemat-
ics of encrypted computing shows that, to any adversary who does not know
the encryption, the feasible interpretations of a program code and its execu-
tion trace are arbitrarily many and any method of attack, whether known or
unknown, deterministic or stochastic, must fail to uncover what a given bit of
data is with better than the probability from guesswork (see Sect. 8). That is
the definition of cryptographic semantic security [13], and access rights are not
a consideration.
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The adversary in this setting is technically the operator mode of working
of a suitable processor, and attacks are programs composed of the processor’s
machine code instructions. The operator mode ‘works unencrypted’ in the con-
ventional way in the supporting processor, while the user mode ‘works encrypted’
as described in the opening to this section. Operator (also called ‘supervisor’)
mode is synonymous with no access restrictions, whereas user mode is restricted
to certain registers and areas of memory. Operator mode is the mode in which
the operating system runs and a processor starts in operator mode when it is
switched on, in order to load the operating system code from disk. Conventional
software relies on the processor to change from user mode to operator mode and
back to supply system support (e.g., disk I/O) as required, so the operator mode
of working of the processor intrinsically presents difficulties as an adversary for
the user mode. This document will use ‘the operator’ for operator mode. A
malicious operating system is ‘the operator’, as is a human with administrative
privileges, perhaps obtained by physically interfering with the boot process.

How the user gets an encryption key into the supporting processor is not the
subject of this document. Diffie-Hellman hardware [7] may do key-exchange in
public view to a write-only internal store, for example, without revealing the key
to any observer, the operator included. A simple argument says there is not even
a penalty to getting key management wrong: if (a) user B’s key is still loaded
internally when user A runs, then A’s programs do not run correctly because
the running encryption is wrong for them and A is as badly off as a spy as the
operator but with less privilege, and if (b) B’s key is in the machine together
with B’s program when A runs, then user A cannot supply appropriate encrypted
inputs nor interpret the encrypted output, and is in no better position than the
operator, against whom encrypted computing should already protect.

A possible scenario for an attack by the operator is where user data consists
of scenes from animation cinematography being rendered in a server farm. The
computer operators at the server farm have an opportunity to pirate for profit
portions of the movie before release and they may be tempted. Another possible
scenario is the processing in a specialised facility of satellite photos of a foreign
power’s military installations to reveal changes since a previous pass. If an oper-
ator (or a hacked operating system) can modify the data to show no change
where there has been some, then that is an option for espionage. A successful
attack by the operator is one that discovers the plaintext of user data or alters it
to order. That is familiar in everyday situations too – for example, malware can
gain operator system access and intercept the plaintext of encrypted user mail.

Note that it is not claimed here that the operator will not be able to interfere
with user data at all; they can, say by writing zeros to memory or turning the
machine off. What is claimed is that the operator cannot interfere so as to write in
user data an intended independently defined value such as log π or the encryption
key, or bias the likelihood of that outcome. That theory is explained here.

A medium term practical goal is a server for remote batch (‘offline’) computa-
tions. In that paradigm, the user compiles the program anew for each new set of
(encrypted) inputs, submits the input and object code to the remote platform,
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and receives back (encrypted) outputs. Theory says there will be no relation
between the plaintext values beneath the encryption in the trace of one run
versus that in another, so the arrangement is awkward to attack. The encryp-
tion key may be changed from run to run. However, there may be no need to
change it frequently as the user’s program will also offset inputs and outputs
(and intermediate values) by different random amounts known only to the user
beneath the encryption for each new run. The offset by different numbers each
time everywhere among the plaintext values is a generator of maximal entropy
for what is effectively an extra one-time coding pad beneath the encryption.

This article is organised as follows. Section 2 gives the historical context and
state of the art. Section 3 sets out the components of an encrypted computing
system. Section 4 shows by example what encrypted computing looks like. Secu-
rity problems that generically arise from naive encrypted computing are consid-
ered in Sect. 5. Section 6 introduces theory to overcome it, first introduced in [5].
An appropriate machine code instruction set is required, and that is described
in Sect. 7. An ‘obfuscating’ compiler is also required and that is described in
Sect. 8. Section 8 shows the combination of processor, instruction set and com-
piler guarantees semantic security ‘relative to the security of the encryption’ (the
hypothesis that the encryption is independently secure). The meaning of that is
‘encrypted computing does not compromise encryption’.

Notation

Encryption of plaintext x is denoted by E [x] or x′, where E is a one-to-many
‘nondeterministic function’, a function of x and extra hidden variables such
as padding. Decryption of ciphertext ζ is denoted by D[ζ], a function, with
D[x′] = x. The key k for encryption/decryption will be implicit when only one
is involved, otherwise E [x, k] and D[ζ, k]. Equality (not identity) of ciphertexts
χ = ζ is defined as D[χ] = D[ζ], so x′ = y′ iff x = y, with x′ �= y′ iff x �= y.

Operations on ciphertext will borrow the same names as on plaintext but in
square brackets. Thus E [x1] [+] E [x2] = E [x1 + x2], meaning that E [x1] [+] E [x2]
may be calculated by decrypting the ciphertexts back to plaintexts x1, x2,
adding, then encrypting again. Whether the calculation is like that or not (the
encryption may already possess that property), the abstraction is applicable.

2 Background

In 2009 Gentry produced a fully homomorphic encryption (FHE) [10], fulfilling
a prediction of Rivest et al. [26] 30 years earlier. That is an encryption in which
ciphertexts can be added to add the (1-bit) plaintexts beneath, and multiplied
to multiply them. In 2010 one of the present authors realised that homomor-
phism is a joint function of arithmetic and encryption together, and hardware
can be redesigned to provide the arithmetic that makes any given encryption
homomorphic with respect to it. Moreover, conditionals (not part of Gentry’s
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scheme) can also be handled, giving rise to computationally complete hardware-
assisted encrypted computing. The proof of that was published in 2013 [4]. It
followed experiments that built a model of a pipelined superscalar processor
in Java (http://sf.net/p/jmips) and replaced its arithmetic logic unit (ALU),
generating encrypted working (http://sf.net/p/kpu) as predicted.

From 2014 to 2016, the open source or1ksim simulator (http://opencores.
org/or1k/Or1ksim) for the OpenRISC (http://openrisc.io) processor architec-
ture was modified first to 64-bit and then 128-bit encrypted computing and
cycle-accurate simulation of a complete OpenRISC compliant reduced instruc-
tion set computer (RISC) [23] ‘running encrypted’. That (a) demonstrated the
principle of working in a superscalar model for engineers who may not have
accepted mathematical proofs and formally-oriented computer science, and also
(b) explored the limits. With respect to (b), it was unknown if conventional
instruction sets and processor architectures and organisation would be compat-
ible with the idea, or how interactions with the operating system and processor
interrupts would work. It became clearer, for example, that not every kind of code
could run encrypted in the context – compilers and programs that arithmetically
transform the addresses of program instructions (as distinct from addresses of
program data) must run unencrypted because instruction addresses remained
unencrypted by design, in order to prevent known plaintext attacks (KPAs) [2]
on encrypted but predictable address sequences in a trace.

The existing GNU gcc v4.9.1 compiler (http://github.com/openrisc/or1k-
gcc) and gas v2.24.51 assembler (http://github.com/openrisc/or1k-src/gas)
ports for OpenRISC v1.1 were adapted for an encrypted instruction set (exe-
cutables are the standard ELF format). Those now twice-ported compiler and
utilities are at http://sf.net/p/or1k64kpu-gcc and http://sf.net/p/or1k64kpu-
binutils respectively. It turns out that only the assembler, not the compiler, needs
to know the encryption key. The largest application suite1 ported to encrypted
running so far for that project is 22,000 lines of C, and it and every applica-
tion ported (now about fifty) has worked well. Though the target platform is
32-bit beneath the encryption, 64-bit integer and 32- and 64-bit floating point
programs work well, because of code-level translations that gcc performs for
platforms without 64-bit and floating point hardware support.

In 2015 details of the HEROIC processor for encrypted computing with
Paillier-2048 encryption (of 16-bit data) were published [30]. The basic oper-
ation is a 16-bit plaintext/2048-bit ciphertext addition in 20μs, equivalent in
speed to a 25 KHz classic Pentium. The machine has a stack-based architecture.
Those are different from conventional von Neumann architectures but there have
been hardware prototypes [15,28] aimed at Java. A difficulty in using Paillier
is that, though it is homomorphic with respect to plaintext addition, that is
not mod 216 addition, so each addition result has to be renormalised mod 216

beneath the encryption every time, which accounts for half the cycles taken. It is
done by subtracting 216 and looking up a ‘table of signs’ for encrypted numbers
to see if the result is negative or positive. To facilitate that, HEROIC encryp-

1 IEEE floating point test suite at http://jhauser.us/arithmetic/TestFloat.html.
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http://sf.net/p/or1k64kpu-binutils
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tion is one-to-one, not one-to-many. Significantly, its ISA is a one instruction
set computing (OISC) design that has the property that the same program code
and runtime trace can be interpreted with respect to the plaintext data beneath
the encryption at any point in memory and in the control graph in arbitrarily
many ways by any observer and experimenter who does not have the key to the
encryption. That means the kind of compilation discussed in Sect. 8 would work
to provably secure it, but it is not clear if HEROIC’s authors have a compiler.

In 2018 the 10× faster CryptoBlaze architecture for encrypted computing,
also using Paillier but with a nondeterministic component, was published [18].

At the other end of the scale a pathfinding earlier machine for encrypted
computing, Ascend [9] (2012), did all its computation in unencrypted form, but
with no access for the operator or operating machine while a program is run-
ning. Only the inputs and outputs were encrypted (including memory I/O) but
the processor ran in ‘Fort-Knox’-like isolation, matching pre-defined statistics on
observables such as cache and power drain. Ascend ran RISC MIPS [24] instruc-
tions and slowed down by 12–13.5× in encrypted mode with AES-128 (rightly,
only relative figures are quoted in [9]), as compared to 10–50% slowdown for
the authors own recent processor models for encrypted computing, which have
been measured at 104 MIPS (equivalent to a 433 MHz classic Pentium) [6] when
clocked at 1 GHz, on the standard Dhrystones benchmark [32].

Physical isolation of processes plus encrypted memory has emerged several
times as an idea for secure computing (e.g., [17] for secure entertainment media
platforms) and success means doing it as well as Ascend. Otherwise side-channels
such as cache-hit statistics [31] and power drain [19] leak information.

In that line, Intel’s SGXTM (‘Software Guard eXtensions’) processor tech-
nology [1] is often cited, because it enforces separations between users. The
mechanism is key management to restrict users to memory ‘enclaves’. While
the enclaves may be encrypted (encryption/decryption units lie on the memory
path), that is encrypted storage, a venerable idea [16], not encrypted computing.

SGX machines are used [29] by cloud service providers where assurance of
safety is a marketing point. That is founded in customers’ belief in electronics
designers ‘getting it right’ rather than mathematical analysis and proof. Engi-
neering may leak secrets via timing variations and power use and SGX has
recently fallen victim [14]. Use of SGX secure enclaves has to be written-in
by the software author so it is a voluntary security device, whereas encrypted
computing is an obligate security device. However, running code entirely inside
an SGX enclave is running it in Ascend-style ‘splendid isolation’, but without
Ascend’s protection against statistically-based deductions from the observables.
SGX does hide explicit timing information, for example, but a code can count
its own instructions to retrieve an estimate.

IBM’s efforts at making practical encrypted computation using very long inte-
ger lattice-based fully homomorphic encryptions (FHEs) based on Gentry’s 2009
cipher deserve mention. The 1-bit logic operations take of the order of 1 s [11]
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on customised vector mainframes with a million-bit word, about equivalent to a
0.003 Hz Pentium, but it may be that newer FHEs based on matrix addition and
multiplication [12] will be faster. The obstacle to computational completeness is
that which HEROIC overcomes with its ‘table of signs’: encrypted comparison
with plain 1/0 output is needed, as well as the encrypted addition (and multi-
plication), but HEROIC’s solution is not feasible for a million-bit encryption.

In principle, applications that require a fixed small number of multiplications
can be carried out without overflowing using an FHE without the renormalisa-
tions that are their hallmark. Such schemes are called somewhat homomorphic
encryption (SHE). Hardware assistance for a SHE based on the YASHE scheme
[3] with ciphertext blocks 215 × 1228 bits long is reported in [27]. Their 2048-
core parallel hardware does ciphertext addition in 83 ns and multiplication in
59.413 ms, but that is for one bit in plaintext. That would be 32-bit plaintext
addition at the speed of a 0.166 Hz classic Pentium (counting 3 exclusive or gates
and 3 and gates per 1-bit full adder, taking 6 s for one 32 bit addition).

The slow speeds of even hardware-assisted SHE schemes emphasise how rel-
atively fast the recent general purpose processors for encrypted computing are.
The price is a secret embedded in the hardware, as with a Smartcard.

3 Encrypted Computing Systems: Overview

This section briefly recapitulates encrypted computing systems. They consist of:

(i) A processor that ‘works encrypted’ in user mode, with encrypted
inputs, encrypted outputs, and encrypted intermediate states, but which
‘works unencrypted’ in operator mode.

If user data were not in encrypted form throughout, then the operator, having
full access, could read it and write it to order, so this kind of processor is needed.

(ii) A machine code instruction set that prevents ‘algebraic’ attacks via
certain ‘chosen instructions’ that conventional instruction sets contain.

For example, the conventional instruction that performs x′ [ / ] x′, produces an
encrypted 1 from any encrypted user datum x′ the operator cares to copy.

(iii) An ‘obfuscating’ compiler that smooths out statistical biases that may
be present in machine code.

Else a program would contain human biases such as low numbers like 0,1,. . . in
loop counts, which could be used in a statistically-based dictionary attack.

The following axioms from [5] refine the hardware requirements (i), (ii):
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Axioms

(1) Each instruction’s action is a black box. (i)
(2) Each instruction is observed to read and write data in encrypted form. (i)
(3) Arithmetic instructions embed encrypted constants, adjustments to which

may be made to accommodate any planned offsets in inputs to and output
from the instruction (see Sect. 7). (ii)

(4) There are no collisions possible between the encrypted constants embedded
in some instructions and the ciphertext that the processor writes to and reads
from registers and memory. (ii)

How (1) and (2) are achieved is a question of the hardware. It is failure of (1) that
the Intel (and likely other manufacturers’) vulnerability exploits in the recent
Meltdown [21] and Spectre [20] attacks. There, speculative execution brings data
into cache that remains visible even though the instructions are aborted, so
‘nothing’ leaves a trace. One of the conceptually simplest ways of achieving (2)
is to use an encryption that permits arithmetic to be done without decrypting
and re-encrypting: a homomorphic encryption. Some processors for encrypted
computing have used homomorphic encryptions, as described in Sect. 2.

Certain classical processor features contradict (2) when ‘observe’ is under-
stood to mean testing the processor state by any programmatic means, not only
reading a register, and are to be avoided in designs. A machine code ‘set if equal’
instruction that compares two ciphertext inputs and sets a status flag if the plain-
texts are equal would be mistaken instruction set design. The instruction output
(the status flag) in that case would not be in encrypted form, as required by (2).
It is also not in any register, but it could be tested with a following ‘branch if
set’ instruction, because the branch is seen to be taken or not taken as the (inac-
cessible) status flag is set or not set. That makes a classical ‘set/test-flag’ style
of processor instruction set design inappropriate. Yet the OpenRISC standard
specifies that style of instruction set and so our own prototype processors step
back to an earlier MIPS style of RISC design for branch instructions. Our own
design’s branch instructions do not test a status flag but compare (less than,
equal to, etc.) register contents and branch or do not branch on the result as
determined in conjunction with extra encrypted instruction bits (see Sect. 7).
That cannot be used for binary search to determine a value by virtue of (3,4).

The axiom (3) is a feature of an appropriate instruction architecture (Sect. 7),
while (4) may be achieved via disjoint paddings beneath the encryption.

A fifth axiom is sometimes needed. It extends (2) to allow testing by means
of externally known facts, not only the processor’s programming interface:

(5) There are no sources of ciphertext whose plaintext is known independently.

That avoids known plaintext attacks. It would contradict (5) to design-in a
read-only register that holds the known processor stepping number (encrypted).
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The axiom carries over to statistics too: all registers should feasibly contain
anything at start-up, with equal probability. A classical RISC read-only zer
register that contains zero (encrypted) for user mode would contradict that, so
cannot be.

4 What Does Encrypted Computing Look Like?

Encrypted running is illustrated in Table 1, where the same program has been
compiled twice, and the resulting machine codes have been run (the two instances
are top, vs. bottom in the table). Each time, the compiler has embedded different
(encrypted) constants in the machine code (disassembly at left). As a result
different encrypted values appear throughout the execution traces (right), but
the decrypted result (boxed) is nevertheless the same.

Table 1. Program codes and execution traces of exactly the same form may have
encrypted datawhose plaintext is arbitrarily different at any point yet get the same result.

1st code fragment 1st fragment’s trace

addr. instruction disassembly
96C sub sp sp zer E[ -471185111]

980 jal A

984 add t0 v0 zer E[ -236230946]

998 sub sp sp zer E[-1219116768]
9AC lw a0 E[1219116768](sp)

addr. update
96C sp ← E[-3412890104]
980 ra ← 984

...

984 t0 ← E[ -236230942]

998 sp ← E[-1219116896]
9AC a0 ← E[ 1 ]

ecarts’tnemgarfdn2tnemgarfedocdn2

addr. instruction disassembly
96C sub sp sp zer E[ 1528657211]

980 jal A

984 add t0 v0 zer E[-1112987554]
998 sub sp sp zer E[ -275939886]

9AC lw a0 E[275939886](sp)

addr. update
96C sp ← E[ -178928721]

980 ra ← 984

...

984 t0 ← E[-1112987550]
A98 sp ← E[ -275940014]

9AC a0 ← E[ 1 ]

Legend
Encrypted: E[x], x′ (Same) programpoint and storage place
Registers: pc,ra,sp,zer,t0,v0,a0 Content: pc, ra, sp, zer, t0, v0, a0

Instruction semantics
sub x y z k′ : x ← y [−] z [+] k′ jal a : ra ← pc + 4; pc ← a E[x] [◦] E[y] = E[x ◦ y]
add x y z k′ : x ← y [+] z [+] k′ lw x k′(y) : x ← memory y [+] k′

The ‘trick’ is that the compiler creates code that at runtime produces
encrypted values whose plaintext values are offset from the nominal value all the
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way through the calculation. The offsets are different (and randomly generated)
for each point in the program control graph per each location in memory. For
illustration here, the final offset in register a0 has been set at 0, but ordinarily
the final offset is also randomly generated, albeit known to the user.

5 Vulnerabilities of Naive Encrypted Computation

Being able to run arbitrary computable functions is dangerous in principle because
an adversary might use the encrypted computations to subvert the encryption.
For example, 32-bit 2 s complement arithmetic is used in all modern computing.
In that, repeated doubling of anything gives encrypted zero. I.e.:

E [x][+] . . . [+]E [x] = E [x + . . . + x] = E [232x mod 232] = E [0].

That opens the encryption to a known plaintext attack. The adversary can obtain
encryptions of 0 by forcing the processor to add any initial datum E [x] in register
r to itself 32 times, using its own machine code addition instruction:

add r r r
︸ ︷︷ ︸

r←r [+] r

; . . . ;add r r r
︸ ︷︷ ︸

r←r [+] r

;

Using multiplication, choosing a random ciphertext has a 50% chance of pick-
ing an odd number plaintext and then repeated self-multiplication gives an
encrypted 1, by Fermat’s Little Theorem2:

E [x][∗] . . . [∗]E [x] = E [x ∗ . . . ∗ x] = E [x231 mod 232] = E [1]

Self-multiplying an even number gives encrypted zero, but half the time an
encrypted 1 is obtained, and a 50% success rate beats 1/232 odds from guessing.

Using division, an adversary can get an encrypted 1 from any datum that is
not an encrypted zero, which is a near certainty among all the encrypted data
passing through the machine, via

E [x][ / ]E [x] = E [x/x] = E [1]

A subroutine for 64-bit division on a 32-bit platform is a place where one would
find an encrypted 1 as a program constant or an extra parameter to the sub-
routine at each application. In any case, a dictionary attack on all the constants
in the code should encounter an encrypted 1 among them. Guess which and, by

2 Fermat’s Little Theorem is aφ=1 mod n, where a is coprime to n and φ is the size
of the multiplicative group of integer residues mod n, being the number of residues
that are coprime to n. It is needed here in the form aφ = 1 mod 2n, where a is odd,
i.e., coprime to 2n. Exactly half the numbers less than 2n are odd, i.e., coprime to
2n, and they form the multiplicative group mod n. So φ is 2n−1 and the theorem

says a2n−1
=1 mod 2n. The better-known special form is ap = a mod p, p prime.
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Table 2. Code and trace may be interpreted in different ways with respect to the
plaintext data by an observer who cannot read the encryption.

1st code fragment 1st trace

addr. instruction addr. update

0 A:if x[<]E[1] goto B
1 x←x[-]E[1]
2 goto A

3 B:x←x[+]E[1]
4 if x[<]E[1] goto B

(x= E[0])
0 A:

�
3 B: x←E[1]
4

(x= E[1])

2nd code fragment 2nd trace

addr. instruction addr. update

0 A:if x[<]E[8] goto B
1 x←x[-]E[1]
2 goto A

3 B:x←x[+]E[1]
4 if x[<]E[8] goto B

(x= E[7])
0 A:

�
3 B: x←E[8]
4

(x= E[8])
Legend
Encrypted: E[x] E[x] [◦] E[y] = E[x ◦ y] E[x] [R] E[y] = xRy

repeated addition of encrypted 1s, an adversary may first build all powers of 2
and then build the encryption of any desired number K from its binary code via

E [2k1 ] [+] . . . [+] E [2kj ] = E [2k1 + . . . + 2kj ] = E [K].

Then, if an arithmetic order comparator instruction is available on the plat-
form, any encrypted number could be decrypted by comparing it with an encryp-
tion of each 32-bit integer K in turn3. Decryption goes even faster deducing
the binary digits one by one, comparing and subtracting (encrypted) 2k when
E [2k][≤]E [x][<]E [2k+1] is detected by a conditional branch instruction in the
machine (a machine code conditional branch on E [x][≤]E [y] detects if x≤y then
jumps to a designated instruction, just like a goto in a higher level language).

The vulnerabilities above apply to any naive system for arbitrary computa-
tion. It must have comparator instructions in order to trigger branch jumps. In
contrast, finite calculation systems can produce the 1/0 result b of a comparison
in encrypted form, and the final ciphertext values E [x1] and E [x0] of variable x
from both branches after the comparison are combined in E [x1 ∗ b + x0 ∗ (1− b)].
That is not an option in a system for unbounded computation, which must report
the comparison in 1/0 format so the electronics can execute only one branch.

In summary, to write an encrypted number to order on a naively constructed
platform, ‘just addition and multiplication’ will do, with 50% certainty. Reading
requires a comparator too. If the encryption itself is even partially homomorphic
(i.e., some encrypted operations can be done without access to the encryption
key), the processor is not even needed. So there is a case to answer as to security.

6 Secure Encrypted Computing

There are ways of running arbitrary encrypted computations securely. Consider
for the moment that the machine code has only instructions addition of a con-
stant y←E [D[x]+k] and branches based on comparison with a constant D[x]<K,
3 Rass in [25] has recently independently called this a ‘chosen instruction’ attack.
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for registers x, y4. Those suffice for any computation, encrypted5. Consider pro-
gram C using only those two instructions. By a ‘method of observation’ under-
stand a deterministic process, based on observing what a running user program
does from step to step and making deductions from what is observed – its trace
T . The trace details the sequence of instructions executed, with their addresses,
and what register and memory locations each instruction reads and writes and
with what values. Assume the operator cannot already read the encryption. Then:

Theorem 1 No method of observation exists by which the operator (who
does not possess the key) may decrypt output from C.

The argument is illustrated by the program in this language that sets x=E [1],
rendered at left in Table 2. There is no single statement of the language that will
suffice. The code first loops until x is ‘not too large,’ then loops until it is ‘not
too small.’ Exit at B is with x = E [1] exactly, no matter the value at entry at A.
The trace with x = E [0] on entry and x = E [1] on exit is shown alongside. The
right half of Table 2 shows the same code in which branch comparison constants
(red) have been changed by +7 beneath the encryption. That admits a trace of
exactly the same form but with plaintext numbers beneath the encryption that
are +7 more than before. Since it is feasible, it is what happens, as computation is
deterministic. So there are two possible interpretations of the codes and traces in
Table 2 to an observer who does not already know the encryption. The evidence
presented to the observer’s method is the same both times in the observer’s
own terms: the codes and the traces ‘look the same’, the only differences lying
in encrypted constants that by hypothesis the observer cannot read. One may
suppose that the codes and traces are short enough that no ciphertext is repeated
twice, so those encrypted values that do appear serve as no more than different
labels for the same unknowns and have no more significance than that. If the
observer has a method for getting at the plaintext value beneath the encryption
then it must give the same answer in both cases. Yet the observer’s method must
be wrong in one case, because the numbers beneath the encryption all differ by
7. So the method does not exist. The formal argument is simply that:

Proof (Theorem 1). Change C to D by changing all the constants E [K] in com-
parison instructions to E [K + 7]. That permits a trace in which all data takes
values not E [x] but E [x + 7] at every point. The addition instructions, which are
unaltered in D, instead of taking E [x] to E [x+k] now take E [x+7] to E [x+7+k].
The observer’s hypothetical method is not sensitive to the change as the observer
cannot read the encryption, so the method must give the wrong answer either
in the trace of C or in that of D about a value beneath the encryption. ��
4 To help the reader over a ‘notation gap’, y←E [D[x]+k] is written here for y←x [+] k′.
5 A practitioner’s proof of the computational completeness of the instructions y←x+k

and if x<K . . . is the mathematician J.H. Conway’s well-known Fractran program-
ming language [8], in which those are the only instructions. Attention in the computer
hardware community may have been first drawn to the fact by [24].



On Security in Encrypted Computing 203

Remark 1. The argument shows that the same code and trace may differ inde-
pendently at every point beneath the encryption to the maximum extent pos-
sible. An assignment instruction x←E [D[y] + k] may be changed to account for
an arbitrarily chosen offset c (instead of +7) in the incoming value y beneath
the encryption and generate an arbitrarily chosen offset d (instead of +7) in the
outgoing value x by rewriting the instruction to x←E [D[y] + k − c+ d]. ��

7 Instruction Architecture for Encrypted Computing

What makes Theorem 1’s proof work is the following:

Lemma 1. Every atomic instruction’s inputs E [x1] and outputs E [x0] may
be shifted by constants to E [x1 + k1] and E [x0 + k0] respectively, by means of
constants embedded (encrypted) in the instruction, for arbitrary k0, k1.

That is merely a formal expression of axiom (3) of Sect. 1.
Designing a complete instruction set to comply with (3) requires careful

choices to allow the processor to function with full coverage and to work quickly
while compilation remains uncomplicated, also consideration of physical restric-
tions (instruction length, field sizes, opcode map, etc.). HEROIC’s minimalis-
tic instruction set complies, but is not suited to efficient compilation. We call
any compliant instruction set a fused anything and add (FxA) instruction set6

because the natural form of a compliant arithmetic instruction semantics is

x ← E [(D[y] − k1)Θ(D[z] − k2) + k0]
= (y [−] k′

1) [Θ](z [−] k′
2) [+] k′

0

with binary operator Θ (for example, Θ may be multiplication), registers x, y, z.
Our own processor’s instruction set for encrypted working is shown in Table 3.

It bears a likeness to OpenRISC’s instruction set and RISC in general, in that
there is one memory load/store instruction and the rest of the instructions use
registers, but ‘RISCiness’ stops at the increased instruction lengths. The com-
parison operations also contain an extra bit beneath the encrypted field that
says if branch happens on success or on failure, as per axiom (3). Then:

Theorem 2 There is no method by which the privileged operator can read
runtime data from a program C constructed using instructions in Table 3.

That is by using Lemma 1 in the proof of Theorem 1 for all arithmetic instruc-
tions of Table 37. It also follows that interfering and experimenting with the
program to substitute a different value for the returned result does not work:
6 ‘Addition of a constant’ is not the only option. Bitwise XOR (exclusive OR) with

a constant can be used, or ‘multiplication by a prime and addition of a constant’.
The most general possibility is to replace a conventional instruction x ← f(y) by
x ← f(y · k−1

1 ) · k2, where · is the operation of a mathematical group and −1 is
the group inverse operation. For simplicity, addition is used throughout this paper.
.

7 Proofs of results stated but not proved in the text are supplied in the Appendix.



204 P. T. Breuer et al.

Table 3. Machine code instruction set for encrypted working.

op. fields mnem. semantics

add r0 r1 r2 k′ add r0←r1 [+] r2 [+] k′

sub r0 r1 r2 k′ subtract r0←r1 [−] r2 [+] k′

mul r0 r1 r2 k′
0 k′

1 k′
2 multiply r0←(r1 [−] k′

1) [∗](r2 [−] k′
2) [+] k′

0
div r0 r1 r2 k′

0 k′
1 k′

2 divide r0←(r1 [−] k′
1) [/](r2 [−] k′

2) [+] k′
0

. . .
mov r0 r1 move r0←r1
ble j r1 r2 k′ branch if r1[≤]r2 [+] k′ then pc←pc+j
bge j r1 r2 k′ branch if r1[≥]r2 [+] k′ then pc←pc+j
. . .
b j branch pc ← pc + j unconditionally
sw k′(r1) r2 store mem r1 [+] k′ ← r2
lw r1 k′(r2) load r1 ← mem r2 [+] k′

jr r jump pc ← r
jal j jump ra ← pc + 4; pc ← j
j j jump pc ← j
nop no-op

Legend
r – register indices k – 32-bit integers pc – prog. count reg.
j – program count or incr. ‘←’ – assignment ra – return addr. reg.
E[x],x′ – encrypted val. E[x] [◦] E[y] = E[x ◦ y] E[x] [R] E[y] = xRy

Corollary 1. There is no method by which the operator can alter program C
using other or the same instructions to get an intended output (encrypted).

The reason is that the program built by the operator to give the intended output
cannot be built, by Theorem 2, because the output is readable, as it is known
what it decrypts to (this lawyering stands in for a near repeat of the same proof).

Example (Theorem 2, Corollary 1). Take the encryption in the machine to
be AES with key k, so encryption is x′ = AES(x, k) for plaintext x and ciphertext
x′. Then there is a program C that decrypts (encrypted) input data, though the
whole program runs in the encrypted computing environment. It is the AES
decryption routine, compiled encrypted. Suppose x′ decrypts to x, and x′′ is
the encryption of x′, k′ the encryption of k. Then C(x′′, k′) = x′ by definition,
because the unencrypted program takes x′ and k to x. That is C(y′, k′) = y, as
claimed, on choosing y = x′. ��

Fortunately, the theorem prohibits the adversary building a program that
outputs the encrypted encryption key k′, because with it and program C of
the example the adversary would obtain the encryption key in the clear, via
C(k′, k′)= k.

Remark 2. The program C of the example that does decryption cannot be inten-
tionally built by an adversary (this is proved in the Appendix).

Example (Corollary 1). The program that sets x=E [1] at left in Table 2 cannot
be intentionally built by the operator. Trying for ‘1’ the operator may instead
get the program at right in the table, which produces ‘8’ (encrypted). ��

There is need and potential (see Remark 1) for obfuscation here. Human
beings only write certain programs, and an adversary may bet on an encrypted
1 being among the data, enabling the ‘chosen instruction’ attack of Sect. 5.



On Security in Encrypted Computing 205

8 Obfuscating Compilation

For effective and useful ‘obfuscation’ in this context, plaintext data beneath the
encryption should be varied from the nominal value at each of the up to m + 32
storage locations accessed by the program (m memory locations and 32 registers)
at each of the N instructions of the program. A compiler can do that by varying
the encrypted constants embedded in the instructions, by axiom (3). The idea
is for the compiler variations to hide any human biases. Maximal noise applied
by the compiler across different compilations swamps any other signal.

Let MC be the type of machine code, consisting of a sequential list of ‘FxA-
compliant’ instructions, as for example in Table 3, and let Expr be the type of
expressions, and let Off be the type of integer ‘offsets’. The approach our own
compiler takes is to invent and aim for a particular runtime offset from nominal:

�−�r:: Expr → (MC,Off)

where r is the processor register that the value of the expression is to appear in.
That is, the result of compiling an expression e is

�e�r = (mc,Δe) .

The value e+Δe beneath the encryption will be produced in register r at runtime
by running the code mc, where Δe has been freely chosen at compile time. That
is, let s(r) be the content of register r in state s of the processor at runtime. The
machine code mc emitted is designed to have operational semantics (Table 3):

s0
mc� s1 where s1(r) = E [e + Δe] (�)

An offset Δe = 0 means the result will be the nominal value. Compilation for (�)
is described in detail in [5]. The upshot is that independently chosen, arbitrary
offsets Δe generated by the compiler are induced at runtime in the plaintext
values written to every register and memory location, differing per point in the
program control flow graph. The following lemma is proved in [5]:

Lemma 2. The obfuscating compiler creates object codes from the same
source code that are identical apart from embedded (encrypted) constants.
The runtime traces are also identical apart from the ciphertext data values
read and written, such that, for any particular plaintext 32-bit value x, the
probability across different compilations that E [x] is in register or memory
location l at any given point in the trace is uniformly 1/232, independently
to the maximum extent permitted by copy instructions and loops in the code.

The proviso is because a plain copy (‘mov’) instruction always has precisely
the same input and output, and a loop means the variations introduced by the
compiler must be the same at the beginning as at the end of the loop.

Source code for the compiler, assembler, linker, virtual machine, etc., may be
downloaded from http://sf.net/projects/obfusc. The compiler currently covers
all of ANSI C, and most GNU extensions except computed gotos.

In order to support arrays, pointers p must be declared together with a fixed
‘memory zone’ into which they point, thus:

http://sf.net/projects/obfusc
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int A[100];

restrict A int *p;

The restrict A means that the pointer never points outside the memory zone A.
The compiler does not know where an unrestricted pointer will point at runtime
and this declaration tells it to use an offset ΔA pertaining to zone A at that
point in the program for the pointer. Each write through p should change ΔA,
so the compiler accompanies it with writes to the rest of A to reset the other
entries too. That is computationally inefficient, but cryptographically necessary.
Oblivious RAM (ORAM) [22] does the same, but in hardware. In practice the
processor will do the writes to memory asynchronously via the ubiquitous ‘write-
back’ cache of contemporary processor technology, so the performance penalty
is bandwidth, not latency (but a vector write instruction would be helpful).

Recalling Goldwasser & Micali’s definition [13] that ‘semantic security’ is in-
ability to guess a designated bit with any success above chance, Lemma 2 implies:

Theorem 3 Runtime user data beneath the encryption is semantically
secure against the operator for FxA code compiled by the obfuscating compiler.

The threat alone that the code has been compiled by an obfuscating compiler
might be sufficient for the theorem, as that establishes the domain of possible
variations that must be considered. But despite the look of it, the theorem is not
a strong statement. It should be understood as saying that computation in an
encrypted computing system does not reduce the security from the encryption.

9 Conclusion

This paper intends to bring encrypted computing to the attention of the secu-
rity community as a technology that potentially safeguards user data against a
classically all-powerful operator, operating system and other insiders as adver-
saries. This paper has dealt with theoretical aspects. With the appropriate
instruction set and an ‘obfuscating’ compiler, it is shown here that user data can-
not be determined by an adversary via any deterministic or stochastic method
with any success above chance, provided the encryption used is independently
secure. In other words, encrypted computing does not compromise encryption.

Acknowledgments. Zhiming Liu thanks the Chinese NSF for support from research
grant 61672435, and Southwest University for grant SWU116007. Peter Breuer thanks
Hecusys LLC for continued support in KPU research and development.

Appendix: Proofs of results

Proof (Corollary 1). Suppose for contradiction that the operator builds a new
program D=f(C) that returns E [y]. Then its constants E [k] are found in C and its
constants E [K] likewise, because f has no way of arithmetically combining them
(the disjoint subspaces condition (4) on runtime encrypted data and encrypted
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program constants means they cannot be combined arithmetically in the processor
and the operator does not have the encryption key). Theorem 1 says the operator
cannot read output E [y] of D, yet knows what it is. Done by contradiction. ��
Proof (Theorem 2). Program C is constructed using arbitrary instructions from
Table 3 compliant with (3). One may construct a modified code D (see below)
that looks the same as C to the adversary who cannot read the encryption, as
well as possessing a runtime trace U that looks the same as the original trace T
to the adversary, differing only in the cipherspace values read and written. The
argument is the same as for Theorem 1 (and Corollary 1): In the given program
C, every binary arithmetic instruction necessarily has semantics of the form (the
ri are registers)

r0 ← E [(D[r1]−k1)Θ(D[r2]−k2)+k0]

in order to comply with (3), and it can be adjusted for D via its embedded
constants E [ki] to accommodate every data value passing through registers and
memory to be +7 more beneath the encryption than it used to be in C, as
argued in the proof of Theorem 1 and Corollary 1. The change is from ki to
k′
i=ki + 7. Similarly, every branch instruction in C necessarily has a test of the

form (D[r1]−k1)R(D[r2]−k2) in order to comply with (3). It is changed in D to
(D[r1]−k′

1)R(D[r2]−k′
2) with k′

i = ki + 7. Then the branch goes the same way
at runtime in trace U for D as it did originally in trace T for C. Unconditional
jump instructions are not altered.

The outcome is a trace U that is the same as T modulo the cipherspace values
read and written, which by hypothesis cannot be read by the adversary. Those
differ by 7 under the encryption in U from the originals in T . Code D looks the
same too, modulo the embedded encrypted constants, which also cannot be read
by the adversary. Therefore, as in the proof of Theorem 1, a method f(C, T ) for
decryption must give the same result as f(D,U), yet the answers are different
by 7 in the two cases, so the method f cannot exist. ��
Proof (Lemma 2). Consider the arithmetic instruction I in the program. Suppose
that by fiddling with the embedded constants in the other instructions in the
program it is already possible for all other locations m other than that written
by I and at all other points in the program to vary the value xm = x +Δx,
where E [xm] is stored in m, randomly and uniformly across compilations, taking
advantage of the instruction set as the compiler described in the text does. Let I
write value E [y] in location l. By the axiom (3) I has a parameter E [k] that may
be tweaked to offset y from the nominal result f(x + Δx) on its input x + Δx
by an amount Δy. The compiler chooses k with a distribution such that Δy is
uniformly distributed across the possible range. The instructions in the program
that receive y from I may be adjusted to compensate for the Δy change by
changes in their controlling parameters. Then p(y = Y ) = p(f(x+Δx)+Δy = Y )
and the latter probability is p(y = Y ) =

∑

Y ′
p(f(x + Δx) = Y ′ ∧ Δy = Y − Y ′).

The probabilities are independent (because Δy is newly introduced just now),
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so that sum is p(y = Y ) =
∑

Y ′
p(f(x + Δx) = Y ′)p(Δy = Y − Y ′). That is

p(y=Y )=
1

232
∑

Y ′
p(f(x+Δx)=Y ′).

Since the sum is over all possible Y ′, the total of the summed probabilities is
1, and p(y=Y )=1/232. The distribution of data E [xm] in other locations m is
unchanged. Done by a structural induction on the machine code program. ��
Proof (Theorem 3). Consider a probabilistic method f that guesses for a par-
ticular runtime value beneath the encryption ‘the top bit b is 1, not 0’, with
probability pC,T for program C with trace T . The probability that f is right is

p((bC,T=1 and f(C, T )=1) or (bC,T=0andf(C, T )=0))

Splitting the conjunctions, that is

p(bC,T=1) p(f(C, T )=1 | bC,T=1)
+ p(bC,T=0) p(f(C, T )=0 | bC,T=0)

But the method f cannot distinguish the compilations it is looking at as the
codes and traces are the same, modulo the (encrypted) values in them, which
the adversary cannot read. The method f applied to C and T has nothing to
cause it to give different answers but incidental features of encrypted numbers
and its internal spins of a coin. Those are independent of if the bit b is 1 or 0
beneath the encryption, supposing the encryption is effective. So

p(f(C, T ) = 1 | bC,T = 1) = p(f(C, T ) = 1) = pC,T

p(f(C, T ) = 0 | bC,T = 0) = p(f(C, T ) = 0) = 1 − pC,T

By Lemma 2, 1 and 0 are equally likely across all possible compilations C, so
the probability f is right reduces to

1
2 pC,T + 1

2 (1 − pC,T ) = 1
2

since p(bC,T=1) = p(bC,T=0) = 1
2 . ��

Corollary 2. There is no method by which the operator can build a program C
that gives an output E [y] where y is confined to an independently defined proper set
Y of possibilities, not even stochastically with a probability higher than |Y |/232.

Proof. The proof of Theorem 2 and Corollary 1 may be repeated, confining
y to Y , or use Theorem 3, since its ‘probabilistic method f ’ includes con-
structing a program. ��
Proof. (Remark 2). The structure of the code of the AES decryption routine
is known to the operator. By Corollary 1 the operator cannot construct the
(encrypted) constants used in the AES decryption routine, but there may be
others that will work (does anybody know?). Corollary 2 prevents the operator
constructing a program to emit any one of the tuples of encrypted constants that
will do, with any probability above chance. Theorem 3 prevents the operator
doing it without programmed help. ��
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