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Abstract. Depth estimation from a single image is a fundamental prob-
lem in computer vision. In this paper, we propose a simple yet effective
convolutional spatial propagation network (CSPN) to learn the affin-
ity matrix for depth prediction. Specifically, we adopt an efficient linear
propagation model, where the propagation is performed with a manner
of recurrent convolutional operation, and the affinity among neighboring
pixels is learned through a deep convolutional neural network (CNN).
We apply the designed CSPN to two depth estimation tasks given a
single image: (1) Refine the depth output from existing state-of-the-art
(SOTA) methods; (2) Convert sparse depth samples to a dense depth
map by embedding the depth samples within the propagation procedure.
The second task is inspired by the availability of LiDAR that provides
sparse but accurate depth measurements. We experimented the proposed
CSPN over the popular NYU v2 [1] and KITTI [2] datasets, where we
show that our proposed approach improves not only quality (e.g., 30%
more reduction in depth error), but also speed (e.g., 2 to 5× faster)
of depth maps than previous SOTA methods. The codes of CSPN are
available at: https://github.com/XinJCheng/CSPN.
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1 Introduction

Depth estimation from a single image, i.e., predicting per-pixel distance to the
camera, has many applications from augmented realities (AR), autonomous driv-
ing, to robotics. Given a single image, recent efforts to estimate per-pixel depths
have yielded high-quality outputs by taking advantage of deep fully convolutional
neural networks [3,4] and large amount of training data from indoor [1,5,6] and
outdoor [2,7,8]. The improvement lies mostly in more accurate estimation of
global scene layout and scales with advanced networks, such as VGG [9] and
ResNet [10], and better local structure recovery through deconvolution opera-
tion [11], skip-connections [12] or up-projection [4]. Nevertheless, upon closer
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Fig. 1. (a) Input image; (b) Depth from [13]; (c) Depth after bilateral filtering; (d)
Refined depth by SPN [14]; (e) Refined depth by CSPN; (f) Sparse depth samples
(500); (g) Ground Truth; (h) Depth from our network; (i) Refined depth by SPN with
depth sample; (j) Refined depth by CSPN with depth sample. The corresponding root
mean square error (RMSE) is put at the left-top of each predicted depth map.

inspection of the output from a contemporary approach [13] (Fig. 1(b)), the pre-
dicted depths is still blurry and do not align well with the given image structure
such as object silhouette.

Most recently, Liu et al. [14] propose to directly learn the image-dependent
affinity through a deep CNN with spatial propagation networks (SPN), yield-
ing better results comparing to the manually designed affinity on image seg-
mentation. However, its propagation is performed in a scan-line or scan-column
fashion, which is serial in nature. For instance, when propagating left-to-right,
pixels at right-most column must wait the information from the left-most col-
umn to update its value. Intuitively, depth refinement commonly just needs a
local context rather a global one.

Here we propose convolutional spatial propagation networks (CSPN), where
the depths at all pixels are updated simultaneously within a local convolutional
context. The long range context is obtained through a recurrent operation. Fig.
1 shows an example, the depth estimated from CSPN (e) is more accurate than
that from SPN (d) and Bilateral filtering (c). In our experiments, our parallel
update scheme leads to significant performance improvement in both speed and
quality over the serial ones such as SPN.

Practically, we show that the proposed strategy can also be easily extended
to convert sparse depth samples to a dense depth map given corresponding
image [13,15]. This task can be widely applied in robotics and autonomous
cars, where depth perception is often acquired through LiDAR, which usually
generates sparse but accurate depth measurement. By combining the sparse
measurements with images, we could generate a full-frame dense depth map.
For this task, we consider three important requirements for an algorithm: (1)
The dense depth map recovered should align with image structures; (2) The
depth value from the sparse samples should be preserved, since they are usually
from a reliable sensor; (3) The transition between sparse depth samples and their
neighboring depths should be smooth and unnoticeable. In order to satisfy those
requirements, we first add mirror connections based on the network from [13],
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which generates better depths as shown in Fig. 1(h). Then, we tried to embed
the propagation into SPN in order to keep the depth value at sparse points.
As shown in Fig. 1(i), it generates better details and lower error than SPN
without depth samples (Fig. 1(d)). Finally, changing SPN to our CSPN yields
the best result (Fig. 1(j)). As can be seen, our recovered depth map with just
500 depth samples produces much more accurately estimated scene layouts and
scales. We experiment our approach over two popular benchmarks for depth
estimation, i.e.NYU v2 [1] and KITTI [2], with standard evaluation criteria. In
both datasets, our approach is significantly better (relative 30% improvement
in most key measurements) than previous deep learning based state-of-the-art
(SOTA) algorithms [13,15]. More importantly, it is very efficient yielding 2-5×
acceleration comparing with SPN. In summary, this paper has the following
contributions:

1. We propose convolutional spatial propagation networks (CSPN) which is more
efficient and accurate for depth estimation than the previous SOTA propa-
gation strategy [14], without sacrificing the theoretical guarantee.

2. We extend CSPN to the task of converting sparse depth samples to dense
depth map by using the provided sparse depths into the propagation pro-
cess. It guarantees that the sparse input depth values are preserved in
the final depth map. It runs in real-time, which is well suited for robotics
and autonomous driving applications, where sparse depth measurement from
LiDAR can be fused with image data.

2 Related Work

Depth estimating and enhancement/refinement have long been center problems
for computer vision and robotics. Here we summarize those works in several
aspects without enumerating them all due to space limitation.

Single view depth estimation via CNN and CRF. Deep neural networks
(DCN) developed in recent years provide strong feature representation for per-
pixel depth estimation from a single image. Numerous algorithms are developed
through supervised methods [3,4,16,17], semi-supervised methods [18] or unsu-
pervised methods [19–22]. and add in skip and mirror connections. Others tried
to improve the estimated details further by appending a conditional random field
(CRF) [23–25] and joint training [26,27]. However, the affinity for measuring the
coherence of neighboring pixels is manually designed.

Depth Enhancement. Traditionally, depth output can be also efficiently
enhanced with explicitly designed affinity through image filtering [28,29], or
data-driven ones through total variation (TV) [30,31] and learning to diffuse [32]
by incorporating more priors into diffusion partial differential equations (PDEs).
However, due to the lack of an effective learning strategy, they are limited for
large-scale complex visual enhancement.

Recently, deep learning based enhancement yields impressive results on super
resolution of both images [33,34] and depths [35–38]. The network takes low
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resolution inputs and output the high-resolution results, and is trained end-to-
end where the mapping between input and output is implicitly learned. However,
these methods are only trained and experimented with perfect correspondent
ground-truth low-resolution and high-resolution depth maps and often a black-
box model. In our scenario, both the input and ground truth depth are non-
perfect, e.g.depths from a low cost LiDAR or a network, thus an explicit diffusion
process to guide the enhancement such as SPN is necessary.

Learning affinity for spatial diffusion. Learning affinity matrix with deep
CNN for diffusion or spatial propagation receives high interests in recent years
due to its theoretical supports and guarantees [39]. Maire et al. [40] trained a
deep CNN to directly predict the entities of an affinity matrix, which demon-
strated good performance on image segmentation. However, the affinity is fol-
lowed by an independent non-differentiable solver of spectral embedding, it can
not be supervised end-to-end for the prediction task. Bertasius et al. [41] intro-
duced a random walk network that optimizes the objectives of pixel-wise affinity
for semantic segmentation. Nevertheless, their affinity matrix needs additional
supervision from ground-truth sparse pixel pairs, which limits the potential con-
nections between pixels. Chen et al. [42] try to explicit model an edge map for
domain transform to improve the output of neural network.

The most related work with our approach is SPN [14], where the learning of
a large affinity matrix for diffusion is converted to learning a local linear spatial
propagation, yielding a simple while effective approach for output enhancement.
However, as mentioned in Sect. 1, depth enhancement commonly needs local
context, it might not be necessary to update a pixel by scanning the whole
image. As shown in our experiments, our proposed CSPN is more efficient and
provides much better results.

Depth estimation with given sparse samples. The task of sparse depth to
dense depth estimation was introduced in robotics due to its wide application for
enhancing 3D perception [15]. Different from depth enhancement, the provided
depths are usually from low-cost LiDAR or one line laser sensors, yielding a map
with valid depth in only few hundreds of pixels, as illustrated in Fig. 1(f). Most
recently, Ma et al. [13] propose to treat sparse depth map as additional input to
a ResNet [4] based depth predictor, producing superior results than the depth
output from CNN with solely image input. However, the output results are still
blurry, and does not satisfy our requirements of depth as discussed in Sect. 1. In
our case, we directly embed the sampled depth in the diffusion process, where
all the requirements are held and guaranteed.

Some other works directly convert sparse 3D points to dense ones without
image input [43–45], whereas the density of sparse points must be high enough
to reveal the scene structure, which is not available in our scenario.
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Fig. 2. Comparison between the propagation process in SPN [14] and CPSN in this
work.

3 Our Approach

We formulate the problem as an anisotropic diffusion process and the diffusion
tensor is learned through a deep CNN directly from the given image, which
guides the refinement of the output.

3.1 Convolutional Spatial Propagation Network

Given a depth map Do ∈ R
m×n that is output from a network, and image

X ∈ R
m×n, our task is to update the depth map to a new depth map Dn within

N iteration steps, which first reveals more details of the image, and second
improves the per-pixel depth estimation results.

Figure 2(b) illustrates our updating operation. Formally, without loss of gen-
erality, we can embed the Do to some hidden space H ∈ R

m×n×c. The convo-
lutional transformation functional with a kernel size of k for each time step t
could be written as,

Hi,j,t+1 =
∑(k−1)/2

a,b=−(k−1)/2
κi,j(a, b) � Hi−a,j−b,t

where, κi,j(a, b) =
κ̂i,j(a, b)∑

a,b,a,b �=0 |κ̂i,j(a, b)| ,

κi,j(0, 0) = 1 −
∑

a,b,a,b �=0
κi,j(a, b) (1)

where the transformation kernel κ̂i,j ∈ R
k×k×c is the output from an affinity

network, which is spatially dependent on the input image. The kernel size k is
usually set as an odd number so that the computational context surrounding
pixel (i, j) is symmetric. � is element-wise product. Following [14], we normalize
kernel weights between range of (−1, 1) so that the model can be stabilized
and converged by satisfying the condition

∑
a,b,a,b �=0 |κi,j(a, b)| ≤ 1. Finally, we

perform this iteration N steps to reach a stationary distribution.

Correspondence to diffusion process with a partial differential equa-
tion (PDE). Similar with [14], here we show that our CSPN holds all the
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desired properties of SPN. Formally, we can rewrite the propagation in Eq. (1)
as a process of diffusion evolution by first doing column-first vectorization of
feature map H to Hv ∈ R

mn×c.

Ht+1
v =

⎡

⎢⎢⎢⎢⎣

1 − λ0,0 κ0,0(1, 0) · · · 0
κ1,0(−1, 0) 1 − λ1,0 · · · 0

...
...

. . .
...

... · · · · · · 1 − λm,n

⎤

⎥⎥⎥⎥⎦
= GHt

v (2)

where λi,j =
∑

a,b κi,j(a, b) and G is a mn×mn transformation matrix. The
diffusion process expressed with a partial differential equation (PDE) is derived
as follows,

Ht+1
v = GHt

v = (I − D + A)Ht
v

Ht+1
v − Ht

v = −(D − A)Ht
v

∂tHt+1
v = −LHt

v (3)

where L is the Laplacian matrix, D is the diagonal matrix containing all the
λi,j , and A is the affinity matrix which is the off diagonal part of G.

In our formulation, different from [14] which scans the whole image in four
directions (Fig. 2(a)) sequentially, CSPN propagates a local area towards all
directions at each step (Fig. 2(b)) simultaneously, i.e.with k×k local context,
while larger context is observed when recurrent processing is performed, and the
context acquiring rate is in an order of O(kN).

In practical, we choose to use convolutional operation due to that it can be
efficiently implemented through image vectorization, yielding real-time perfor-
mance in depth refinement tasks.

Principally, CSPN could also be derived from loopy belief propagation with
sum-product algorithm [46]. However, since our approach adopts linear propa-
gation, which is efficient while just a special case of pairwise potential with L2
reconstruction loss in graphical models. Therefore, to make it more accurate,
we call our strategy convolutional spatial propagation in the field of diffusion
process.

3.2 Spatial Propagation with Sparse Depth Samples

In this application, we have an additional sparse depth map Ds (Fig. 4(b)) to
help estimate a depth depth map from a RGB image. Specifically, a sparse set
of pixels are set with real depth values from some depth sensors, which can be
used to guide our propagation process.

Similarly, we also embed the sparse depth map Ds = {dsi,j} to a hidden
representation Hs, and we can write the updating equation of H by simply
adding a replacement step after performing Eq. (1),

Hi,j,t+1 = (1 − mi,j)Hi,j,t+1 + mi,jHs
i,j (4)
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Fig. 3. (a) Histogram of RMSE with depth maps from [13] at given sparse depth points.
(b) Comparison of gradient error between depth maps with sparse depth replacement
(blue bars) and with ours CSPN (green bars), where ours is much smaller. Check Fig.
4 for an example. Vertical axis shows the count of pixels. (color figure online)

where mi,j = I(dsi,j > 0) is an indicator for the availability of sparse depth at
(i, j).

In this way, we guarantee that our refined depths have the exact same value at
those valid pixels in sparse depth map. Additionally, we propagate the informa-
tion from those sparse depth to its surrounding pixels such that the smoothness
between the sparse depths and their neighbors are maintained. Thirdly, thanks to
the diffusion process, the final depth map is well aligned with image structures.
This fully satisfies the desired three properties for this task which is discussed
in our introduction (1).

In addition, this process is still following the diffusion process with PDE,
where the transformation matrix can be built by simply replacing the rows sat-
isfying mi,j = 1 in G (Eq. (2)), which are corresponding to sparse depth samples,
by eTi+j∗m. Here ei+j∗m is an unit vector with the value at i+ j ∗m as 1. There-
fore, the summation of each row is still 1, and obviously the stabilization still
holds in this case.

Our strategy has several advantages over the previous state-of-the-art sparse-
to-dense methods [13,15]. In Fig. 3(a), we plot a histogram of depth displacement
from ground truth at given sparse depth pixels from the output of Ma et al. [13].
It shows the accuracy of sparse depth points cannot preserved, and some pixels
could have very large displacement (0.2 m), indicating that directly training a
CNN for depth prediction does not preserve the value of real sparse depths
provided. To acquire such property, one may simply replace the depths from
the outputs with provided sparse depths at those pixels, however, it yields non-
smooth depth gradient w.r.t.surrounding pixels. In Fig. 4(c), we plot such an
example, at right of the figure, we compute Sobel gradient [47] of the depth
map along x direction, where we can clearly see that the gradients surrounding
pixels with replaced depth values are non-smooth. We statistically verify this in
Fig. 3(b) using 500 sparse samples, the blue bars are the histogram of gradient
error at sparse pixels by comparing the gradient of the depth map with sparse
depth replacement and of ground truth depth map. We can see the difference
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Fig. 4. Comparison of depth map [13] with sparse depth replacement and with our
CSPN w.r.t.smoothness of depth gradient at sparse depth points. (a) Input image. (b)
Sparse depth points. (c) Depth map with sparse depth replacement. (d) Depth map
with our CSPN with sparse depth points. We highlight the differences in the red box
(color figure online).

is significant, 2/3 of the sparse pixels has large gradient error. Our method, on
the other hand, as shown with the green bars in Fig. 3(b), the average gradient
error is much smaller, and most pixels have zero error. In Fig. 4(d), we show the
depth gradients surrounding sparse pixels are smooth and close to ground truth,
demonstrating the effectiveness of our propagation scheme.

3.3 Complexity Analysis

As formulated in Eq. (1), our CSPN takes the operation of convolution, where
the complexity of using CUDA with GPU for one step CSPN is O(log2(k2)),
where k is the kernel size. This is because CUDA uses parallel sum reduction,
which has logarithmic complexity. In addition, convolution operation can be
performed parallel for all pixels and channels, which has a constant complexity
of O(1). Therefore, performing N -step propagation, the overall complexity for
CSPN is O(log2(k2)N), which is irrelevant to image size (m,n).

SPN [14] adopts scanning row/column-wise propagation in four directions.
Using k-way connection and running in parallel, the complexity for one step is
O(log2(k)). The propagation needs to scan full image from one side to another,
thus the complexity for SPN is O(log2(k)(m + n)). Though this is already more
efficient than the densely connected CRF proposed by [48], whose implemen-
tation complexity with permutohedral lattice is O(mnN), ours O(log2(k2)N)
is more efficient since the number of iterations N is always much smaller than
the size of image m,n. We show in our experiments (Sect. 4), with k = 3 and
N = 12, CSPN already outperforms SPN with a large margin (relative 30%),
demonstrating both efficiency and effectiveness of the proposed approach.
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Fig. 5. Architecture of our networks with mirror connections for depth estimation via
transformation kernel prediction with CSPN (best view in color). Sparse depth is an
optional input, which can be embedded into the CSPN to guide the depth refinement.

3.4 End-to-End Architecture

We now explain our end-to-end network architecture to predict both the trans-
formation kernel and the depth value, which are the inputs to CSPN for depth
refinement. As shown in Fig. 5, our network has some similarity with that from
Ma et al. [13], with the final CSPN layer that outputs a dense depth map.

For predicting the transformation kernel κ in Eq. (1), rather than building
a new deep network for learning affinity same as Liu et al. [14], we branch
an additional output from the given network, which shares the same feature
extractor with the depth network. This helps us to save memory and time cost
for joint learning of both depth estimation and transformation kernels prediction.

Learning of affinity is dependent on fine grained spatial details of the input
image. However, spatial information is weaken or lost with the down sampling
operation during the forward process of the ResNet in [4]. Thus, we add mirror
connections similar with the U-shape network [12] by directed concatenating
the feature from encoder to up-projection layers as illustrated by “UpProj Cat”
layer in Fig. 5. Notice that it is important to carefully select the end-point of
mirror connections. Through experimenting three possible positions to append
the connection, i.e.after conv, after bn and after relu as shown by the “UpProj”
layer in Fig. 5 , we found the last position provides the best results by validating
with the NYU v2 dataset (Sect. 4.2). In doing so, we found not only the depth
output from the network is better recovered, and the results after the CSPN is
additionally refined, which we will show the experiment section (Sect. 4). Finally
we adopt the same training loss as [13], yielding an end-to-end learning system.
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4 Experiments

In this section, we describe our implementation details, the datasets and evalu-
ation metrics used in our experiments. Then present comprehensive evaluation
of CSPN on both depth refinement and sparse to dense tasks.

Implementation details. The weights of ResNet in the encoding layers for
depth estimation (Sect. 3.4) are initialized with models pretrained on the Ima-
geNet dataset [49]. Our models are trained with SGD optimizer, and we use
a small batch size of 24 and train for 40 epochs for all the experiments, and
the model performed best on the validation set is used for testing. The learn-
ing rate starts at 0.01, and is reduced to 20% every 10 epochs. A small weight
decay of 10−4 is applied for regularization. We implement our networks based on
PyTorch 1 platform, and use its element-wise product and convolution operation
for our one step CSPN implementation.

For depth, we show that propagation with hidden representation H only
achieves marginal improvement over doing propagation within the domain of
depth D. Therefore, we perform all our experiments direct with D rather than
learning an additional embedding layer. For sparse depth samples, we adopt 500
sparse samples as that is used in [13].

4.1 Datasets and Metrics

All our experiments are evaluated on two datasets: NYU v2 [1] and KITTI [2],
using commonly used metrics.

NYU v2. The NYU-Depth-v2 dataset consists of RGB and depth images col-
lected from 464 different indoor scenes. We use the official split of data, where
249 scenes are used for training and we sample 50K images out of the training set
with the same manner as [13]. For testing, following the standard setting [3,27],
the small labeled test set with 654 images is used the final performance. The
original image of size 640×480 are first downsampled to half and then center-
cropped, producing a network input size of 304×228.

KITTI odometry dataset. It includes both camera and LiDAR measure-
ments, and consists of 22 sequences. Half of the sequence is used for training
while the other half is for evaluation. Following [13], we use all 46k images from
the training sequences for training, and a random subset of 3200 images from
the test sequences for evaluation. Specifically, we take the bottom part 912×228
due to no depth at the top area, and only evaluate the pixels with ground truth.

Metrics. We adopt the same metrics and use their implementation in [13].
Given ground truth depth D∗ = {d∗} and predicted depth D = {d}, the metrics
include: (1) RMSE:

√
1

|D|
∑

d∈D ||d∗ − d||2. (2) Abs Rel: 1
|D|

∑
d∈D |d∗−d|/d∗. (3)

δt: % of d ∈ D, s.t. max(d
∗
d , d

d∗ ) < t, where t ∈ {1.25, 1.252, 1.253}. Nevertheless,

1 http://pytorch.org/.

http://pytorch.org/
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Fig. 6. Ablation study.(a) RMSE (left axis, lower the better) and δ < 1.02 (right
axis, higher the better) of CSPN w.r.t.number of iterations. Horizontal lines show the
corresponding results from SPN [14]. (b) RMSE and δ < 1.02 of CSPN w.r.t.kernel
size. (c) Testing times w.r.t.input image size.

for the third metric, we found that the depth accuracy is very high when sparse
depth is provided, t = 1.25 is already a very loosen criteria where almost 100%
of pixels are judged as correct, which can hardly distinguish different methods
as shown in (Table 1). Thus we adopt more strict criteria for correctness by
choosing t ∈ {1.02, 1.05, 1.10}.

4.2 Parameter Tuning and Speed Study

We first evaluate various hyper-parameters including kernel size k, number of
iterations N in Eq. (1) using the NYU v2 dataset. Then we provide an empirical
evaluation of the running speed with a Titan X GPU on a computer with 16 GB
memory.

Number of iterations. We adopt a kernel size of 3 to validate the effect of
iteration number N in CSPN. As shown in Fig. 6(a), our CSPN has outper-
formed SPN [14] (horizontal line) when iterated only four times. Also, we can
get even better performance when more iterations are applied in the model dur-
ing training. From our experiments, the accuracy is saturated when the number
of iterations is increased to 24.
Size of convolutional kernel. As shown in Fig. 6(b), larger convolutional
kernel has similar effect with more iterations, due to larger context is considered
for propagation at each time step. Here, we hold the iteration number to N = 12,
and we can see the performance is better when k is larger while saturated at size
of 7. We notice that the performance drop slightly when kernel size is set to 9.
This is because we use a fixed number of epoch, i.e.40, for all the experiments,
while larger kernel size induces more affinity to learn in propagation, which
needs more epoch of data to converge. Later, when we train with more epochs,
the model reaches similar performance with kernel size of 7. Thus, we can see
using kernel size of 7 with 12 iterations reaches similar performance of using
kernel size of 3 with 20 iterations, which shows CSPN has the trade-off between
kernel size and iterations. In practice, the two settings run with similar speed,
while the latter costs much less memory. Therefore, we adopt kernel size as 3
and number of iterations as 24 in our comparisons.
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Table 1. Comparison results on NYU v2 dataset [1] between different variants of CSPN
and other state-of-the-art strategies. Here, “Preserve SD” is short for preserving the
depth value at sparse depth samples.

Method Preserve “SD” Lower the better Higher the better

RMSE REL δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

Ma et al.[13] 0.230 0.044 52.3 82.3 92.6 97.1 99.4 99.8

+Bilateral [28] 0.479 0.084 29.9 58.0 77.3 92.4 97.6 98.9

+SPN [32] 0.172 0.031 61.1 84.9 93.5 98.3 99.7 99.9

+CSPN (Ours) 0.162 0.028 64.6 87.7 94.9 98.6 99.7 99.9

+UNet (Ours) 0.137 0.020 78.1 91.6 96.2 98.9 99.8 100.0

+ASAP [50] � 0.232 0.037 59.7 82.5 91.3 97.0 99.2 99.7

+Replacement � 0.168 0.032 56.5 85.7 94.4 98.4 99.7 99.8

+SPN [32] � 0.162 0.027 67.5 87.9 94.7 98.5 99.7 99.9

+UNet(Ours)+SPN � 0.144 0.022 75.4 90.8 95.8 98.8 99.8 100.0

+CSPN (Ours) � 0.136 0.021 76.2 91.2 96.2 99.0 99.8 100.0

+UNet+CSPN (Ours) � 0.117 0.016 83.2 93.4 97.1 99.2 99.9 100.0

Concatenation end-point for mirror connection. As discussed in Sect.
3.4, based on the given metrics, we experimented three concatenation places,
i.e.after conv, after bn and after relu by fine-tuning with weights initialized from
encoder network trained without mirror-connections. The corresponding RMSE
are 0.531, 0.158 and 0.137 correspondingly. Therefore, we adopt the proposed
concatenation end-point.

Running speed In Fig. 6(c), we show the running time comparison between
the SPN and CSPN with kernel size as 3. We use the author’s PyTorch imple-
mentation online. As can be seen, we can get better performance within much
less time. For example, four iterations of CSPN on one 1024 × 768 image only
takes 3.689 ms, while SPN takes 127.902 ms. In addition, the time cost of SPN
is linearly growing w.r.t.image size, while the time cost of CSPN is irrelevant to
image size and much faster as analyzed in Sect. 3.3. In practice, however, when
the number of iterations is large, e.g.“CSPN Iter 20”, we found the practical
time cost of CSPN also grows w.r.t.image size. This is because of PyTorch-based
implementation, which keeps all the variables for each iteration in memory dur-
ing the testing phase. Memory paging cost becomes dominant with large images.
In principle, we can eliminate such a memory bottleneck by customizing a new
operation, which will be our future work. Nevertheless, without coding optima-
tion, even at high iterations with large images, CSPN’s speed is still twice as
fast as SPN.

4.3 Comparisons

We compare our methods against various SOTA baselines in terms of the two
proposed tasks. (1) Refine the depth map with the corresponding color image.
(2) Refine the depth using both the color image and sparse depth samples. For
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the baseline methods such as SPN [32] and Sparse-to-Dense [13], we use the
released code released online from the authors.
NYU v2. Table 1 shows the comparison results. Our baseline methods are the
depth output from the network of [13], together with the corresponding color
image. At upper part of Table 1 we show the results for depth refinement with
color only. At row “Bilateral”, we refine the network output from [13] using
bilateral filtering [28] as a post-processing module with their spatial-color affinity
kernel tuned on our validation set. Although the output depths snap to image
edges (Fig. 1(c)), the absolute depth accuracy is dropped since the filtering
over-smoothed original depths. At row “SPN”, we show the results filtered with
SPN [14], using the author provided affinity network. Due to joint training, the
depth is improved with the learned affinity, yielding both better depth details
and absolute accuracy. Switching SPN to CSPN (row “CSPN”) yields relative
better results. Finally, at the row “UNet”, we show the results of just modifying
the network with mirror connections as stated in Sect. 3.4. The results turn out
to be even better than that from SPN and CSPN, demonstrating that by simply
adding feature from beginning layers, the depth can be better learned.

At lower part of Table 1, we show the results using both color image and
sparse depth samples, and all the results preserves the sparse depth value pro-
vided. We randomly select 500 depth samples per image from the ground truth
depth map.

For comparison, we consider a baseline method using as-rigid-as-possible
(ASAP) [50] warping. Basically the input depth map is warped with the sparse
depth samples as control points. At row “ASAP”, we show its results, which
just marginally improves the estimation over the baseline network. For SPN, we
also apply the similar replacement operation in Eq. (4) for propagation, and the
results are shown at row “SPN”, which outperforms both the results form ASAP
and SPN without propagation of SD due to joint training helps fix the error of
warping. At row “UNet + SPN”, we use our UNet architecture for learning affin-
ity with SPN, which outperforms “SPN”, while we did not see any improvements
compared with that only using UNet. Nevertheless, by replacing SPN with our
CSPN, as shown in row “UNet + CSPN”, the results can be further improved
by a large margin and performs best in all cases. We think this is mostly because
CSPN updates more efficiently than SPN during the training. Some visualiza-
tions are shown in Fig. 7. We found the results from CSPN do capture better
structure from images (highlighted with dashed bounding boxes) than that from
other state-of-the-art strategies.

KITTI. Table 2 shows the depth refinement with both color and sparse
depth samples. Ours final model “UNet + CSPN” largely outperforms other
SOTA strategies, which shows the generalization of the proposed approach. For
instance, with a very strict metric δ < 1.02, ours improves the baseline [13]
from 30% to 70%, which is more than 2× better. More importantly, CSPN is
running very efficiently, thus can be applied to real applications. Some visual-
ization results are shown at the bottom in Fig. 8. Compared to the network
outputs from [13] and SPN refinement, CSPN sees much more details and thin
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Fig. 7. Qualitative comparisons on NYU v2 dataset. (a) Input image; (b) Sparse depth
samples(500); (c) Ma et al.[13]; (d) UNet(Ours)+SPN[32]; (e) UNet+CSPN(Ours); (f)
Ground Truth. Most significantly improved regions are highlighted with yellow dash
boxes (best view in color). (color figure online)

Table 2. Comparison results on KITTI dataset [2]

Method Preserve “SD” Lower the better Higher the better

RMSE REL δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

Ma et al. [13] 3.378 0.073 30.0 65.8 85.2 93.5 97.6 98.9

+SPN [32] � 3.243 0.063 37.6 74.8 86.0 94.3 97.8 99.1

+CSPN(Ours) � 3.029 0.049 66.6 83.9 90.7 95.5 98.0 99.0

+UNet(Ours) 3.049 0.051 62.6 83.2 90.2 95.3 97.9 99.0

+UNet(Ours)+SPN � 3.248 0.059 52.1 79.0 87.9 94.4 97.7 98.9

+UNet+CSPN(Ours) � 2.977 0.044 70.2 85.7 91.4 95.7 98.0 99.1

structures such as poles near the road (first image (f)), and trunk on the grass
(second image (f)). For the third image, we highlight a car under shadow at left,
whose depth is difficult to learn. We can see SPN fails to refine such a case in
(e) due to globally vast lighting variations, while CSPN learns local contrast and
successfully recover the silhouette of the car. Finally, we also submit our results
to the new KITTI depth completion challenge 2 and show that our results is
better than previous SOTA method [45].

2 http://www.cvlibs.net/datasets/kitti/eval depth.php?benchmark=depth completion.

http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion
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Fig. 8. Qualitative comparisons on KITTI dataset. (a) Input image; (b) Sparse
depth samples(500); (c) Ground Truth; (d) Ma et al.[13]; (e) Ma[13]+SPN [32];(f)
UNet+CSPN(Ours). Some details in the red bounding boxes are zoomed in for better
visualization (best view in color). (color figure online)

5 Conclusion

In this paper, we propose convolutional spatial propagation network (CSPN),
which can be jointly learned with any type of CNN. It can be regarded as a
linear diffusion process with guarantee to converge. Comparing with previous
spatial propagation network [14] which learns the affinity, CSPN is not only
more efficient (2–5× faster), but also more accurate (over 30% improvement) in
terms of depth refinement. We also extend CSPN by embedding sparse depth
samples into the propagation process, which provides superior improvement over
other SOTA methods [13]. Since our framework is general, in the future, we plan
to apply it to other tasks such as image segmentation and enhancement.
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