
Saliency Benchmarking Made Easy:
Separating Models, Maps and Metrics
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Abstract. Dozens of new models on fixation prediction are published
every year and compared on open benchmarks such as MIT300 and
LSUN. However, progress in the field can be difficult to judge because
models are compared using a variety of inconsistent metrics. Here we
show that no single saliency map can perform well under all metrics.
Instead, we propose a principled approach to solve the benchmarking
problem by separating the notions of saliency models, maps and metrics.
Inspired by Bayesian decision theory, we define a saliency model to be
a probabilistic model of fixation density prediction and a saliency map
to be a metric-specific prediction derived from the model density which
maximizes the expected performance on that metric given the model den-
sity. We derive these optimal saliency maps for the most commonly used
saliency metrics (AUC, sAUC, NSS, CC, SIM, KL-Div) and show that
they can be computed analytically or approximated with high precision.
We show that this leads to consistent rankings in all metrics and avoids
the penalties of using one saliency map for all metrics. Our method allows
researchers to have their model compete on many different metrics with
state-of-the-art in those metrics: “good” models will perform well in all
metrics.

Keywords: Saliency · Benchmarking · Metrics · Fixations
Bayesian decision theory · Model comparison

1 Introduction

Humans have a foveated visual system: only a small central part of the retina has
high receptor density allowing the perception of the details of a scene. Therefore
humans make eye movements to place the high resolution fovea on things they
want to see. Understanding where they choose to look is therefore an important
component of understanding behaviour.
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A long-standing account of bottom-up attentional guidance posits the exis-
tence of a “saliency map” (or maps) in the human brain [26,48]. Here, a saliency
map represents spatial importance, usually defined to be local contrast in low-
level features such as luminance, color or orientation. Since Itti and Koch for-
mulated this concept into their seminal image-based model [17], a large number
of models have been proposed for predicting fixations from image features, e.g.
[1,6,15,24,25,55,56] and more recently many models based on deep learning,
e.g. [16,28,30,31,36,49]; see [4,19] for extensive reviews of the literature. New
models are published on a regular basis with contributions coming mainly from
the communities of computer vision and psychology. It has been extensively dis-
cussed which effects are important for fixation prediction, from low and high-level
influences [3,7,12,14,18,31,50] to biases [8,44–46], tasks [27,41,43] and semantic
effects [11]. Over time, the concept of a saliency map has moved away from its
origins in low-level feature integration, and can now refer more generally to “a
map that predicts fixations”. In practice, saliency maps are now synonymous
with saliency models.

The large number of models created the need for quantitative metrics to
assess progress in the field and compare models. Many different metrics have
been proposed. The AUC-type metrics [45] used to be most common while the
last years have seen a shift towards metrics like CC [22], NSS [37] and SIM [23],
and recently the information gain metric has been proposed [32]. For an overview
of the different metrics in use see e.g. [4,23]. The community uses these metrics
in benchmarks to keep track of the progress: the MIT Saliency Benchmark [9,23]
and the LSUN Challenge [21,52–54].

The most widely accepted MIT benchmark evaluates submissions in eight
different metrics. Depending on which metric one chooses, the model rankings
and performances change dramatically. This fact has lead to substantial research
analyzing the differences between metrics and giving recommendations in which
situation to use which metric [10,33,38–40,51]. Other authors have instead pro-
posed new approaches to modeling and evaluation: Modeling as point processes
[2,42], other loss functions [20] and GLMMs [35].

The general conclusion in the field is that the metrics measure qualitatively
different things [10,40,51], and that it is even conceptually impossible to deter-
mine a best model independent of the different metrics. Recently, Kümmerer
et al. [32] tried to argue for a unique ranking between different models by show-
ing that much of the disagreement between different metrics can be removed
via postprocessing of the saliency maps by optimizing the saliency scale and
smoothing kernel for information gain (IG, essentially log-likelihood).

However, this does not seem to be a satisfactory solution: For one, this app-
roach requires access to all models one wants to compare to and needs tedious
postprocessing for each of them. In addition to this practical barrier the approach
also suffers from the major conceptual shortcoming that optimizing for IG cannot
be optimal for all metrics. In fact, we show below that the log densities proposed
in [32] perform suboptimally on most metrics and can still produce inconsistent
rankings. Ideally one would like a model to be able to compete in all metrics on
the metric’s original scale with other models, even with models that are directly
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optimized for that metric and where only the metric performances are known.
This is not possible when evaluating on log densities as proposed in [32].

In fact, we show in this paper that even with knowledge of the true fixation
distribution, no single saliency map can perform well in all metrics. In practice
however, researchers must still decide on a particular saliency map to submit
to the benchmark. Therefore, their model cannot compete with state-of-the-
art models in all metrics – not because the model is intrinsically bad on those
metrics, but because different metrics require the saliency maps to look different,
independent of the encoded information about fixation placement (see Fig. 1).
As long as one evaluates all saliency metrics on the same saliency maps, it is
impossible to solve the benchmarking problem.

Here, we argue that the fundamental problem is that saliency models and
saliency maps are considered to be the same. A major insight from Bayesian deci-
sion theory is that the derivation of optimal decisions can be decomposed into
a task-independent probability distribution over possible outcomes of an exper-
iment and a task-dependent error metric. In the saliency setting, one decides on
a saliency map to submit to a certain metric. Correspondingly, saliency models
should be defined as metric-independent probability densities over possible fix-
ations and subsequently many different metric-dependent saliency maps can be
derived from the same density for different error metrics.

We show that saliency maps for the most influential metrics AUC, sAUC,
NSS, CC, SIM, and KL-Div can be derived from fixation densities in a principled
way. We demonstrate the validity of our approach on real models and real data.
By decoupling the notions of saliency models and saliency maps, saliency models
can be meaningfully compared on all metrics in their original scale, and the MIT
saliency benchmark will implement our suggested approach.

2 Theory

Motivated by the line of thoughts presented above we here propose to use the
following definitions:

1. a saliency model predicts a fixation probability density p(x, y | I) given an
image I.

2. a saliency metric is a performance measure for a saliency map on ground
truth data.

3. a saliency map sp,metric(x, y, I) is a metric-specific prediction derived from
the model density.

It has been argued before that formulating saliency models as probabilistic
models is advantageous (e.g. [2,32]). In this definition, a saliency model predicts
a fixation probability density, that is, the probability p(x, y | I) of observing
a fixation at a given pixel in a given image1. The three definitions we propose

1 Note that we use the fixation probability density for single fixations (as in [32])
whereas [2] define a point process density for a whole scanpath.
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Fig. 1. No single saliency map can perform best in all metrics even when the true fix-
ation distribution is known. This problem can be solved by separating saliency models
from saliency maps. (a) Fixations are distributed according to a ground truth fixation
density p(x, y | I) for some stimulus I (see supplementary material for details on the
visualization). (b) This ground truth density predicts different saliency maps depend-
ing on the intended metric. The saliency maps differ dramatically due to the different
properties of the metrics but always reflect the same underlying model. Note that the
maps for the NSS and IG metrics are the same, as are those for CC and KL-Div. (c)
Performances of the saliency maps from (b) under seven saliency metrics on a large
number of fixations sampled from the model distribution in (a). Colors of the bars cor-
respond to the frame colors in (b). The predicted saliency map for the specific metric
(framed bar) yields best performance in all cases.

above follow the rationale of Bayesian decision theory: the saliency model is
a posterior density over all possible events and the saliency metric is a utility
function. Based on the posterior density and the utility function, a saliency map
is then chosen to maximize the expected utility.

2.1 Predicting Saliency Maps from Saliency Models

From the predicted fixation density of a model, one can use expected utility
maximization to derive the saliency map which the model expects to yield highest
performance in some metric2.

Evaluating a saliency metric involves a saliency map s(x, y | I) for a stimulus
I and ground truth fixation data (xi, yi). Therefore, we can phrase a metric
2 Note that the term “metric” is a slight abuse of notation: strictly speaking, a metric

measures the distance between two objects and is usually desired to be minimal.
However, in saliency, the term “metric” denotes the performance that one wants to
maximize (with a few exceptions, e. g., KL-Div and earth mover’s distance).
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as a function M [s(x, y | I); (x1, y1), . . . , (xn, yn)]. Note that some metrics as
CC or SIM use an empirical saliency map instead of ground truth fixations
(distribution-based metrics,richeSaliency2013 ). However, the empirical saliency
map is always constructed from ground truth fixations, usually by convolving
them with a Gaussian. This can be taken to be part of the metric evaluation, as
we will demonstrate below. Simplifying notation with D = (x1, y1), . . . , (xn, yn),
the metric evaluation can be written as

M [s(x, y | I);D].

Assuming that the fixations are distributed according to some distribution
(xi, yi) ∼ p(x, y | I) and therefore D ∼ ∏n

1 p(x, y), the expected performance
of the metric on a saliency map is EDM [s(x, y | I);D]. One should choose the
saliency map which is expected to yield highest performance for the metric M :
that is, the solution of

max
s(x,y|I)

EDM [D, s(x, y | I)]

Solving this optimization problem for a fixation distribution p given by a
model of interest essentially answers the following question: if we assume that
the unknown fixations, on which the saliency map later will be evaluated, come
from the model density p (and therefore D =

∏n
i p), what would be the best

saliency map to use for metric M? For a metric M the solutions to the optimiza-
tion problem give rise to a transformation p(x, y | I) �→ sM (x, y | I) from fixation
densities to derived metric-specific saliency maps. While the optimization prob-
lem might be hard in general, for most commonly-used saliency metrics it can
be solved exactly or approximately, as we show below. Importantly, the methods
we outline here are deterministic transformations depending only on the model’s
density prediction. No optimization using ground truth data is necessary.

In the following we give exact or approximate solutions for six of the most
widely used metrics, including three metrics which operate directly on ground
truth fixations (AUC, sAUC, and NSS) and three distribution-based metrics
which first convert the ground truth fixations into a empirical saliency map (CC,
SIM, KL-Div). Additionally we include the IG metric introduced in [32] since
we use this metric for converting existing saliency map models to probabilistic
models.

AUC, sAUC. The AUC-type metrics (“Area Under the Curve”, [45]) measure
the model performance in a 2AFC (2 alternative forced choice) task where the
model has to decide which one of two locations has been fixated: in a 2AFC task,
a system is presented with one signal and one noise stimulus and chooses which
stimulus is the “signal”. In the case of the AUC in saliency, signal and noise cor-
respond to fixated and non-fixated image locations respectively (See supplemen-
tary material for a proof of the equivalence between the ROC curve and the 2AFC
task). Denoting the model’s fixation distribution pfix(x, y), the nonfixation distri-
bution pnonfix(x, y) (which is uniform for AUC and the image independent center
bias for sAUC) and denote the two locations by (x1, y1) resp. (x2, y2). The 2AFC
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task reduces to deciding whether these points are sampled from pfix × pnonfix or
from pnonfix × pfix. The likelihoods of the two points given these two distri-
butions are pfix(x1, y1)pnonfix(x2, y2) resp. pnonfix(x1, y1)pfix(x2, y2). The model
expects optimal performance by choosing the distribution which has higher like-
lihood, or equivalently, the point for which pfix(x, y)/pnonfix(x, y) has the higher
value. Therefore the model should expect the saliency map pfix(x, y)/pnonfix(x, y)
to yield highest performance. In the special case of the standard AUC metric,
pnonfix is constant and the saliency map boils down to pfix. An additional prac-
tical consideration is that the MIT benchmark currently only accepts submis-
sions as JPEG images. To compensate for this limited precision and possible
JPEG-artefacts, one should additionally histogram-equalize the saliency map
(see Supplementary Material).

NSS. The Normalized Scanpath Saliency (NSS, [37]) performance of a saliency
map model is defined to be the average saliency value of fixated pixels in the
normalized (zero mean, unit variance) saliency maps (i.e., the average z-score of
the fixated saliency values).

We can show analytically that one should expect the highest NSS score
from the predicted fixation density itself: given an image with N pixels let the
probability for a single fixation falling onto pixel i be pi. Then the expected
NSS of a saliency map q = (q1, . . . , qN ) with 1

N

∑
i qi = q̄ = 0, ‖q‖22 = 1 is

∑N
i pi · qi = 〈p, q〉. Finding the saliency map with the best possible NSS is

equivalent to finding the solution of the problem

max〈p, q〉 s.t. q̄ = 0, ‖q‖2 = 1

Since q �→ q′ = p̄+αq with α =
√‖p‖2 − 1/N induces a maximum-preserving

bijection between {q | q̄ = 0, ‖q‖2 = 1} and {q′ | q̄′ = p̄ = 1/N, ‖q‖2 = ‖p‖2},
we can look for the maximum of 〈p, q′〉 s.t. q̄′ = p̄, ‖q′‖2 = ‖p‖2 instead (and
normalize q afterwards to get the normalized saliency map). Because of 〈x, y〉 =
1
2 (‖x‖2 + ‖y‖2| − ‖x − y‖2), the maximum under these conditions is identical
with the minimum of ‖p − q‖2, which is p.

Therefore, the best possible saliency map with respect to NSS is the density
of the fixation distribution.

IG. The information gain (IG, [32]) metric requires the saliency map to be a
probability distribution and compares the average log-probability of fixated pix-
els to that given by a baseline model (usually the centerbias or a uniform model).
The optimal saliency map for IG depends on how the metric interprets saliency
maps as probability densities. We normalize the saliency maps to be probability
vectors (nonnegative, unit sum) and in this case the predicted density itself yields
the highest expected performance: Let p = (p1, . . . , pN ) with p ≥ 0,

∑
i pi = 1

denote the predicted probabilities for each pixel and q with q ≥ 0,
∑

i qi = 1 a
saliency map. Let pbl = (pbl,1, . . . , pbl,N ) be the pixel probabilities of the base-
line model. Then the expected IG of q is EpIG(q) =

∑
i pi(log qi − log pbl,i)

and its maximum is argmaxqEpIG(q) = argmaxq

∑
i pi(log qi − log pbl,i) =

argmaxq

∑
i pi log qi = argmaxq

∑
i pi(log qi − log pi) = argminq

∑
i pi(log pi −

log qi) = argminqKL[p, q] = p.
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CC. The correlation coefficient (CC, [22]) measures the correlation between
model saliency map and empirical saliency map after normalizing both saliency
maps to have zero mean and unit variance. This is equivalent to measuring
the euclidean distance between the predicted saliency map and the normalized
empirical saliency map. The expected euclidean distance to a random variable
is minimized by its expectation value. Therefore the optimal saliency map with
respect to CC is the expected normalized empirical saliency map.

This shows that predicting the optimal saliency map for CC crucially depends
on how the empirical saliency maps are computed. Empirical saliency maps are
typically computed by blurring observed fixation positions from eye movement
data with a Gaussian kernel of a certain size. In this case the expected empirical
saliency map would be Exi∼p

1
N

∑N
i Gσ(x) = 1

N

∑N
i Ex∼pGσ(x) = 1

N

∑N
i Gσ ∗

p = Gσ ∗ p, that is, the density blurred with a Gaussian kernel of size σ.
Unfortunately, the expected empirical saliency map is not the expected nor-

malized empirical saliency map which was earlier shown to be optimal for CC.
Normalization involves subtracting the mean and dividing by the standard devia-
tion, and the latter is nonlinear. Effectively, normalizing the variance just changes
the weight by which the different empirical saliency maps are averaged in the
expectation value. As long as the variances of the different empirical saliency
maps don’t differ too much, this won’t have much of an effect and our sim-
ulations suggest that this is the case (Supplementary Material). Therefore, as
an approximation to the expected normalized empirical saliency map, we use
the expected saliency map in this paper, which is computed by convolving the
expected density by a Gaussian.

Obviously, if more involved techniques are used to compute the empirical
saliency maps (e.g. cross validation of the kernel size as in [32]), then the expected
empirical saliency map is harder or impossible to calculate analytically. How-
ever, one can still approximate it numerically by sampling normalized empirical
saliency maps from the expected fixation distribution and averaging them.

KL-Div. The KL-Div metric computes the Kullback-Leibler divergence between
the empirical saliency maps and the model saliency maps after converting both
of them into probability distributions (by making them nonnegative and nor-
malizing them to have unit sum) Therefore, unlike for most other metrics, in
KL-Div lower values are better.

We can show that for the KL-Div metric, the expected empirical saliency map
expects the best performance: let e = (e1, . . . , eN ) with e ≥ 0,

∑
i ei = 1 denote

the random variable which represents the empirical saliency map and q with
q ≥ 0,

∑
i qi = 1 the model saliency map. Then we are looking for the q which

minimizes EpKL[e, q]. Since Ep[KL[e, q]] = Ep

[∑
i ei

log ei

log qi

]
= Ep [

∑
i ei log ei]−

∑
i Ep[ei] log qi, this is equivalent to finding the maximum of

∑
i Ep[ei] log qi,

which is again equivalent to finding the minimum of
∑

i Ep[ei] logEp[ei] −∑
i Ep[ei] log qi = KL[Ep[e], q]. This is obviously minimized by q = Ep[e], the

expected empirical saliency map. As for CC, this is the density blurred by the
same kernel size as used for the empirical saliency map.



Saliency Benchmarking Made Easy 805

SIM. The Similarity (SIM, [23]) metric normalizes the model saliency map and
the empirical saliency map to be probability vectors (in the same way as KL-
Div) and sums the pixelwise minimum of two saliency maps. As opposed to the
CC-metric, which can be interpreted as measuring the l2-distance between nor-
malized saliency maps, this effectively measures the l1-distance between saliency
maps (

∑
i min(pi, qi) =

∑
i
1
2 (pi + qi − |pi − qi|) = 1 − 1

2‖p − q‖1,) This opti-
mization problem cannot be solved analytically in general. Instead we solve it
numerically: we perform a constrained stochastic gradient descend on sets of
fixations sampled from the probability density (see Sect. 3 for details). Note that
the optimal saliency map for SIM, unlike all other saliency maps presented here,
depends on the number of fixations per image (see the Supplement for details
on this effect).

3 Experiments and Results

We use the pysaliency toolbox [29] to compute saliency metrics (see Supplement
for details). From a probability density over an image we compute five types
of saliency maps: AUC saliency maps are created by equalizing the prob-
ability density to yield a uniform histogram over all pixels. sAUC saliency
maps are created by dividing the probability density by the center bias den-
sity and again equalizing the saliency map to yield a uniform histogram over all
pixels. The center bias density was estimated using a Gaussian kernel density
estimate over all fixations from the MIT1003 dataset and crossvalidated across
images. NSS/IG saliency maps are simply the probability density. CC/KL-
Div saliency maps are calculated by convolving the probability density with a
Gaussian kernel with σ = 35px (corresponding to 1dva, as commonly used on the
MIT1003 dataset). SIM saliency maps: We divide the CC saliency map by its
sum to normalize it. Starting from there, we perform constrained (nonnegative,
unit sum) stochastic gradient descend on fixations sampled from the predicted
density to maximize the expected SIM performance (see Supplementary Material
for implementation details).

3.1 No Saliency Map to Rule Them All

Here we illustrate using simulated data that even if the true fixation density is
known, no single saliency map can win in all saliency metrics. From a fictional
fixation density (Fig. 1a) we compute the saliency maps that we predict to be
optimal for the seven saliency metrics AUC, sAUC, NSS/IG, CC/KL-Div and
SIM (Fig. 1b). We sample 1000 sets of 100 fixations from the fixation density
and evaluate all five saliency maps using the seven different saliency metrics on
this dataset (Fig. 1c, raw data in the Supplement).

Although the saliency maps in Fig. 1b all are predicted by the same model,
they appear visually different: while the AUC saliency map is essentially just
the normalized density, the sAUC saliency map removes the center bias contri-
bution (see above). The NSS/IG saliency map is exactly the density and shows
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large areas with very low values. The CC/KL-Div saliency map, being a blurred
version of the density, is much smoother than the NSS saliency map. The SIM
saliency map looks mostly like the CC/KL-Div saliency map but is slightly more
sparse.

The ranking of the five saliency maps is highly inconsistent across metrics
(Fig. 1c): even with knowledge of the real fixation distribution, no saliency map
can be optimal for all saliency metrics. However, each saliency map is optimal
for exactly those metrics for which it has been predicted to be optimal (framed
bars). This illustrates our main result: By deriving metric-specific saliency maps
in a principled way from fixation densities, one model can perform optimally in
all metrics. Notice that in current practice, the situation faced by an individual
research team is rather to pick from one of the maps in Fig. 1b and be penalized
accordingly on other metrics in Fig. 1c.

Fig. 2. The predicted saliency map for various metrics according to different models,
for the same stimulus. For six models (rows) we show their original saliency map (first
column), the probability distribution after converting the model into a probabilistic
model (second column) and the saliency maps predicted for seven different metrics
(columns three through seven). The predictions of different models for the same metric
(column) appear more similar than the predictions of the same model for different
metrics (row). In particular, note the inconsistency of the original models (what are
typically compared on the benchmark) relative to the per-metric saliency maps. It
is therefore difficult to visually compare original model predictions, which have been
formulated for different metrics.
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3.2 MIT1003

In our main experiment, we use our approach to evaluate six saliency models on
the popular benchmarking dataset MIT1003 (freeviewing fixations of 15 subjects
on 1003 images, [24]). For all evaluated models, the original source code and
default parameters have been used. The included models are AIM [6], Boolean
Map-based Saliency (BMS) [55], the Ensemble of Deep Networks (eDN) [49],
OpenSALICON [47], SalGAN [36] and DeepGaze II [31].

Converting existing models that produce arbitrary saliency maps into proba-
bilistic models is not straightforward [32]. We used the method described in [32]
and implemented in the pysaliency toolbox as optimize for information gain:
we fitted a pixelwise monotone nonlinearity and a center bias for each model to
yield maximum information gain for the MIT1003 dataset (see supplementary
material for details). Unlike [32] we did not optimize an additional Gaussian
convolution to smooth the predictions. Since DeepGaze II is already formulated
as a probabilistic model, there was no need to convert this model. For showing
the “original saliency map” we use the log density in this case.

Example saliency maps. In Fig. 2, we show the probability distribution and
the predicted saliency maps (columns) for the saliency models (rows) for one
example stimulus. Comparing the saliency maps within and between columns,
i.e. metrics, one notices that the process of predicting saliency maps for certain
metrics has a strong effect on the shape of the saliency maps that is consistent
across models. It influences the visual appearance of the saliency map to a larger
degree than the actual model does: the AUC and sAUC maps are very high
contrast, while the NSS and CC saliency maps have large areas of very little
saliency. The CC and SIM saliency maps are much smoother than all other
saliency maps. It is a quite common technique in the field to compare the saliency
maps of different models visually (e.g., see [13], Figure 6; [5], Figure 6; [4], Figure
9). Figure 2 shows that this technique can be very misleading unless the saliency
maps are of the same type (i.e. intended for the same saliency metric).

Comparing model performance. In Fig. 3 we evaluate the saliency maps of
the saliency models (AIM, BMS, eDN, OpenSALICON, SalGAN, DeepGaze II;
x-axis) on the seven saliency metrics (subplots, raw data in the Supplement).
Each line indicates the models’ performances in the evaluated metric when using
a specific type of saliency map. The dashed lines indicate performance using
the models’ original saliency maps (i.e. not transformed into true probability
densities). The performances are very inconsistent between the different metrics
on the original saliency maps. The solid lines indicate the metric performances
on the five types of derived saliency maps (red: AUC, pink: sAUC, blue: NSS and
IG, green: CC and KL-Div, orange: SIM). Additionally, we included log-density
saliency maps as proposed in [32] (purple dotted lines).

For each metric, the saliency map predicted for that metric (thick line in
each sub plot) yields highest performance for all models. Conversely, saliency
maps derived for other metrics often incur severe penalties (except for very few
borderline cases, see below). While the model rankings given by the different
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Fig. 3. We reformulated several saliency models in terms of fixation densities and
evaluated AUC, sAUC, NSS, IG, CC, KL-Div and SIM on the original saliency maps
(dashed line) and the saliency maps derived from the probabilistic model for the dif-
ferent saliency metrics (solid lines) on the MIT1003 dataset. Saliency maps derived for
a given metric always yield the highest performance for that metric(thick line), and
for each metric the model ranking is consistent when using the correct saliency maps –
unlike for the original saliency maps and some other derived saliency maps. Note that
AUC metrics yield identical results on AUC saliency maps, NSS saliency maps and
log-density saliency maps, therefore the blue and purple lines are hidden by the red
line in the AUC and sAUC plots. Also, the CC metric yields only slightly worse results
on the SIM saliency map than on the CC saliency map, therefore the orange line is
hidden by the green line in the CC plot. OpnS=OpenSALICON, DGII=DeepGaze II.

metrics on each saliency map type are much more consistent than on the original
saliency maps, there is still disagreement between metrics left when evaluating
all metrics on the same saliency map type.

Interestingly, the AIM model reaches better NSS performance with the CC
saliency map than with the NSS saliency map. This is easy to explain: the AIM
model’s predicted density improves after blurring. For the better models this
effect vanishes. For example, DeepGaze II reaches significantly higher NSS scores
with the NSS saliency map than with the CC saliency map and vice versa for the
CC metric. The SIM metric seems to show only slightly better performance on
the SIM saliency map than on the CC saliency map, with the average difference
being just 0.006. However, the best five models with respect to SIM in the MIT
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Saliency Benchmark perform within a range of less than 0.02. A difference of
0.006 could easily change a model’s ranking by multiple places.

Figure 3 also serves to illustrate a key difference between the metric unifica-
tion proposed in [32] and our method of predicting saliency maps from fixation
densities: the metric results presented in [32] correspond to the purple dotted
log-density lines for AUC, sAUC, NSS and to the blue density lines for IG and
KL-Div (in our implementation taking the logarithm of the density is part of
the metric itself). As reported in [32], the model rankings are more consistent
for those lines than for the original saliency maps. However, except for AUC and
IG, in all other metrics the models are penalized when evaluated like this and
additionally for the best models even the agreement between metric rankings
is lost (SalGAN vs DeepGaze II, AUC/sAUC/IG vs NSS/CC/KL-Div). This
shows that the method proposed in [32], while managing to remove a significant
amount of the disagreement between metrics, is not perfect.

To summarize, Fig. 3 illustrates the main result of this paper: No matter
what saliency map type you decide for, even state-of-the-art models will perform
suboptimally in some metrics and rankings will still be inconsistent. Only by
using the right saliency map for each metric given the model density, every
model performs as well as it can theoretically and all model rankings agree.
Consequently, our evaluation yields a unique winner of the benchmark: from all
included models, DeepGaze II performs best in all considered metrics.

4 Discussion

Despite much progress in fixation prediction in recent years, comparing saliency
models to each other can be confusing due to the large number of benchmarking
metrics, giving inconsistent model rankings. Here we argue that benchmarking
can be simplified by considering saliency models to be probability density pre-
dictors, saliency metrics to be performance measures that assess saliency maps
against ground truth fixations, and subsequently saliency maps to be metric-
specific predictions derived from the model’s density. We have shown that prob-
abilistic models can predict good saliency maps for the most common saliency
metrics: “good models” perform well in many metrics.

Importantly, this metric-specific prediction reflects the same underlying
model. It is not the case that the model is being re-trained for each metric.
Rather, the saliency maps we show are derived deterministically from the fixa-
tion density predicted by a model. In this way it is possible to obtain optimal
predictions from a given saliency density for arbitrary metrics without retrain-
ing. The saliency model density captures all necessary information in the training
data and represents it in a way that it can readily be used in combination with
arbitrary error metrics. Information gain (equivalently, log-likelihood) is an ideal
optimization metric because it reflects all information in the structure of the fix-
ation density, independent of any particular metric. Therefore, it should lead to
good results in all metrics.

The fact that metrics impose strong constraints on saliency maps means that
it is misleading to visually compare saliency maps intended for different metrics
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(see Fig. 2)—but this is commonly done in the field ([4,5,13]) For example, the
optimal saliency maps for distribution-based metrics like CC, SIM and KL-Div
require blurring unlike those for NSS and IG.

Another consequence of the present work is that the eight metrics available
on the MIT benchmark can now be seen as a benefit rather than a possible
source of confusion. Since each metric assesses different aspects of the fixation
prediction, the benchmark would now allow fair comparison over a number of
tasks of interest, which may be more or less relevant for certain applications. For
example, sAUC is most relevant when one is interested in a model’s predictive
performance once the center bias is excluded (e.g., in applying to a setting with
a different center bias from the MIT1003 training data).

While the saliency maps we have derived give the optimal metric-specific
saliency map for a given fixation density, it is nevertheless still possible that a
given model could do better on a metric with a saliency map not intended for
that metric, rather than the metric-specific saliency map itself. If the model’s
density is not the correct one (i.e. does not reflect the data-generating density),
then the derived saliency maps can be suboptimal. If the model’s density is
especially bad, some metrics might even perform better on saliency maps not
predicted for this metric than on the one predicted for this metric. For example: if
a model’s density prediction is too sparse, the AUC metric will perform better on
the smoothed CC saliency map than it will perform on the actual AUC saliency
map. Therefore, actually optimizing model predictions for each specific metric
may yield insights into the differences between the metrics (by comparing the
underlying densities). Indeed, this could in practice produce better performance
on the training metric than an information gain optimized density. The fact that
we don’t observe this effect on the original saliency maps (which were trained
in the case of eDN, OpenSALICON, SalGAN and DeepGaze II: Fig. 3, dashed
lines) suggests any improvement is likely small, and can come at the price of
performing substantially worse in other metrics.

Finally, we would like to note that the distinction between saliency models
and saliency maps we draw here does not contradict ideas that a “saliency map”
or maps may be instantiated in the human brain, as a corollary of bottom-up
attentional guidance or an importance map for (e.g.) choosing the next place
to fixate in a scene [26,34,48]. Our nomenclature is rather independent and
intended for saliency model benchmarking.

The code for evaluating saliency models as demonstrated in this work has
been released as part of the pysaliency python library (available at https://
github.com/matthias-k/pysaliency).

Conclusion. Our work solves the problem that one saliency model cannot reach
state-of-the-art performance in all relevant saliency metrics. Our key theoretical
contribution is to decouple the notions of saliency models and saliency maps. For
benchmarking practice, this means that saliency models can be meaningfully
compared on all metrics in their original scale. Therefore, our method allows
comparing to traditional models that do not use this method; it works even if
only metric scores of other models are known (as for example in cases where

https://github.com/matthias-k/pysaliency
https://github.com/matthias-k/pysaliency
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metric scores are published in a paper). Practically, this means that there is no
need to revise an existing benchmark: researchers who submit model densities
can have their performance fairly evaluated, but existing models can remain in
the table. The MIT saliency benchmark will implement this option.
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International Max Planck Research School for Intelligent Systems (IMPRS-IS). The
research has been funded by the German Science Foundation (DFG; Collaborative
Research Centre 1233) and the German Excellency Initiative (EXC307).

References

1. Adeli, H., Vitu, F., Zelinsky, G.J.: A model of the superior colliculus predicts
fixation locations during scene viewing and visual search. J. Neurosci. 37(6), 1453–
1467 (2016). https://doi.org/10.1523/jneurosci.0825-16.2016

2. Barthelme, S., Trukenbrod, H., Engbert, R., Wichmann, F.: Modeling fixation
locations using spatial point processes. J. Vis. 13(12), 1–1 (2013). https://doi.org/
10.1167/13.12.1

3. Borji, A., Sihite, D.N., Itti, L.: Objects do not predict fixations better than early
saliency: a re-analysis of einhauser et al’.s data. J. Vis. 13(10), 18–18 (2013).
https://doi.org/10.1167/13.10.18

4. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pat-
tern Anal. Mach. Intell. 35(1), 185–207 (2013). https://doi.org/10.1109/tpami.
2012.89

5. Borji, A., Sihite, D.N., Itti, L.: Quantitative analysis of human-model agreement in
visual saliency modeling: a comparative study. IEEE Trans. Image Process. 22(1),
55–69 (2013). https://doi.org/10.1109/tip.2012.2210727

6. Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: an information
theoretic approach. J. Vis. 9(3), 5–5 (2009). https://doi.org/10.1167/9.3.5

7. Bruce, N.D.B., Catton, C., Janjic, S.: A deeper look at saliency: Feature contrast,
semantics, and beyond. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE (2016). https://doi.org/10.1109/cvpr.2016.62

8. Bruce, N.D., Wloka, C., Frosst, N., Rahman, S., Tsotsos, J.K.: On computational
modeling of visual saliency: examining what’s right, and what’s left. Vis. Res. 116,
95–112 (2015). https://doi.org/10.1016/j.visres.2015.01.010

9. Bylinskii, Z., Judd, T., Durand, F., Oliva, A., Torralba, A.: MIT saliency bench-
mark. http://saliency.mit.edu/

10. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., Durand, F.: What do different
evaluation metrics tell us about saliency models? [cs] (2016), arXiv:1604.03605

11. Bylinskii, Z., Recasens, A., Borji, A., Oliva, A., Torralba, A., Durand, F.: Where
should saliency models look next? In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9909, pp. 809–824. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46454-1 49
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31. Kümmerer, M., Wallis, T.S.A., Gatys, L.A., Bethge, M.: Understanding low- and
high-level contributions to fixation prediction. In: The IEEE International Confer-
ence on Computer Vision (ICCV). IEEE (2017)
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