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Abstract. We create a dataset of 543,758 logo designs spanning 39
industrial categories and 216 countries. We experiment and compare how
different deep convolutional neural network (hereafter, DCNN) architec-
tures, pretraining protocols, and weight initializations perform in pre-
dicting design memorability and likability. We propose and provide esti-
mation methods based on training DCNNs to extract and evaluate two
independent constructs for designs: perceptual distinctiveness (“percep-
tual fluency” metrics) and ambiguity in meaning (“conceptual fluency”
metrics) of each logo. We provide evidences of causal inference that both
constructs significantly affect memory for a logo design, consistent with
cognitive elaboration theory. The effect on liking, however, is interac-
tive, consistent with processing fluency (e.g., Lee and Labroo (2004),
and Landwehr et al. (2011)).
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1 Introduction and Related Work

Which visual elements of a design increase memory for the design and which
increase liking for it? Are these elements the same, or different—and what is the
relationship between remembering and liking?

Ample research in cognitive psychology shows that an increased elaboration
about the target is associated with a better memory for it, for instance, [28,29,
31]. For a visual design, an increased elaboration could result from two sources—
first, the perceptual fluency of the design and second, the conceptual fluency of
the design. By perceptual fluency of a design, we refer to the purely perceptual
elements of the design and the extent to which these might deviate from a visual
prototype for the category that perceivers have in memory.

Existing research shows that visual representations tend to be stored in mem-
ory as deviations from category prototypes (e.g., [4,10]). As people are exposed
through their lifetimes to more exemplars of a category, they develop a prototype
in memory. When new exemplars are encountered, the visual memory system
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checks for and encodes differences from the prototype rather than remember
every detail. The second aspect of a visual design that can affect memory for it
is its meaningfulness. People remember information by associating its meaning
to what they already know [5,26,27]. When the meaning of an attitude object!
is very clear, it is associated easily into the knowledge a consumer already has
in the area. But the attitude object draws little elaboration and its meaning is
instantaneously incorporated into a gist of what the consumer already knows.
The lack of elaboration might reduce the distinct memory for the object or the
recognition probability.

How might these two aspects of visual design—its perceptual fluency and its
conceptual fluency—impact liking for the logo? Research in cognitive psychology
suggests that consumers like attitude objects that feel easy to process [1,7,20-
22]. The idea is that information that feels easy to process because its information
is perceptually clear and stands out or because its meaning is easy to elaborate on
is liked more. These findings imply that logos that are visually distinct are likely
to pop out and be liked more, and if they encourage meaningful elaboration,
they will be liked even more. But if the meaning is very ambiguous they will be
liked less.

To explore these ideas, we create a large dataset of 543,758 logo designs
spanning 39 industrial categories and 216 countries. We annotate it by collect-
ing and calculating likability and memorability scores from a series of online
visual memory experiments adapted from procedures introduced by [11,12,17].
On a computing front, we first experiment with prediction tasks of design mem-
orability and likability, using different DCNN architectures, pre-training, and
transfer learning methods. On a cognitive front, we propose information mea-
sures to proxy for perceptual and conceptual fluency based on DCNN outputs.
We then regress design memorability and likability on the proposed measures
of fluency constructs, controlling various other aspects to identify the effects of
perceptual and conceptual fluencies on memorability and likability. We ensure
identification of both measures by running controlled? online experiments when
eliciting annotations.

Major contributions of the present study include: it is the first study to (1)
release a large-scale logo design dataset, valuable to possibly both the vision
and business research communities; (2) investigate the effect of both fluencies
on memorability and likability for designs at a large scale; and (3) compare how
different deep neural network architectures, initializations, and transfer learning
methods perform on the prediction tasks of design memorability and likability.

1 Attitude objects are what you make a judgment about or have a positive or negative
feeling toward.

2 We follow the experimental economics protocols of randomization and clear treat-
ment grouping based on perceptual and conceptual measures, on top of what was
prescribed in [14-17].
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2 Large-Scale Memorability and Likability Logo Design
Dataset

We build a large dataset of 543,758 logo designs, with memorability and likability
scores on a sub-sample of 123,928 logos.

2.1 Memorability and Likability Scores

We obtained memorability scores for a subset of the entire dataset using an
online experimental procedure that is adapted from the efficient visual memory
game developed in [14-17]. We elicit liking scores by asking subjects to rate how
much do they like the logos being shown on a scale from 0 to 7. To guard against
potential biases introduced by consumers’ familiarity with the brand or the com-
pany associated with the logo, we first explicitly asked them not to base their
decision on how much they like the brand for reasons other than esthetics. Sec-
ondly, likability scores were elicited as part of a post-experiment questionnaire,
that included a question about subject’s familiarity of the brands being shown.
Surprisingly, the percentage of encounters of familiar logos or brands account
for less than 3% ((3,711/123,928), we set the recognition threshold to 40% to
reduce noise) in our annotated set, indicating that such a bias is secondary in
our setting.

We recruited 38,542 US-based subjects from Amazon Mechanical Turk and
obtained 66 scores of both memorability and likability from each Turker, result-
ing in around 20 scores per logo. We calculated the estimated memorability and
likability scores for each logo following the optimization procedure adopted in
[17]. In the game, Turkers view a sequence of logos, each of which is displayed
for 1 s, with a 1.4 s gap in between logo representations. Their task is to press
the button whenever they see a repeat of a logo. Each task is designed to last
about 4.5 min consisting a total of 186 logos divided into 66 targets, 30 filters,
and 12 vigilance repeats. Targets are repeated after at least 35 logos, and at
most 150 logos. Vigilance repeats are shown within 7 logos from the first show-
ing. The vigilance repeats ensure that Amazon Mechanical Turkers are indeed
paying attention. Turkers failing more than 25% of the vigilance repeats are
blocked and all their answers are discarded. We refer readers to [15,17] for more
procedural details.

Nonetheless, our experiments differ in at least two main ways. First, we
use a 2 x 2 x 2 x 2 full factorial design and examine 16 different between-
subject treatments varying the levels (above median or below median) of per-
ceptual Fluency measures (Perceptual Complexity and Image Prototypicality,
detailed in Sects. 1 and 3.2) and Conceptual Fluency measures (Entropy and
Kullback-Leibler Divergence from deep neural network feature distributions)
with a logo memory game, following experimental economics protocols, which
provides greater control and facilitates causal inference. Second, rather than
repeating identical natural images at variable time intervals, we repeat logos in
different forms (logo pattern or plain text towards the end of the experimental
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Fig. 1. Sample images arranged by their memorability and likability scores: top left
logos are of high memorability scores, top right of low memorability scores, bottom left
of high likability scores, bottom right of low likability scores

session) and elicit memory scores accordingly. Figure 1 shows sample designs
from our dataset arranged by annotated scores.

2.2 Summary of the Dataset

We collected vector logos from various sources on the Internet courtesy of
Brands of the World, Logo Types, World Vector Logo, Vector Me. Our dataset
contains logo designs spanning 39 industry categories and 216 countries. Access
is available at Logo Designs. We present the distributions of industrial categories
and countries based on the annotated subset in Fig. 2. We detail the distribu-
tion of logos across the most concentrated countries and categories in the spider
charts of Fig. 3. Most logos of the design category are from Brazil, US, Turkey,
Mexico and Europe, whereas logos of food and drinks are from North and South
America. Sports logos are more even distributed among European countries and
South America with greater concentration on Brazil and US. Brazilian logos
are mostly concentrated in sports, design, and business, whereas US logos are
more evenly distributed across categories including food and drinks, technology,
media, automobile, music and finance in our annotated sample from the larger
dataset.

Distribution of Logo Country Distribution of Logo Industrial Category
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Fig. 2. Histograms of logo industrial categories and countries


http://www.brandsoftheworld.com/
http://www.logotypes.ru/
https://worldvectorlogo.com/
https://vector.me/
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Fig. 3. Spider chart of logo distributions across countries (categories) by category
(country)

2.3 Summary of Image Features

We explore a variety of image features of our dataset, including size (entropy),
hue, saturation, value, the number of edges, the number of straight lines, the
number of corners, the number of circles, number of polygons, and the presence
of texts. We measure the size by taking the average of local entropy values of
all pixels within an image, and plot the distribution by country and category.
Figure 4 shows the comparative distribution of the most concentrated coun-
tries (top six) and categories (top ten). Interestingly, logos of the technology
category appear to be much more concentrated on the lower end of the size
spectrum, whereas media logos and food/drinks logos show the greatest varia-
tions in terms of size. Across countries, logos from European countries appear
more concentrated towards the smaller sizes whereas the overall variation across
countries are much less pronounced than that across industries, as are shown in
Fig. 5.

Distribution of Logo Size Across Most Concentrated Countries. Distribution of Logo Size Across Most Concentrated Categories.
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Fig. 4. Histograms of logo size distributions across most concentrated countries and
categories

3D plots of representative countries and categories are shown in Fig. 6, where
the hue, saturation, and value values are the averages taken across all pixels of
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Density of Logo Size Across Most Concentrated Countries Density of Logo Size Across Most Concentrated Categories
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Fig. 5. Density plots of logo size distributions across most concentrated countries and

categories

an image. Some descriptive patterns include: sports logos are distributionally
more saturated than design logos, logos from North American countries are
distributionally both more saturated and less concentrated in hues than logos
from European countries.

HSV Scatterplot of Logos frorg 8Brazil

HSV Scatterplot of Sports Logos 4
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Fig. 6. 3D scatterplots of mean HSV values of some countries and categories

We also measure the number of edges with Canny detector, the number of
corners with Harris detector, the number of straight lines, circles, and polygons
with probabilistic Hough line transformation. We plot a selection of empirical
densities of the resulting number of edges, circles, straight lines and polygons
in Fig. 7. Some interesting patterns emerged: (1) Logos of the Design industry
appear to adopt less straight lines and polygons, whereas Sports logos appear
to exhibit polygons much more frequently; (2) Sports, Media, and Food/Drinks
Logos appear to showcase more circles whereas the opposite goes for Retail and
Technology logos; (3) American (both North and South) logos appear to adopt
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Fig. 7. Density plots of low-level features by category or country

more circles and polygons than European logos, with South American logos

showcasing more edges.

2.4 Image Features and Memorability (Likability)

We did a preliminary analysis that correlats low level features with both memo-
rability and likability. To simplify interpretations, we summarize identified rela-
tionships from our model-free results in Table 1, where — means negative, U
means U-shaped curve, Inverse U means inverse U-shaped curve, and NS means

Non-significant.

Table 1. Low-level features and memorability/likability

Relationship | #Edge |#Line| #Circle | #Polygon | Hue | Saturation | Value
Memorability | Linear +| U |Inverse U | Inverse U | —¢ NS NS
Likability Linear +| U | Inverse U U NS NS NS

% On a representative subsample
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3 Methods

To explore how different DCNNs perform on our design dataset in predicting
memorability and likability, we experiment with five network architectures, three
pre-training options and two initialization methods, which we detail in Sect. 3.1.
To better understand how perceptual and conceptual fluency affect design mem-
orability and likability, we propose DCNN-based measures for both fluency con-
structs and regress non-linearly both memorability and likability scores on flu-
ency measures, along with a myriad of control variables. We detail this more
economic design in Sect. 3.2. Compared to previous established measures of pro-
totypicality in perception literature, our proposed method is better suited given
the much bigger scale, and the abstract nature of our unique dataset distinct
from previous studies in perception.

3.1 Predicting Memorability and Likability

We distribute the annotated data into 5 random train and test splits. We run a
series of experiments varying three aspects:

1. The network architectures:
AlexNet [18], VGG16 [24], VGG19 [24], Inception-V3 [25], and ResNet-50 [9];

2. Pre-training: ImageNet [2] pre-trained model with transfer learning (only the
last layer was re-trained), ImageNet pre-trained model followed by fine-tuning
(the last three layers were re-trained for 15 and 20 epochs for memorability
and likability prediction, respectively), training from scratch without pre-
training; a Euclidean loss layer is used since memorability or likability is a
single real-valued output;

3. Weight initialization: random initialization drawn from Gaussian distribu-
tions [19] or robust initialization proposed in [8];

3.2 Measuring and Identifying Perceptual and Conceptual Fluencies

Conceptual Fluency: Entropy and Kullback-Leibler divergence Recall
that we define conceptual fluency as if/how the underlying brand identity is
perceived, for which we propose two information-theory based measures using
DCNN prediction results: entropy and Kullback-Leibler divergence. Specifically,
we train a deep residual network [9] on our dataset in the same way as described
in Sect. 3.1, except that the output of the last fully-connected layer in fine-
tuning is fed to a 39-way softmax layer at the end, representing the 39 different
industrial identities in our setting. Cross-entropy losses replace the Euclidean
losses since the ground-truths are one-shot vectors. Given the output distribution
of our fine-tuned ResNet for logo category classification, denoted as @, and the
true category label, denoted as P, we define our measure regarding conceptual
fluency as the Kullback-Leibler divergence from P to @, written as Dg 1 (P|Q).
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The other dimension we extract for measuring conceptual fluency is the Shannon
entropy of @, H(Q), the output distribution of the deep network as our measure:

C C
Din(PIQ) = Y Polog (75) H@) == > Q.los(@) (1)

where P represents the one-hot vector representation of the true category label
and @) represents the inferred category label distribution given by the DCNN. We
plot the empirical distributions of proposed measures of conceptual fluency in
Fig. 8. Intuitively, KL on conceptual fluency should reflect the deviation (or sur-
prise) of the perceived distributional identity from real identity, whereas entropy
on conceptual fluency reflects only the perceived distributional identity. Thus
KL measure is susceptible to industrial norms about logos, and its “power law”
pattern indicates strong conformity within industry, whereas Entropy measure
adheres to Law of Large Numbers, free of industrial constraints.

Distribution of Shannon Entropy as Content Ambiguity Distribution of Kullback-Leibler Divergence as Content Ambiguity.

Content Ambiguity Score (Shannon Entof P Content Ambiguity Score (KL Divergence)

Fig. 8. Empirical distributions of two conceptual fluency measures (by intuition, they
measure two dimensions of content ambiguity of logos)

Perceptual Fluency: Perceptual Complexity and Perceptual Proto-
typicality We calculate the image entropy of each design in our dataset as the
measure for Perceptual Complexity, since perception research and algorithmic
information theory posit that a compressed image file can accurately measure
picture complexity. Such measures have been shown to correlate positively with
subjective ratings of design complexity [3]. We measure the Perceptual Pro-
totypicality in the same way as conceptual fluency except that the entropy is
calculated based on the predicted distribution across 1000 concrete objects for
each design (denoted as ), the same Shannon Entropy of @ is detailed in Eq. 1,
obtained from a fine-tuned ResNet-50 [9] based on ImageNet initializations.
We propose and measure these constructs based on previous findings that
draw on an inherent and fundamental truth about the way the visual system
operates: “the idea that people‘s preference for any design depends on the extent
to which its visual processing is surprisingly fluent. This processing depends on
two uncorrelated aspects of a visual design—processing expectation ex ante and
processing efficiency ex post. Processing efficiency results whenever a design
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is more prototypical, with fewer neural resources recruited, and is processed
quickly. Such quick, efficient processing results in a gut-level positive affective
response [29]. Whenever people have a processing expectation of difficulty, this
gut-level affect increases perceived likability of a design. Processing expectation
hinges on visual complexity of the design. When people expect difficulty in pro-
cessing, they are unable to attribute the gut-positive affect evoked by efficient
processing to specific design characteristics, and they therefore subconciously
infer that the gut-positive reaction must imply that they like the design. On the
other hand, when the processing expectation is low because a design is visually
simple, people attribute the gut-level affective response arising from processing
efficiency to design simplicity, and they correct for an increase of affect on their
preference toward the design [30]” [20].

Table 2. Rank correlation results from test sets, averaged across five splits

Rank correlations Transfer Finetune
Weight initialization | Random | ImageNet | Random | ImageNet
AlexNet 0.37 0.41 0.40 0.39
VGG16 0.40 0.38 0.44 0.40
VGG19 0.36 0.38 0.38 0.41
InceptionV3 0.50 0.51 0.54 0.55
ResNet50 0.50 0.50 0.58 0.58

Intuitively, this metric implies the extent to which the logo visual elements
overlap with recognizable object categories as prototypes, and therefore, we
refer to it as an Image Prototypicality measure, based on theories in percep-
tion research that we have detailed in Sect. 1. This metric might also appeal
to the concreteness (abstractness) of the design pattern, which appears to be
another open question yet to be resolved.

4 Results and Discussions

We document (1) the current results (rank correlations, following [17]) of the
experiments of prediction tasks on the computing front in Table 2; and (2) the
statistical significances of variables (our proposed measures of conceptual and
perceptual fluencies) of interest regressed against annotated memorability and
likability scores in Table 3 (where the significance matters rather than the predic-
tion accuracy). The rank correlations were averaged across five splits twice—once
for memorability prediction and once for likability prediction. The rank correla-
tion peaking at 0.64 in [17] was benchmarked against human consistency at 0.68
in their setting of natural images. The disparity between ours and theirs is likely
due to (1) the additional ambiguity and subjectivity of visual designs compared
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to natural images or photos; (2) they added an extra support vector regression
step on top of the last fully connected layers with Euclidean loss, which we could
do shortly. We follow previous literatures on most choices of hyperparameters in
the training processes. We chose the number of training epochs based on pilot
experiments during which the value of the loss function had always plateaued
after 15 epochs when predicting memorability scores and 25 epochs for likability
scores. In Fig. 9, we plot the evolution of the values of loss functions over training
epochs resulting from different configurations detailed in Sect. 3.1.

Table 3. Regression table on the effects of perceptual and conceptual fluency on mem-

orability and likability

Dependent variables:

mem mem like like
Perceptual complexity (PC hereafter) 0.290*** 0.278*** —0.027*** | —0.012***
(0.004) (0.004) (0.004) (0.004)
Perceptual prototypicality (Inverse) (PPI) | —0.010*** | —0.011*** | 0.003** 0.005**
(0.002) (0.002) (0.001) (0.001)
Category —0.000*** | —0.000*** | —0.000***
(0.000) (0.000) (0.000)
Country 0.000 0.000 0.000
(0.000) (0.000) (0.000)
Conceptual entropy (More Ambiguous) —0.018*** | —0.088*** | —0.037*** | —0.035***
(0.002) (0.004) (0.002) (0.004)
Conceptual KL divergence 0.006*** 0.013*** 0.005*** 0.004***
(0.001) (0.002) (0.001) (0.002)
Perceptual complexity? —0.074*** | —0.071*** | 0.011*** 0.007***
(0.001) (0.001) (0.001) (0.001)
Conceptual entropy? —0.002** | 0.002** 0.009*** 0.006***
(0.001) (0.001) (0.001) (0.001)
PP(1)? 0.002*** 0.002*** —0.001*** | —0.001***
(0.000) (0.000) (0.000) (0.000)
Conceptual KL divergence? —0.000*** | —0.000** | —0.000*** | —0.000***
(0.000) (0.000) (0.000) (0.000)
PC x Conceptual entropy —0.001 0.011
(0.003) (0.003)
Perceptual complexity x KL divergence 0.000 —0.002
(0.001) (0.001)
PPI x Conceptual entropy 0.001 0.006***
(0.001) (0.001)
PPI x KL divergence —0.000 —0.001***
(0.000) (0.000)
Constant 0.918*** 1.010%** 0.328*** 0.299***
(0.008) (0.008) (0.007) (0.008)
Observations 123,928 123,928 123,928 123,928

Note: *p < 0.1; **p < 0.05; ***p < 0.01
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We next proceed to interpret the results of the regression model from a
perspective of economics and econometrics.

The consistently positively significant linear effect of perceptual complexity
shown in Table 3 supports the visual processing expectation theory that when
consumers experience cognitive difficulty processing certain design pattern, they
mis-attribute greater perceived visual processing fluency due to adjusted higher
expectation to greater liking for that design.

The consistent quadratic causal relationship that is significant between con-
tent ambiguity (conceptual entropy) and design likability in column 3 and col-
umn 4 provides evidence for our hypothesis that logos that are distinct in mean-
ing are likely to pop out and be liked more but if the meaning is very ambiguous
they will be liked less.

The other conceptual fluency measure—the KL Divergence between predic-
tion and truth—yields qualitatively the same effect on design likability and mem-
orability. Logos that are perceived with little bias in meaning are neither easily
remembered or very much liked and neither do logos that are mostly mistakenly
perceived in meaning.

The effects of perceptual fluency on design memorability and likability are
flipped as posited: a moderate level of prototypicality increases memory but
decreases affection, and the same with Perceptual Complexity. The more visu-
ally complex a design is, the greater visual processing expectation the perceiver
will (mis-)attribute to the design, and the more positive propensities towards
the design pattern. When the design pattern looks very generic or highly pro-
totypical, it will draw less attention but increase affection since it is cognitively
quick and easy to process. Conversely, low prototypicality in turn causes a visual
overload and hamper visual encoding, resulting in less memorability yet greater
positive affects since it encourages cognitive elaboration.

This likely suggests an interesting story about the interplay between the
extent to which a logo design is ambiguous in terms of its content against its
industrial content and its perceived memorability. When a logo conveys the
industrial characteristics of the company in a most clear way—too conceptually
prototypical, it is less likely to be remembered by consumers. Possible explana-
tions include (1) visual processing expectation gets adjusted much lower, low-
ering the overall image processing fluency and therefore positive propensities
towards the design pattern; (2) the pattern turns out generic within the cate-
gory, making it difficult for perceivers to associate the design pattern with the
identity of the focal company or brand. When a logo looks extremely ambiguous
in terms of its industrial content, it too gets forgot about more often by con-
sumers, possibly due to the extra cognitive processing difficulty involved that
interferes processing fluency and exceeds the adjusted processing expectation
gap.

The Kullback-Leibler Divergence measure of conceptual fluency with respect
to the true identities of the focal companies shows a significantly positive effect on
consumer memorability. It supports the reverse relative conceptual fluency effect
that visual processing expectations are raised as the perceived conceptual fluency
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Loss Evolution During Training Loss Evolution During Training
ImageNet Weight Initialization, Pretrained with Transfer Learning ImageNet Weight Initialization, Pretrained with Fine-tuning
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Fig. 9. Evolution of Euclidean loss during training

relative to the true company or brand identity is increased and therefore stronger
preferences towards the design pattern thanks to consumers’ mis-attribution of
relative processing fluency given high expectations to liking.

The negatively significant interaction effect on design likability between
image prototypicality and conceptual fluency measures suggests opposing mod-
erator effects between the two pairs of constructs. When a logo design is highly
ambiguous in meaning, or when the perceived industrial identity of a company
represented by its logo is distinct from its true identity, the positive effect of a
lower level of perceptual prototypicality on its likability within a certain range
is moderated. Such moderation effects could be explained by the extra cognitive
processing cost incurred by perceivers when the design pattern is very ambigu-
ous in meaning. On the other hand, when a logo is complex in its visual style,
the positive effect of content ambiguity relative to its true categorical content
on likability is moderated whereas the first-order negative effect of a content-
ambiguous design pattern on its likability is exacerbated, consistent with what
we posit in Sect. 1 based on cognitive elaboration and processing fluency theories.

5 Robustness Analysis

For robustness checks, we considered alternative architectures, alternative
datasets and alternative approaches.

— For extraction of perceptual fluency detailed in Sect. 3.2, we train VGG-16,
GoogleNet, ResNet-101, ResNet-152, in addition to ResNet-50 [9], and cal-
cualte the metrics in the same way as described. When used as regressors
in our model specification, most of the resulting coefficients remain qualita-
tively unchanged except for third-order terms that become not significant. For
extraction of conceptual fluency detailed in Sect. 3.2, we fine-tune ResNet-50
and GoogleNet to train the industrial category classifier as robustness checks.
The resulting two measures of conceptual fluency based on Shannon entropy
and Kullback-Leibler divergence yield coefficient estimates that remain qual-
itatively unchanged from previous model structures.

— We test the same idea on a random subsample of another design dataset we
collected from Goodreads, which consists of 5,575,892 book cover images sup-
plemented with rich meta data. Book genres were labeled as categories. Out
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of a total of 1,005 genres, we randomly sampled 39 and within each genre,
we randomly sampled 1,000 books, forming a subsample of 39,000 book cover
design images. We collected both memorability and likability scores for a ran-
dom subsample of size 11,041. The regression coefficients remain qualitatively
the same when memorability is specified as the dependent variable. When the
dependent variable is likability, the coefficients of style entropy squared and
image entropy dispersion are not significant, whereas other first-order and
second-order results remain qualitatively the same.

— We follow the approaches in [17] and train DCNNs on our datasets to predict
annotated scores directly. We visualize the activated neurons at each layer
for both prediction tasks of memorability and likability.

6 Conclusion

Logos are visual representations of companies and brands. The effective design
of brand logos is a careful blend of art and science. While logos should be aes-
thetically appealing to target consumers, companies do spend a great deal of
time and money crafting logo designs that reveal central messages about the
brand. These efforts are not unwarranted since studies show that consumers
attribute their inferences from logo designs to the associated companies and
brands, or even the broader environment [6,13,23]. Therefore it remains rel-
evant for both multi-national corporations and young entrepreneurs to better
understand what makes a logo design memorable and likable. As one of the first
steps towards this goal, we gather two large-scale visual design image datasets
(one of business logos, the other of cover designs) with rich meta-data that
will hopefully prove valuable to the business and vision research communities.
We experiment and compare how different DCNN architectures perform in pre-
dicting design memorability and likability. We propose and provide estimation
methods based on training DCNNs to extract and evaluate two independent con-
structs for designs: perceptual distinctiveness (“perceptual fluency” metrics) and
ambiguity in meaning (“conceptual fluency” metrics) of each logo. We provide
evidences of causal inference that both constructs significantly affect memory for
a logo design, consistent with cognitive elaboration theory. The effect on liking,
however, is interactive, consistent with processing fluency (e.g., [20,22]).
Potential intriguing extensions that leverage our datasets or results include:

— Developing generative adversarial networks for logo generation and slogan
generation given the brand image and market position;

— Automatic storytelling or generating signature stories given the logos and
business identities;

— Exploring what makes a logo-slogan combination memorable and/or likable,
which appears to echo the emerging efforts that bridge language and vision.
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