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Abstract. This paper theorizes the connection between polarization
and three-view geometry. It presents a ubiquitous polarization-induced
constraint that regulates the relative pose of a system of three cameras.
We demonstrate that, in a multi-view system, the polarization phase
obtained for a surface point is induced from one of the two pencils of
planes: one by specular reflections with its axis aligned with the inci-
dent light; one by diffusive reflections with its axis aligned with the sur-
face normal. Differing from the traditional three-view geometry, we show
that this constraint directly encodes camera rotation and projection, and
is independent of camera translation. In theory, six polarized diffusive
point-point-point correspondences suffice to determine the camera rota-
tions. In practise, a cross-validation mechanism using correspondences
of specularites can effectively resolve the ambiguities caused by mixed
polarization. The experiments on real world scenes validate our proposed
theory.

1 Introduction

When an unpolarized incident light is reflected by a dielectric surface, it becomes
polarized and the phase of its polarization is characterized by the plane of inci-
dence. This process can be observed by a rotatable polarizer mounted in front
of a camera that captures sinusoidally varying pixel-wise radiance, where the
readings arising from specular reflection exhibits a π

2 phase shift relative to
the readings from diffusive reflections. In both phenomena, the phase shift of
the sinusoids indicates the azimuthal orientation of the surface normal, and its
elevation angle is evaluated by the reflection coefficients [13]. Essentially, polari-
metric measurements impose a linear constraint on surface normals [43], which
is useful for shape estimations under orthographic projection.

We note that, the relative phase of polarimetric measurements by a triplet
of cameras alone encodes sufficient information to describe the relative pose of
these cameras. As illustrated in Fig. 1, characterizing general surface reflectance
is usually the plane of incidence formed by the incident light and the line of
sight. Geometrically these planes are organized in a way to represent reflec-
tion/refraction under two common scenarios: (1) direct surface reflection due
to a directional light which displays specularities; (2) diffusive reflections due to
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subsurface scattering that render the surface’s own property. In the first scenario
all planes of incidence intersect on a set of parallel lines aligned with incident
light, and in the second scenario other planes exist to intersect on the line pass-
ing through the surface normal. These pencils of planes impose a geometric
constraint on the plane orientations explicitly through the relative rotations of
the cameras. Specifically, three planes (e.g. camera poses) uniquely specify the
line of intersection.

In the inverse domain, each pencil of planes is represented by a 3-by-3 rank-
2 matrix, so accordingly six instances of such matrix are sufficient to deter-
mine the camera rotations. However, the number of possible constructions of
these matrices grows exponentially due to the π

2 -ambiguity caused by the mixed
polarizations [3], hence directly solving the minimal problem is numerically pro-
hibitive. Fortunately, since often the ambiguities occur only when specularities
are present, the π

2 phase shift can be effectively leveraged if we only defer their
use for verifications, but not directly for estimations. Specifically, since con-
structions using incident light are easy to establish, we obtain the corresponding
matrices and make additional three attempts for each instance with π

2 difference,
as doing so effectively cross-validates the co-existing constructions induced by
surface normal.

To sum up, by estimating the relative rotation of a triple of cameras, in this
paper we elucidate a fundamental connection between polarization and three-
view geometry. In particular, our contributions are as follows:

1. Using microfacet theory, we identify and theorize the ubiquitous existence
of two types of a pencil of planes induced by polarizations from general
reflectance.

2. We formulate a geometric constraints using the induced pencil of planes,
under which we show that in a triplet of cameras polarimetric information
can be leveraged to extract the cameras’ rotations from its translation.

3. We use experiment to validate our theories, in particular, we propose to use
correspondences of specular points to address mixed polarizations.

The rest of this paper is organized as follows: Sect. 2 overviews the related work,
Sect. 3 explains the polarization from general reflectance using microfacet the-
ory, and by examining the measured relative phase we illustrate the existence
of two types of polarization from reflection. Section 4 extends our formulation
to three-view geometry, revealing how camera rotation can be decoded from
polarimetric information. Our experiments on real world scenes are described in
Sect. 5. Section 6 discuss our plan for the future work and concludes this paper.

2 Related Works

This work is related to two lines of research: one applies polarization as a visual
cue for shape and depth estimation, the other formulates three-view geometry
using trifocal tensors.
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(a) polarization by surface nor-
mal

(b) polarization by light

Fig. 1. This paper examines two types of polarization-induced geometrical configu-
rations. One is a pencil of planes induced by diffusive reflection which encodes the
information about the surface normal, the other is induced by specular reflection and
it encodes the light direction

2.1 Shape and Depth Estimation from Polarization

Following the Fresnel equations [13], ideal mirror reflection allow the azimuth
angle and zenith angle of the normal of the mirror surface to be evaluated. This
physical model can be generalized to more realistic cases where relaxed assump-
tions are made for the controlled light, the camera pose, and the reflectance
property of the surface. Correctly identifying the orientation of the plane of inci-
dence among multiple ambiguous interpretations is a common challenge that
many applications face to address.

Direct shape estimation based on polarization under single view [5,28] for
photometric stereo often targets on a surface of known reflectance under con-
trolled illumination [9,32]. For example, it is intuitive to recover the shape of a
specular surface because specularities always display strong polarization effect
[35]. It also reasonable to leverage polarization observed from transparent objects
[25,26], the objects covered by metallic surface [29], or those made of scattering
medium [30]. It has been demonstrated that diffusive reflection can carry polar-
ization signals due to subsurface scattering [3]. Shading can be integrated to
enhance the estimations [23], and in the presence of mixed polarization, labeling
diffusive and specular reflectance [31] turns out to be useful in some applications
[38]. Additionally, designed illumination pattern can also be applied to enrich
the polarization effect [1].

Another typical example of applying the polarimetric cues is to fuse them
to constrain the depth map obtained using other means. The depth signals can
either be obtained physically [17,18] or geometrically inferred [37,40]. The under-
lying assumptions made is that the surfaces tend to be smooth or can be easily
regulated.

A multi-camera setup produce a richer set shape cues [2,4], reduce the occur-
rences of ambiguous measurements, and avoid the formulation involving the
refractive index, which is dealt directly in some cases [15,16]. Polarimetric cues
can facilitate the dense two-view correspondence over specular surfaces [6]. In a
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standard structure-from-motion setting, camera poses are first estimated using
the classical approaches before [8,27] polarimetric information is applied. Recent
work also integrates it into SLAM [44]. In our work, we show that polarimetric
information can also be applied to retrieve camera pose, which to our knowledge
is the first demonstration of its usefulness in the related field.

2.2 Three-View Geometry

Analogous to the role of fundamental matrix in two-view geometry, the three-
view geometry is characterized by the trifocal tensor that relates point or line
correspondences across three views [10]. From a historical viewpoint, the term
trifocal tensor originated from the seminal studies [11,36] on the trilinear con-
straints for three uncalibrated views, although their counterpart for line triplets
in three calibrated views [42] appeared much earlier. The 3× 3× 3 tensor has 27
elements, yet the degree of freedom is 18 only in the projective case, which means
that these elements should comply with 9 constraints. This naturally arouses the
problem of minimal parametrization, which has been widely addressed in the lit-
erature [7,22,33,39].

To estimate the trifocal tensor in projective reconstruction requires at least 6
point triplets, for which Quan [34] proposed an effective method. On the contrary,
no less than 9 line triplets are required for this estimation, for which the state-
of-the-art solver in [21] is still too huge to be practical. Therefore, it is common
to use a linear estimation method using 13 or more line correspondences [12],
and refine the result through iterative nonlinear optimization. Trifocal tensor
estimation in the calibrated case is involved as well, because of the presence
of two rotations. A specialized minimal solver is presented in [21] for camera
motions with given rotation axis. Very recently, Martyushev [24] characterized
the constraints on general calibrated trifocal tensor, which include 99 quintic
polynomial equations. Kileel [19] studied the minimal problems for calibrated
trifocal variety and reported some numerical results by using the homotopy
continuation method. Since the computation is prohibitively slow, people tend
to solve the essential matrix arising from two-view geometry instead.

3 Polarimetric Reflectance Under Single View

Polarization arises when an incident light propagates through a surface between
two mediums of different refractive indices. Fresnel equations describe an ideal
physical model that only considers single bounce surface reflection from direc-
tional light. As illustrated in Fig. 2a, the light is thought of as a linear super-
position of two independent EM waves: one whose oscillation is in the plane of
incidence Π⊥(n) perpendicular to the surface of normal n, one oscillates in the
plane Π‖(n) parallel to the same surface. As an unpolarized light impinges on
the surface, its propagation bifurcates: one branch is immediately reflected off
from the surface, the other refracts through the surface. The two wave com-
ponents share their path, but how they allocate the power upon bifurcation is
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opposite. Along the light path after bifurcation, one wave component always
outpowers the other, and the magnitude of power discrepancy is measured by
degree of polarization. In the plane Π where the polarizer is located, the
angular distance between the peaks of a wave component along different paths
is measured by the relative polarization phase. By conservation of energy
and orthogonality, we establish the following:

Proposition 1. At a dielectric surface boundary, any pair of reflected or
refracted light inside parallel incident planes is always in phase (i.e. 0 relative
polarization phase), and any pair of reflected and refracted light is always out of
phase (i.e. π

2 relative polarization phase) (i.e. out of phase1).

The phenomena described in Proposition 1 indicates that the relative polariza-
tion phase is shared by co-plannar reflections/refractions, as indicated in Fig. 2b.
Since incident plane contains the information about both of the surface and
the incident light, as opposed to the existing literature that elaborates on the
degree of polarization, in the following we investigate the connection between
the polarization phase and some important geometrical properties pertaining to
view, scene and light.

(a) (b)

Fig. 2. The Fresnel equation explains how an unpolarized incident light becomes polar-
ized through mirror reflection. (a) When reflection and refraction take place under
directional light, the polarization phase indicates the orientation of the plane of inci-
dence, and there will be no light traveling outside it. (b) Inside the plane of incidence,
coplanar propagations along multiple paths must exhibit identical phase, hence it has
to be differentiated by wave magnitude.

3.1 Polarization Defined by Directional Light

Our investigation starts with a formulation with directional light. We model the
surface using a typical microfaceted setting [41], namely a subset of mirror-like
microfacets are selected by the unit vector h bisecting the line of sight vector v

1 degree of polarization varies periodically with periodicity of π.
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(a) (b)

Fig. 3. Polarization of general reflectance over a rough surface can be understood
through microfacet configuration. A unique configuration made by the line of sight v
and the incident light l will only activate the microfacets aligning with the bisector h.
(a) Each microfacet acts as a tiny mirror so that its reflection follows Fresnel equation.
(b) When light carrying constant power impinges from all directions, the aggregated
polarization effect observed can be approximated as if it is measured from a mirror
with the same orientation, hence the readings indicate the surface normal.

and light vector l to produce a specular reflection. The spatially varying reflection
depends on the effective visible area A(h) [14] formed by the selected facets
according to the microfacet distribution function. As depicted in Fig. 3, specular
reflection is solely determined by the direction of the light but not the scene
structure. Essentially, the observation is the outcome of a structure defined by
Π⊥(h) and Π‖(h) whose properties are summarized by Proposition 1. Therefore
we arrive at the following:

Proposition 2. Under directional light, the relative polarization phase due to
general surface reflection is indicated by the projection of the incident plane
formed by l and v onto the polarizer.

We can experimentally verify this fact using two observations presented in
Fig. 4a, b: when the line of sights tend to be parallel, the relative phase of
polarization is in phase and apparently independent of surface orientation, but
it can be affected by perspective projection.

Moreover, let I⊥(h) and I‖(h) be the power of the two orthogonal wave
components confined in Π⊥(h) and Π‖(h) respectively, then a polarizer with
rotation w in its own coordinates reads:

I(w,h) = A(h)I⊥(h) cos2 θ + A(h)I‖(h) sin2 θ (1)

with θ denotes the angle made between w and the projected line from Π⊥(h)
to the polarizer. It is worth noting that Eq. 1 is the microfacet version of the
expression for the sinusoidal curve that has been widely analyzed in other lit-
eratures. For surface reflections, I(w,h) vanishes only when v and h make the
Brewster’s angle. Hence, the polarizer essentially detects the configuration of
Π‖(h) and Π⊥(h) for a specific h.

3.2 Polarization Defined by Surface

While how a directional light becomes polarized through reflection depends on its
incident angle, under environment light of uniform power, the collective behavior
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of polarization reflects the surface geometry. For reflectance received from envi-
ronment map Ω+, by Eq. 1 the radiance perceived by polarizer with rotation w
is defined as:

I(w) =
∫

Ω+

A(h)I⊥(h) cos2 θ + A(h)I‖(h) sin2 θ dh

=
∫ π

2

− π
2

cos2 θ

∫
Π (φ)

A(h)I⊥(h)dh + sin2 θ

∫
Π (φ)

A(h)I‖(h)dhdφ (2)

=
∫ π

2

− π
2

F (φ,w)dφ

where h ∈ Π(φ) lies in a plane that is orthogonal to the image plane Π, cre-
ating an aggregation of coplanar reflection as described by Proposition 1 and
demonstrated in Fig. 3b. Since F (φ) exhibits an identical structure to Eq. 1,
I(w) can be understood as a composition of a set of distinctive sinusoidal
curves sharing some specific φ. In other words, F (φ,w) = Imin(φ) + (Imax(φ) −
Imin(φ)) cos(θ + φ), where Imin and Imax are determined by

∫
Π (φ)

A(h)I⊥(h)dh

and
∫

Π (φ)
A(h)I‖(h)dh. Here evaluating their exact quantities is unnecessary.

If A(h) is derived from a material displaying isotropic reflectance, v avoids
the grazing incidence (i.e. nᵀv � 0), then the shadowing effect becomes minor
(i.e. equal to 1), and as a result A(h) becomes rotationally invariant about n (i.e.
A(h1) = A(h2) given that nᵀh1 = nᵀh2). By symmetry about φ = 0 we have
Imax(φ) = Imax(−φ) and Imin(φ) = Imin(−φ) under the environment light of
uniform power. Furthermore, F (φ,w)+F (−φ,w) = 2Imin(φ)+2 cos φ(Imax(φ)−
Imin(φ)) cos θ, which is in phase with F (φ = 0). Therefore, Eq. 2 leads to I(w) =
C1(v,n)F (φ = 0,w) with C1(v,n) being some constant.

In practise, A(h) peaks when h = n. Also, Fresnel equation implies that
at grazing incidence the mirror reflection becomes dominant, meaning the light
that leads to hᵀv → 0 and h → n contributes the most to the actual reflectance.
Therefore, when v is set at the grazing angle, I(w) = C2(v,n)F (φ = 0,w) also
serves as a good approximation for Eq. 2. Combining these two scenarios, we
summarize the following:

Proposition 3. Under environment light of constant power, the relative polar-
ization phase of general surface reflection is indicated by the projection of the
plane formed by n and v onto the polarizer.

3.3 Mixed Polarization with Diffusive Reflection

In practise, diffusive reflection due to subsurface scattering is usually observed
in tandem with surface reflection. Because refracted light tends to depolarize
isotropically as it is scattered by the microstructure underneath the surface, a
portion of it has a chance to refract back after several bounces and rejoins the
propagation of directly reflected light [3]. This process to generate diffusive reflec-
tion can be thought of a byproduct of direct surface reflection by the environment
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map of constant power Ω− covering the lower hemisphere. By Propositions 1 and
3 we derive the following for the observation made in Ω+:

Proposition 4. The relative phase of general diffusive reflection is determined
by the projection of the plane formed by n and v onto the polarizer, and it differs
in phase from the direct surface reflection by π

2 .

This endorses the finding claimed in [3,8]. This fact together with Proposition 3
can be experimentally verified and the results are demonstrated in Fig. 4c.

To sum up, under single view the relative polarization phase measured for a
specific scene point might be led by two types of phenomena: the specular reflec-
tions encoding the incident light or the diffusive reflections encoding the surface
normal. It is worth noting that the conclusions made heretofore is independent
of the settings for camera. Section 4 shows that by unifying the polarization
phase obtained from different views, one can retrieve the relative rotations of
the cameras.

(a) (b) (c)

(d) (e) (f)

Fig. 4. The relative phase measured under single view with various light-view-geometry
configuration. It can be seen that specular reflection is dependent only on view and
light, while diffusive reflection depends on the geometry of the scene. (a)(d) ortho-
graphic specular reflection displays in phase polarization. (b)(e) perspective specular
reflection displays slightly out-of-phase polarization. (c)(f) polarization phase shift due
to diffusive reflections indicates the geometry of the scene.

4 Polarimetric Geometry Under Three Views

The relative pose between the camera and a scene point is regulated by two
types of planes: (1) those formed by v and l (Sect. 3.1) and (2) those formed by
v and n (Sects. 3.2 and 3.3). Accordingly, in a multi-view setup, for each point
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there exist two clusters of planes, one belongs a type. Inside each cluster, the
orientation of the plane in the camera’s local coordinates is represented by the
detected relative polarization phase. We show that, using a static scene under
static illumination, the polarization phases captured from three distinctive views
avail us the relative pose of a the cameras.

4.1 Formulation

We setup a system of cameras indexed by j with optical center denoted by oj .
Their poses are described by rotation matrices Rj together with the correspond-
ing translation vectors tj . Each camera pose has six degrees of freedom, with
three of them parameterizing R. As indicated in Fig. 5, Let Si denote a scene
point indexed by i. From Sect. 3 we know that linking each point Si to camera
j is a vector hi,j that represents the projection of h onto the image plane Π
centered at oj . h is obtained by fitting w to Eq. 1, which does not involve pro-
jection. Let nij denote the normal of the induced plane of incidence Πij and
vij the line of the sight, and according to the reflectance type we either have
nij = ni × vij or nij = l × vij . Moreover, there exists a matrix, N i for scene
point Si as:

N i =
[
ni,1 R2ni,2 . . . Rjni,j . . .

]
(3)

where we let R1 = I. Correspondingly, another matrix , N l, can also be con-
structed for directional light l. By definition we have:

N i = [ni]×
[
vi,1 R2vi,2 . . . Rjvi,j . . .

]
(4)

and
N l = [l]×

[
vi(1),1 R2vi(2),2 . . . Rjvi(j),j . . .

]
(5)

where i(j) indexes the position of the floating specularity observed from view j,
and [·]× is the matrix representation for cross product, whose rank is always 2.
Therefore, the rank of both N i and N l is also 2.

Equations 4 and 5 indicate that, the aforementioned cluster of plane {Π}ij

are two pencils of planes: one has axis aligned with ni, and the other has axis
passing through l. The difference is that Ni represents a pencil of planes whose
members physically coincide with Πij , while N(l) indicates a pencil of planes
that contains translated Πij , as depicted in Fig. 5. In both cases the rank-2
constraints hold, hence our derivation can be summarized as follows:

Proposition 5. In a multi-view system with one dominant directional light, the
polarization displayed by a scene point may induce one of two pencils of planes,
one has its axis aligned with the propagation of the directional light, and the
other has its axis passing through the surface normal.

Since [l]× denotes light direction, [ni]× represents scene structure, and vij is
represented pixel location, Eqs. 4 and 5 effectively decouple camera translation
from the camera rotation and camera model. So, polarimetric information is
highly useful for rotation estimation.
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(a) structure pencils of planes (b) perspective three view geometry

Fig. 5. Construction for three-view geometry. The structure represented by the two
figures are identical given that the incident light are parallel, but physically incidence
planes induced by light are not necessary intersect on the single line

4.2 From Three-View Polarization to Camera Rotation

For camera pose estimation, the rank-2 constraint imposed on N i and N l is criti-
cal. It allows us to set up a theoretical formulation for the corresponding minimal
system and then extend it into a relaxed least square setup. More importantly,
leveraging both N l and N l can resolve ambiguity caused by mixed polarizations
effectively.

An Extended Least Square Solver. In the minimal case N i and N l are two
3-by-3 matrices (i.e. j ∈ {1, 2, 3}) to be determined through R2 and R3, which
in our formulation are expressed by two unit-norm 4-by-1 vectors q2 and q3 in
quaternions respectively. Each vector contains three unknowns, so six points to
form six pencils of planes of unique axes can completely determine R2 and R3.
In particular, we establish a system of six equations of 4-th order polynomials:
det N i = 0 with an additional constraint detN l = 0 (1 ≤ i ≤ 6) to resolve the
π
2 phase ambiguity caused by mixed polarization.

As mentioned, directly solving the minimal problem using 6 points is com-
putationally challenging. A simple instance we created for off-line evaluation
shows that the correct solution is buried among 4252 candidates in the com-
plex domain. Aside from applying additional assumptions [21], for our setup we
propose to directly apply the non-linear least square solver that takes few more
points. We believe this is feasible for two reasons: (1) we only need a sparse set
of robust correspondences to define camera pose; (2) polarization measurements
are susceptible to noise, relaxed formulation should strengthen our estimation.

Resolving Mixed Polarization. In the presence of specularity, π
2 -ambiguity

due to mixed polarizations observed from three views may result in each nij hav-
ing 8 possible interpretations. This combination makes even a minimal system
prohibitively large to solve (68 = 1679616). Ordering the strength of specularity
will reduce the number of combinations (64 = 1296), but this reduced set is
still far from being feasible. On the other hand, under general reflectance with



Polarimetric Three-View Geometry 31

complex scene structure, specularities often appear but distribute sparsely in
space. In other words, if majority of point correspondences diffusive-diffusive-
diffusive, few specular-specular-specular may be excluded through intensity pro-
filing. However, there is a chance that ideal diffusive correspondences being mis-
taken as specular ones are excluded. In our case we can construct a hypothetical
N l using the estimated result to verify the result. If the estimation is accurate,
the resulting matrix should also be rank-deficient. Such consistency motivates
us to design a solution consisting of two subroutines with one to address the π

2
ambiguity caused by specularities produced by a directional light:

selecting diffusion-only correspondences Excluding the correspondences
involving plausible specularities by intensity profiling (i.e. the brightest pixels
in the scene). Applying the remaining correspondences to create instances of
N i, and solve for min(

∑
i det N i)2.

disambiguating using specularities Including the plausible specularities to
construct a hypothetical N l. If the construction is valid, it has to be rank
deficient. Otherwise, flip the input by π

2 to detect a minimum determinant.
This can be achieved after 3 attempts. Then make it a input to the estimator.

The above procedure proceeds iteratively until no flipping can help improve the
results.

Essentially, N l serves as a robust constraint to cross-validate the consistency
over all observations. This design draws strong analogy to the RANSAC-based
methods for feature correspondences. Designing a better framework integrating
both is left as part of our future work.

4.3 Illumination, Structure and Camera Calibration

Knowledge about N i and N l can be further applied to retrieve the lines carry
surface normal, the direction of the light and the camera’s focal length. Under
orthographic or weak perspective projections, Eqs. 4 and 5 can be reduced
to:

Ni = [ni]×
[
I R2 . . . Rj . . .

]
v (6)

and
Nl = [l]×

[
I R2 . . . Rj . . .

]
v (7)

respectively, where under orthographic projection v = [0, 0, 1] and under weak
perspective projection |v| is assumed to be an unknown constant (i.e. indepen-
dent of the actual scene structure). Orthographic projection only considers rota-
tion, and it is a common assumption made for normal estimation in the existing
literatures. Weak perspective projections, on the other hand, additionally con-
sider camera translation over a unknown spherical surface. In both situations
one can recover surface normal according to Eq. 6, and light direction according
to Eq. 7. Perspective projection with focal length fj , vij = (xi, yi, fj) and the
optical axis passes through the square image center yield a system of quadratic
equation in terms of ni and fj by Eq. 4.
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4.4 Comparison with Trifocal Tensor

With P j = [P j,1:3|P j,4] : S → sj being the projection operator projecting
S onto the image plane Πj , we are able to link the formulation presented in
Sect. 4.1 to trifocal tensor [10]:

M =
[
P ᵀ

1,1:3h1 P ᵀ
2,1:3h2 P ᵀ

3,1:3h3

P ᵀ
1,4h1 P ᵀ

2,4h2 P ᵀ
3,4h3

]
(8)

where hj is the line projected onto the image planes Πj . M is a 4-by-3 matrix
and rank(M) = 2. Equations 4, 5 and 8 display similar algebraic properties and
exhibit the following connections: (1) hi,j arises naturally from polarization, so
line correspondence is achieved without a line detector marking points along a
visible line for correspondence. (2) N i in Eq. 4 occupies the first three rows of M
subject to linear scale, so any algorithms designed to address trifocal tensor can
be tailored for polarization. (3) The fourth row of the trifocal tensor encodes
the camera translation. Therefore, we see that the relative polarization phase
essentially serves as a useful cue for camera rotations.

5 Experiments

In order to verify our theory under the proper illumination setup, we require
at most one strong and directional to be present. In our case this can be the
light mounted on the ceiling. A linear polarizer is embedded inside a motorized
rotator, and it is mounted in front of a grey scale camera, which we calibrate
according to [45]. In our experiment, we use 11 distinctive exposures to obtain
the HDR images for each scene to reduce saturation. Also, for each exposure
we average the result multiple times in order to reduce the thermal noise of the
device. We perform verifications and pose estimations in separate experiments.
In each scene, checkerboards are also included to obtain the ground truth.

5.1 Verification

We use two separate scene to verify the existence of rank deficient matrices, N i

and N l, respectively. We use “dice” to setup the scene for diffusive reflections
and “ball” to produce specular reflections. Specifically, in “dice” we manually
select 20 anchor correspondences and then populate the correspondences using
their neighboring pixels. We evaluate the statistics of the singular values of
the obtained matrices. From Fig. 6 we observe that the smallest singular value
maintain to be significantly lower than the largest singular value, indicating that
the matrices indeed tend to be rank deficient in practise.

For specular settings, we select 30 samples from the brightest pixels and con-
struct N l through random matching. The statistics of singular values show that
it is also highly rank deficient because the smallest singular value on average
almost vanishes compared with the largest singular value (Fig. 7). Also, in both
scenarios the intensity variations of good correspondences display clean sinu-
soidal curves with apparent phase shift, and their magnitudes do not affect the
structure of our proposed structures.
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(a) view 1 (b) view 2 (c) view 3 (d) (e)

Fig. 6. Verification experiment for diffusive reflections. (d): the statistics of the singular
values obtained from the sampled instances. (e): a plot for intensity variation of a good
correspondence.

(a) view 1 (b) view 2 (c) view 3 (d) (e)

Fig. 7. Verification experiment for specular reflections. (d): the statistics of the singular
values obtained from the sampled instances. (e): a plot for intensity variation of a good
correspondence.

5.2 Estimation

We set up a real-world scene to showcase our solution, and its estimation results
are visualized in Fig. 8. Our goal is to estimate the rotations, and the due to
the space limit our configuration leads to orthographic projection. The resulted
rotation matrices are evaluated relative to its ground truth. Here R12 indicates
the relative rotation from view 2 to view 1: R12 = (0.9977, 0.9915, 0.9892), R12 =
(0.9855, 0.9797, 0.9652) which are intuitively reasonable.

(a) view 1 (b) view 2 (c) view 3 (d) R12 (e) R13

Fig. 8. An example for estimating the camera pose using polarimetric readings.

The estimation accuracy are mainly degraded by two factors: (1) the measure-
ment noise that are commonly observed for polarization measurements, which
occurs often from diffusive reflections and cast shadows; (2) the correspondence
might not accurate. In the experiment we also manually include some plausible
correspondences inside the textureless region. Since the synergy of these two
factors amplifies our estimation error, an effective solution to this issue is under
our investigation.
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6 Conclusions and Future Work

In conclusion, in this paper we establish the theoretical connection between
polarization and three-view geometry, which leads to an example of polarization-
enabled estimation on camera poses. In particular, guided by the microfacet the-
ory and the classical Fresnel equations, we experimentally verify the ubiquitous
existence of the two types of pencils of planes derived from polarization phase
shift, where one is induced by the direct surface reflections and the other by the
diffusive reflections due to subsurface scattering. Our formulation shows that
a rotatable linear polarizer can extract the relative rotation of a camera from
its translation. Also, using pencil of planes induced by light, the specular corre-
spondences cross-validate the estimation obtained from diffusive correspondences
with fixed number of steps, which we consider an effective strategy to resolve
ambiguities caused by mixed polarizations. Our experiment on real world scene
validates our theory and produce desirable results.

However, it is not hard to see that our experiment is still preliminary. Because
polarization measurements are vulnerable to noises, whose effect amplifies under
uncontrolled illumination. In particular, polarization by diffusive reflections
delivers less stable observations than specular reflections do due to the ther-
mal noise of the device. On the other hand, however, diffusive reflections due
to subsurface scattering usually carry the dense features for traditional stereo
correspondences. These features are also the key reasons that RANSAC-based
approaches are resilient to noise. Since our strategy for disambiguation of mixed
polarization described in Sect. 4.2 operates in a similar manner, it is reasonable
to put both parts into a unified framework. Comparing with fusing polarimetric
information structure reconstruction [8], our work showcase that polarization
can be directly used to extract some underneath geometric properties about the
camera and the scene, which also draws certain analogies to the work of tradi-
tional setup [20]. Therefore, exploring the geometric properties embedded inside
polarization and integrating them into the traditional framework will be a part
of our future work.
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