
Dynamic Task Prioritization for
Multitask Learning

Michelle Guo(B) , Albert Haque , De-An Huang , Serena Yeung ,
and Li Fei-Fei

Department of Computer Science, Stanford University, Stanford, USA
mguo95@cs.stanford.edu

Abstract. We propose dynamic task prioritization for multitask learn-
ing. This allows a model to dynamically prioritize difficult tasks during
training, where difficulty is inversely proportional to performance, and
where difficulty changes over time. In contrast to curriculum learning,
where easy tasks are prioritized above difficult tasks, we present sev-
eral studies showing the importance of prioritizing difficult tasks first.
We observe that imbalances in task difficulty can lead to unnecessary
emphasis on easier tasks, thus neglecting and slowing progress on difficult
tasks. Motivated by this finding, we introduce a notion of dynamic task
prioritization to automatically prioritize more difficult tasks by adap-
tively adjusting the mixing weight of each task’s loss objective. Addi-
tional ablation studies show the impact of the task hierarchy, or the
task ordering, when explicitly encoded in the network architecture. Our
method outperforms existing multitask methods and demonstrates com-
petitive results with modern single-task models on the COCO and MPII
datasets.

1 Introduction

Children can efficiently manage multiple subjects in school. This multitasking
capability is generally possible because one spends more time and effort on the
subjects they find more challenging, rather than the subjects they find easy [1].
By allocating mental resources proportional to the complexity and difficulty of
each subject, humans can increase the effectiveness and efficiency at which learn-
ing occurs [2,3]. This idea is supported by the task management and cognitive
workload literature [4,5].

Like humans, computational models can also perform multitask learning by
jointly training on multiple tasks. Multitask learning is prevalent in several
applications, including computer vision [6–8], natural language processing [9–
13], speech processing [14–16], and reinforcement learning [17–20]. Some works

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01270-0 17) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11220, pp. 282–299, 2018.
https://doi.org/10.1007/978-3-030-01270-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01270-0_17&domain=pdf
http://orcid.org/0000-0002-6574-6669
http://orcid.org/0000-0001-6769-6370
http://orcid.org/0000-0002-6945-7768
http://orcid.org/0000-0003-0529-0628
http://orcid.org/0000-0002-7481-0810
https://doi.org/10.1007/978-3-030-01270-0_17
https://doi.org/10.1007/978-3-030-01270-0_17

Dynamic Task Prioritization for Multitask Learning 283

[21] train a single model across multiple input domain modalities. However, when
multiple tasks are presented to a model, it is possible for easy tasks to dominate
learning, while progress is stunted on harder ones (Fig. 1). We pose the follow-
ing question: As we train a multitask model, should we adjust the amount of
learning from easy versus difficult tasks?

A key challenge towards machine multitasking is task prioritization: deciding
which resources to allocate to which tasks. These resources can take the form of
gradient magnitudes, parameter count, or update frequencies. Task prioritization
is especially challenging when tasks vary in their degrees of difficulty. In tradi-
tional multitask learning [22], a model continues to invest the same level of detail
on easy tasks, even after mastering them. Perfecting these simple tasks wastes
valuable resources. As a result, challenging tasks, which may require additional
learning, learn less quickly and perform poorly, compared to easier tasks.

Human Pose Estimation

Iterations Accuracy (PCKh)

Person Detection

Task Priority

Iterations Average PrecisionTask Priority

Fig. 1. Dynamic task prioritization. Example of a single model trained on two
simultaneous tasks: (top) pose estimation and (bottom) person detection. For each task:
(Images) Input images with corresponding task-specific labels. (Line Plot) Dynamic
task priority and performance over time. The x axis denotes training iteration number;
y axis denotes task priority and model performance.

Curriculum learning attempts to treat easy and hard tasks differently by
learning easy tasks before harder ones [23]. Defined by Bengio et al. [24], cur-
riculum learning divides a single task into simpler subtasks which are presented
to a model in increasing difficulty. A critical assumption of curriculum learning
is that the underlying distribution across all tasks is the same but the entropy
increases over time [24]. However, this assumption is broken when defining the
multitask problem over disparate tasks (i.e., tasks do not share the same distri-
bution, such as pose estimation versus classification). Since curriculum learning

284 M. Guo et al.

holds this assumption, conclusions from curriculum learning cannot be applied
in the general, and arguably more common, multitask setting where tasks are
not subsets of a single task.

Contributions. In this paper, we propose dynamic task prioritization for
multitask learning. Inspired by human learning [1–3], our model is encouraged
to prioritize difficult tasks and examples. We liken this to the problem of class
imbalance, which is commonly remedied by hard negative mining [25,26]. Our
contributions are two-fold:

1. We present a comprehensive analysis to better understand the task prioriti-
zation problem at both an example-level and task-level. The results of our
analysis indicate that more learning resources should be allocated to difficult
tasks rather than easier tasks.

2. We propose a unified framework that operationalizes the above insight: Our
method dynamically adjusts task-level loss coefficients to continually priori-
tize difficult tasks. This uses learning progress signals to automatically com-
pute a time-varying distribution of task weights.

Empirically, we evaluate our method on classification, segmentation, detection,
and pose estimation using the COCO [27] and MPII Human Pose datasets [28].

2 Related Work

Our work on multitask learning is related to curriculum learning, which was
proposed by Elman [29] to improve the training of multiple task subsets with a
constant underlying distribution, starting with smaller and simpler tasks first.
This has been demonstrated in many works [23,30,31]. For example, in [32],
Zaremba and Sutskever propose two criteria for self-pacing through the curricu-
lum. However, once learning occurs from diverse tasks (i.e., data or labels from
different distributions), as in our setting, the assumptions of curriculum learning
no longer hold [24] and it can be difficult for these pre-selected progress criteria
to continue to hold. In our case, the underlying distribution across tasks can be
significantly different (e.g., domain adaptation [33–35]).

To address diverse tasks, there are two approaches: (i) assign different priori-
ties to tasks by using task-level weights or (ii) structure the network architecture
to take advantage of inter-task relationships, as is common in task hierarchies.

2.1 Task Weighting

Task Weighting. Multitask learning models are sensitive to task weights [36].
A task weight is commonly defined as the mixing or scaling coefficient used to
combine multiple loss objectives. Task weights are typically selected through
extensive hyperparameter tuning (e.g., UberNet [37], Overfeat [38]). Addition-
ally, task weights are often static throughout the course of training, potentially
diverting training resources to unnecessary tasks or examples [39]. In [36], the
authors automatically derive the weights based on the uncertainty of each task,

Dynamic Task Prioritization for Multitask Learning 285

but they do not consider task difficulty. Recent methods attempt to dynami-
cally adjust or normalize the task weights according to prescribed criteria or
normalization requirements, such GradNorm [40]. These dynamic techniques are
sometimes referred to as self-paced learning methods.

Self-Paced Learning. Self-paced learning [41] is an automated approach to
curriculum learning where the curriculum is determined by the model’s abilities
rather than being fixed via external human supervision [42]. In [43], the authors
proposed automatically selecting task-specific loss weights via a regularizer on
task weights. However, the tasks were subsets of a larger task and thus do not
represent a diverse set of tasks. In [44], the authors alternate between learning the
task-ordering and instance-level ordering. It is similar to our work but assumes
the task-specific model can be trained in a single iteration (i.e., no gradient
descent), so its effectiveness for deeper neural networks is unclear. We believe
automatic weighting is the correct research direction, but task weights must be
selected to better suit the multitask setting.

Learning From Progress Signals. In [31], Graves et al. use an accuracy
metric as a learning progress signal to find a stochastic policy for task curriculum
learning [45]. This learning progress signal is used to actively select the syllabus
through a curriculum such that it maximizes overall progress. Learning from
progress signals is commonplace in reinforcement learning tasks, serving as indi-
cators of reward signals to encourage exploration [46–49]. Routing Networks [50]
takes a multi-agent approach to dynamically select different network submod-
ules, depending on the task and rewards. Neural architecture search [51] takes
this a step further and trains an agent with the goal of designing entire network
architectures, using accuracy as the progress (reward) signal. In this work, we
use a variant of prediction gain [52], reformulated for supervised learning tasks,
to dynamically compute task weights/priority during training.

2.2 Inter-Task Relationships

In this work, we jointly predict classification, person segmentation, person detec-
tion, and human pose labels. These tasks are important for understanding
humans in images. Mask R-CNN [53] is a popular method which is capable
of predicting segmentation, detection, and human pose labels. Our work differs
in that we predict all tasks simultaneously by leveraging inter-task difficulty
levels.

Hard Parameter Sharing. Hard parameter sharing shares the hidden lay-
ers across all tasks, but maintains separate task-specific output modules (e.g.,
a single fully-connected layer before the loss). It is one of the most commonly
used approaches for multitask learning. The motivation is that one can improve
generalization by using domain information contained in related tasks [22]. Hard
parameter sharing has been successful in image classification [54], object detec-
tion [39,55], semantic segmentation [53], and facial analysis [56]. In [57], the
authors use hard sharing with sequence-to-sequence models. Compared to a sin-
gle model per task, hard parameter sharing can reduce the risk of overfitting [58]
occasionally leading to performance improvements [37,59].

286 M. Guo et al.

However, hard parameter sharing has two major drawbacks. First, task-
specific loss objectives must be combined, requiring task-specific weights. Select-
ing these weights can be difficult and expensive [60]. Second, at some point in the
network architecture, hard sharing methods use a single shared representation
which is then fed into multiple task submodules [8,39,53,57,61,62]. This leads
to a critical layer : a layer responsible for learning representations that must sat-
isfy all downstream objectives. The burden on this layer can make it difficult to
optimize [22].

Task Hierarchy. Multitask learning benefits from multiple related tasks
[63,64] as they can reinforce one another and improve overall performance [23,
65]. One method of exploiting inter-task relationships is to formulate a task
hierarchy [66]. In these hierarchical multitask models, increasingly complex tasks
are predicted at successively deeper layers. This has yielded promising results
in the natural language processing community [10]. In the work by Søgaard and
Goldberg [67], they developed a model with part-of-speech tags supervised at
lower layers while higher-level language tasks such as language inference [68]
and machine translation [69] were supervised at later layers. Feedback Networks
[70] show the efficacy of learning an implicit hierarchy by learning a different
function at different depths of a network unrolled in time. While task hierarchy
is not our primary contribution in this paper, we examine the applicability of
an explicit task hierarchy embedded in the network architecture. We arrange
multiple computer vision tasks in a hierarchy, ordered by difficulty.

3 Method

We introduce dynamic task prioritization for multitask learning. In contrast to
the self-paced multitask loss proposed in [43], which assigns more weight to easier
tasks, our method prioritizes difficult tasks instead. Also different from [43], our
method does not use task losses to determine relative task difficulties. Instead,
we use more intuitive and realistic metrics for dynamically prioritizing tasks:
progress signals – also known as key performance metrics (KPIs). This is an
idea commonly explored in reinforcement learning literature [31,52], which we
adapt for the multitask setting.

3.1 Priority Based on Difficulty

In this subsection, we define the notion of priority and discuss how we dynam-
ically adjust it, based on difficulty. There are two use cases: (i) example-level
priority and (ii) task-level priority.

Preliminaries. We define our algorithm over an ordered set of tasks T =
{T1, ..., T|T |}. We define difficulty D ∝ κ−1 where κ is a performance metric
such as accuracy. Let t denote the current task index being considered from the
task set in T . Tasks T1, ..., T|T | are ordered according to their difficulty D(Tt).
Without loss of generality, ∀t ∈ |T | we have D(Tt) ≥ D(Tt+1).

Dynamic Task Prioritization for Multitask Learning 287

The task-specific loss (e.g., cross-entropy) for task Tt is denoted by Lt(·).
Since some examples may not contain ground truth labels for all possible tasks
in T , we use δt,i ∈ {0, 1} to denote the availability of ground truth data for
example i, task Tt. Then the masked task loss Lt(·) is defined in (0), where i
is the index of the training example, pi

t is the model’s post-softmax output for
example i for task Tt, and yi

t is the ground truth for example i for task Tt.

Lt(·) =
1
N

N∑

i=1

δt,iLt(pi
t, y

i
t) (0) LTotal =

|T |∑

t=1

λtLt (1)

In the standard multitask learning setup, multiple losses are combined using
mixing parameters λt as shown in (1). Intuitively, λt denotes the task weight
(i.e., relative importance/scaling).

Key Performance Indicators. For each task Tt, we select a key perfor-
mance indicator (KPI) denoted by κt ∈ [0, 1]. The KPI κt should be a meaningful
metric such as accuracy or average precision (AP), including for regression tasks
(e.g., where success is defined by some error threshold). We compute κt to be an
exponential moving average κ̄

(τ)
t = ακ

(τ)
t +(1−α)κ̄(τ−1)

t where τ is the training
iteration number and α ∈ [0, 1] is the discount factor. Larger values of α prioritize
more recent examples. We discuss later that κt need not be differentiable.

Finally, let γ0 ≥ 0 denote the example-level focusing parameter and
γ1, ..., γt ≥ 0 denote the task-level focusing parameters. These focusing parame-
ters γ0, ..., γt are not the actual weights applied to the loss (i.e., not the mixing
parameters) but rather adjust the rate at which easy examples and tasks are
down-weighted.

Example-Level Prioritization. We now describe how difficult examples
are identified. Consider binary classification with cross entropy (CE):

CE(pc) = − log(pc) where pc =

{
p, if y = 1
1 − p, otherwise

(2)

where y ∈ {−1,+1} denotes the true class label and p ∈ [
0, 1

]
is the model’s

post-softmax output (i.e., probability) for the class y = 1. One notable property
of CE is that easily classified examples will have pc � 0.5.

In [39], the authors proposed the Focal Loss as a way to down-weight easier
examples and focus on harder examples during training. It is defined as:

FL(pc; γ0) = −(1 − pc)γ0 log(pc) (3)

where γ0 is the example-level focusing parameter, as defined above. While FL(·)
is defined for classification, we can extend this to regression tasks. Consider a
real-valued error metric ei for some example i. We can use FL(ei; γ0) if ei ∈ [0, 1].
One normalization scheme is to scale ei by a constant such as the image size.

We define the task-specific loss function as L∗
t (·) = FL(pc; γ0), where each

example is weighted by its difficulty. The loss L∗
t (·) effectively scales the example-

level weight because difficult examples now contribute more to the overall loss. As

288 M. Guo et al.

a result they are given more “weight” during backpropagation. This is in line with
our overall motivation: we wish to dynamically adjust the training procedure
such that learning resources are not constantly allocated to easy examples.

Task-Level Prioritization. Similar to example-level prioritization, if the
KPI κ̄t � 0.5, we can assume that task Tt is easy for the model. If accuracy or
precision on a given task may be 99%, this should be taken into consideration
when combining the loss with a more difficult task. To balance easy and difficult
tasks, we propose to scale each task-specific loss L∗

t (·) by computing the task
difficulty D(Tt) = FL(κ̄t; γt). Our dynamic task prioritization loss (LDTP) is:

LDTP(·) = L∗
Total(·) =

|T |∑

t=1

FL(κ̄t; γt)L∗
t (·) (4)

To summarize thus far, our loss LDTP uses learning progress signals (i.e., κ̂t) to
automatically compute a priority level at both a task-level and example-level.
These priority levels vary throughout the training procedure.

Gradients. In the case where the KPI κt is differentiable, such as the
intersection-over-union loss layer [71] or KPI approximations [72], the gradi-
ent can be computed as normal. In the case where the KPI κt may not be
differentiable, the derivative of LDTP(·) with respect to x is:

∂

∂x
LDTP(·) =

|T |∑

t=1

[∂

∂x
L∗

t (·)
]
FL(κ̄t; γt) +

[∂

∂x
FL(κ̄t; γt)

]
L∗

t (·) (5)

Treating FL(κt; γt) as a constant causes the second term to evaluate to zero. As
a result, LDTP(·) reduces to the standard multitask learning loss with per-task
weights as shown in Eq. 1. The final LDTP(·) can be minimized with first-order
optimization methods [73].

3.2 Implicit Priority from the Network Architecture

The central theme of this work is to prioritize learning from difficult examples
and tasks, where difficulty is measured by some progress signal. Our proposed
loss in Sect. 3.1 handles prioritization during the training phase. However, the
network architecture may also indirectly affect task prioritization. To better
understand this effect (if any), we perform a series of ablation studies to measure
the influence of a task hierarchy.

Task Hierarchy. A task hierarchy refers to some arbitrary ordering of tasks,
usually motivated by the inter-task relationships. This ordering may manifest
itself through the underlying network architecture. In this work, we experiment
with a task hierarchy based on the relative difficulties between different tasks.

Consider a task set T with the task ordering T1, T2, ..., T|T |. When placed
in a hierarchy, the task Tt is processed before being fed into the next task Tt+1.
In contrast, a multitask model not arranged in a task hierarchy, such as hard
parameter sharing, would process the tasks in parallel, where all tasks T1, T2, ...

Dynamic Task Prioritization for Multitask Learning 289

T|T | consume the same learned representation φ(x) where x is the input and φ
is an arbitrary function (e.g., neural network). Typically, there are no cross-task
dependencies after ϕ(x). Different from [23], our task hierarchy is not multi-
stage; all tasks are computed in a single pass.

Fig. 2. Comparison of multitask learning architectures. Shades of blue denote
different task-specific layers. Gray rectangles with Bt denote a backbone block, Mt

denotes a task-specific submodule, x is the input. (a) Hard parameter sharing: the
standard approach to multitask learning, T = 2. (b) UberNet [37], T = 2. (c) Task
hierarchy used in our ablation studies, T = 4.

Network Architecture. To encode a task hierarchy at the architectural
level, we enforce unidirectional feedforward connections between different layers
of a neural network (see Fig. 2). Given an input x and a task hierarchy T , the
input x is fed into a neural network module which we refer to as the backbone.
The backbone consists of |T | submodules, which we call backbone blocks, denoted
as B1, B2, ... B|T |. For each task Ti in the curriculum, a backbone block Bi

feeds a task-specific module Mi (e.g., deconvolution [74], pointwise convolution).
Additionally, the backbone block Bi feeds into the next tasks’s backbone block,
Bi+1. To pass features between backbone blocks, transition layers are inserted
between blocks. This structure is stacked |T | times in the network architecture
to create a model that encodes the task ordering specified by the task hierarchy
T (see Fig. 2c).

For any task Tt and any input x, the progression through the task hierarchy is
defined by the following recurrence relation, where φ is a learned representation:

φ0 = x and φt = (Mt ◦ Bt)(x) (6)

where Bt(x) = (Bt−1 ◦Bt−2...◦B1)(x) and ◦ denotes function composition. One
such hierarchy is to order tasks such that D(Tt) ≥ D(Tt+1),∀t ∈ |T |, where the
task difficulty D(t) = FL(κ̄t; γt), is defined in Sect. 2.1. The result is a hierarchy
where more difficult tasks are processed before easier tasks.

290 M. Guo et al.

To summarize: In a task hierarchy, the output from a lower-level task is
provided as input to a higher-level task. This is in contrast to hard parameter
sharing (Fig. 2a), where there is no concept of “lower-level” task in the architec-
ture. UberNet (Fig. 2b) consists of a hierarchy, but the task-specific submodules
still share a critical layer.

4 Experiments

The goal of this work is to dynamically prioritize difficult tasks during multitask
learning. Our experiments are three-fold:

1. We perform an analysis to show the importance of task-level prioritization.
2. We present two ablation studies to measure: (i) explicit priority from our

dynamic task prioritization and (ii) implicit priority from a task hierarchy.
3. We compare our proposed method with existing single-task methods on stan-

dard computer vision tasks and datasets.

Datasets. We evaluate our approach on four core computer vision tasks: classi-
fication, segmentation, detection and pose estimation. We use the COCO 2017
dataset [27] and the MPII Human Pose dataset [28]. To use the full set of labels
provided by these datasets, we focus on human understanding tasks where at
most one person is present in the image. The reason for limiting images to zero
or one person is to enable simpler flow of information between tasks. Scaling
to multiple people is a matter of using more sophisticated task-specific decoder
modules. Regardless, our method can be extended to multiple people through
iterative application as has been done in prior work [75–77].

Evaluation Metrics. Classification is evaluated using the top-1 classifi-
cation accuracy. For segmentation and detection we use the standard COCO
metrics [27], primarily average precision (AP). We use: AP, AP50, AP75, APS ,
APM , and APL, where the subscript refers to the minimum overlap threshold
for a positive detection. Intersection-over-union (IoU) is the metric thresholded
at 50% to 95%, in 5% increments, for small [S] (area < 322), medium [M] (322 ≥
area < 962), and large [L] (area ≤ 962) objects [27]. For pose estimation, we use
the standard MPII metric: percentage of correct keypoints (PCKh) metric [78].
The PCKh metric accounts for a person’s size in the image based on the length
of the head-neck segment. If the predicted two-dimensional pose coordinate is
within ε pixels of the ground truth pose coordinate, the prediction is considered
correct. The tolerance ε is proportional to the ground truth head-neck length.
Implementation details and hyperparameters can be found in Appendix B (see
supplementary material).

4.1 Task-Level Prioritization

Our first experiment is to evaluate different task-weighting schemes, including
our dynamic task prioritization method. We trained a single hard parameter
sharing model (Fig. 2) to simultaneously predict classification, segmentation,

Dynamic Task Prioritization for Multitask Learning 291

Fig. 3. Comparison of task-level prioritization schemes. (Top; line plot) Per-
formance for each task on the validation set. Higher is better. The x axis denotes
the number of training steps. (Bottom; square tiles) Priority level of each task during
training. Darker colors denote to higher priority. (Color figure online)

detection, and pose estimation labels but used different weighting/prioritization
mechanisms. The only difference between the weighting schemes is the task
weights – some are fixed and some are dynamic. The network architecture con-
sists of a single shared backbone (i.e., DenseNet [79]) with the final layer fed
into multiple task-specific layers.

Baselines. Table 1 shows that our weighting scheme can outperform other
multitask learning weighting schemes. We evaluated the following:

– Uniform: Each task is added together to produce a single scalar loss value.
– Prioritize Easy: Classification has weight 0.97, all other have weight 0.01.
– Prioritize Hard: Pose estimation has weight 0.97, all others have weight 0.01.
– Hand-Crafted: Pose estimation, detection, segmentation, and classification are

given weights of 0.4, 0.3, 0.2, and 0.1 respectively (Selected by grid-search).
– Loss Exponentiation: Un-weighted loss outputs are raised to the power 1.2.

This assumes larger loss magnitudes indicate more difficult tasks. The power
of 1.2 was selected by grid-search.

– Homoscedastic Uncertainty [36]: Uses uncertainty, which is related to loss
magnitude, to automatically weight different tasks.

– Self-Paced [43]: Task weights are learnable parameters and are regularized to
encourage selecting the easy tasks in the earlier iterations of training.

Our method, dynamic priority, adaptively adjusts task-level priorities through-
out the training procedure. This is apparent in Fig. 3c. Initially, pose is given
the highest priority, and over time, the model slowly increases the priority of
detection and segmentation. Note that this is slightly different from our final
proposed method, evaluated in Sect. 4.3. Our final model combines task-level
priority with example-level priority, whereas the model in Table 1 and Fig. 3c
only applies a task-level priority.

292 M. Guo et al.

Table 1. Comparison of task-level prioritization schemes. Letters denote clas-
sification (C), segmentation (S), detection (D), and pose estimation (P) tasks. LR
Schedule refers to a learning rate schedule (see Appendix B in the supplementary
material).

Method C Top-1 S AP50 D AP50 P AP50

Uniform 90.14 78.57 75.29 47.72

Prioritize easy 88.69 62.45 67.36 45.48

Prioritize hard 89.92 75.80 65.86 55.96

Prioritize easy (LR Schedule) 88.32 61.29 64.68 47.72

Prioritize hard (LR Schedule) 89.44 72.84 82.64 56.09

Hand-crafted 90.62 78.06 76.80 50.28

Loss exponentiation 88.85 73.99 67.68 42.52

Homoscedastic uncertainty [36] 88.59 73.56 65.01 48.72

Focal loss (γ = 1) 88.80 70.77 65.05 54.04

Self-paced [43] 89.76 74.46 78.18 49.34

Dynamic priority - easy 90.20 68.00 76.20 32.90

Dynamic priority - hard (Ours) 91.05 78.83 79.31 56.11

4.2 Ablation Studies

Our ablation studies consist of two components: (i) analyzing our proposed
dynamic task prioritization method and (ii) analyzing the effect of a task hier-
archy.

Dynamic Task Prioritization: Focusing Parameter γ. To better under-
stand the interaction between the task- and example-level focusing parameters
γ0, ..., γt, we provide an ablation study in Table 2. In this experiment, we trained
a hard-parameter sharing model on all four tasks. The difference between each
run was the inclusion or exclusion of example- or task-level weighting. We also
varied the focusing parameter value.

Increasing the focusing parameter exponentially marks easier examples and
tasks as unimportant. By increasing γ0, performance for classification and seg-
mentation decrease. Surprisingly, detection and pose estimation AP improves
on FL and FL+DTP when γ0 increases from 1.0 to 2.0. Intuitively, this makes
sense pose estimation is more difficult than classification and segmentation (i.e.,
pose estimation is a multi-regression task). A larger γ0 forces the model to focus
on detection and pose estimation, but unfortunately at the cost of classification
and segmentation performance.

Task Hierarchy: Effect of the Task Ordering. This paper focuses on
the tasks of classification, person segmentation, person detection and human
pose estimation. Enumerating the possible task orderings results in 4! = 24
permutations. We conducted an experiment where we train and evaluate 24
models, each with a different task permutation. While this is an exhaustive

Dynamic Task Prioritization for Multitask Learning 293

Table 2. Effect of example- and task-level focusing parameters. FL denotes
Focal Loss [39], applied to example-level weighting. DTP denotes our dynamic task pri-
oritization loss on task-level weighting. γ0 denotes the example-level focusing parameter
and γ1, ..., γt denotes the task-level focusing parameter.

Method C Top-1 S AP50 D AP50 P AP50

FL (γ0 = 1) 74.0 74.0 82.0 49.1

FL (γ0 = 2) 71.8 71.8 69.9 47.4

DTP (γ1..., γt = 1) 91.1 78.8 79.3 56.1

DTP (γ1..., γt = 2) 88.8 76.5 68.4 54.3

FL+DTP (γ0, ..., γt = 1) 88.9 77.8 85.9 52.7

FL+DTP (γ0, ..., γt = 2) 88.4 76.7 82.4 54.9

search, the goal of this experiment is not to find the optimal ordering but rather
determine if such an ordering has an effect on performance.

We use a densely connected convolutional network [79] as the backbone of
the task hierarchy (see Fig. 2c). The classification module consists of a linear
layer to generate classification predictions. The segmentation module consists
of a small fully convolutional network [80] and outputs a segmentation mask.
For the detection and pose modules, we used point-wise convolutions to regress
vectors which parameterize bounding boxes and 2D body part positions.

0.96

0.98

1.00

1.02

1 2 3 4
Position in Hierarchy

R
el

at
iv

e
C

ha
ng

e

0.50
0.75
1.00
1.25
1.50
1.75

1 2 3 4
Position in Hierarchy

R
el

at
iv

e
C

ha
ng

e

0.9

1.0

1.1

1.2

1 2 3 4
Position in Hierarchy

R
el

at
iv

e
C

ha
ng

e

0.9

1.0

1.1

1.2

1 2 3 4
Position in Hierarchy

R
el

at
iv

e
C

ha
ng

e

Fig. 4. Effect of task ordering on performance. The x axis denotes position in
the hierarchy (e.g., 1: first task, 4: last task). Each bar/box denotes the middle 50%.
The y axis denotes the relative performance of a model if you place a task Ti at a
specified position in the hierarchy, compared to a model trained with Ti at the first
position. If y >= 1.0, this means task Ti performs better at that position than a model
with task Ti positioned at the beginning of the curriculum. For example, in (a), the
classification task tends to perform better when placed before other tasks. Black dots
represent outliers, defined as more than 1.5× away from the inter-quartile range. A
table of full results is given in Appendix A (see supplementary material).

An analysis of the ordering experiment is shown in Fig. 4. It is clear that some
tasks perform better at different positions in the hierarchy. Figure 4a shows that
classification performs better when placed at the beginning of the hierarchy (i.e.,

294 M. Guo et al.

the first layer, see Fig. 2c). Segmentation demonstrates significantly improved
performance when placed in later layers of the hierarchy (see Fig. 4b). When
placed in the center of the task hierarchy network at position 3, segmentation
performance is boosted by 1.25×. Detection (Fig. 4c) is fairly robust to its posi-
tion in the hierarchy. Pose estimation (Fig. 4d) also appears to be robust to its
position, but the high variances may prove to be inconclusive.

Task Hierarchy for Multitask Learning. Our experiments thus far sug-
gest that a task hierarchy does impact performance – especially for the case of
classification and segmentation (see Fig. 4). We now pose the following question:
How does a task hierarchy compare to existing multitask methods, such as hard
parameter sharing?

Baselines. We evaluate the commonly used hard parameter sharing model
[22], where multiple task heads branch out from a single critical layer near the
end of the network. Additionally, we evaluate the UberNet [37] architecture for
multitask learning. Visually, these baselines are illustrated in Fig. 2. We briefly
discuss the experimental configuration of each multitask method:

– Hard Parameter Sharing [22]. A DenseNet [79] was used as the shared model.
The output feature map of the shared model is fed into individual task mod-
ules (i.e., readout functions or decoders).

– UberNet [37]. We similarly use a DenseNet as the “trunk”. Each dense block
outputs to a batch normalization [81] layer, which branches out into task
modules. Each layer outputs task-specific features.

– Task Hierarchy. We also use a DenseNet as the backbone. Each dense block
outputs to a different task module. The ordering selected for this experiment
is the best ordering, as discovered from Fig. 4: classification, segmentation,
detection, and pose estimation.

UberNet [37], a variant of hard parameter sharing, is a unified architecture for
jointly training multiple tasks in parallel. They demonstrate competitive per-
formance with state-of-the-art single-task models when training on one or two
tasks. However, when scaling to several tasks, performance deteriorates [37]. We
believe their observation can be attributed to task difficulty. This leads to a key
difference between our work and UberNet: Our method learns representations in
a task hierarchy ordered by task difficulty, whereas UberNet learns a standard
deep learning feature hierarchy [82].

Table 3. Comparison with task hierarchy on COCO. Letters denote classification
(C), segmentation (S), detection (D), and pose estimation (P) tasks.

Models C Top-1 S AP50 D AP50 P AP50

Hard sharing [22] 91.05 78.83 79.31 56.11

UberNet [37] 89.76 77.81 80.06 55.47

Task hierarchy 91.16 80.26 80.92 62.40

Dynamic Task Prioritization for Multitask Learning 295

Results. Table 3 compares hard parameter sharing, UberNet, and our task
hierarchy. Each baseline contained identical backbone and decoder modules. As
was apparent in Table 1, in this task hierarchy study, we also observe the effects
of transfer learning. Our task hierarchy outperforms hard sharing and UberNet
with a wide margin for pose estimation – our most difficult task. Classification
and detection demonstrate comparable performance, with a slight improvement
in segmentation accuracy by our task hierarchy.

As a reminder, from our definition of task difficulty in Sect. 3, task perfor-
mance serves as a proxy for difficulty. The results in Fig. 4 suggest that pose
estimation and detection are significantly more difficult than classification and
segmentation. This is evident from the quantitative results in Table 2, which ana-
lyzed our dynamic task prioritization, and also from Fig. 4 and Table 3, which
suggest that a task hierarchy does impose a notion of priority – with pose estima-
tion being the most difficult task and classification being the easiest. Therefore,
we adopt the following hierarchy: classification first, detection second, segmen-
tation third, and pose estimation last.

4.3 Comparison to Single-Task Models

Having analyzed the independent effect of our proposed dynamic task prioriti-
zation scheme and the indirect effects of a task hierarchy, we now combine these
two technical insights into a single, unified model. In this experiment, we train
a single model equipped with dynamic task prioritization. It is trained jointly
on classification, segmentation, detection and pose estimation. We compare our
model to existing state-of-the-art single-task models such as RetinaNet [39],
FCN [80], and stacked hourglass networks [83]. To keep our model’s parameter
count as close as possible to each single-task model, we use identical task-specific
modules. Table 4 shows the results.

Table 4. Single-task versus our multitask, dynamic-task priority model. We
compare a single instance of our dynamic-task priority model (trained on all four tasks
simultaneously) with single-task methods.

COCO MPII

Task Method AP AP50 AP75 Accuracy AP50

Classification DenseNet [79] — — — 89.8 —

Classification Our method — — — 91.5 —

Segmentation FCN [80] 51.9 83.6 55.5 — —

Segmentation Our Method 49.4 83.2 50.7 — —

Detection RetinaNet [39] 49.4 83.7 57.0 — —

Detection Our method 52.5 80.2 53.1 — —

Pose estimation Hourglass [83] 59.9 — — — 43.9

Pose estimation Our method 62.4 — — — 45.8

296 M. Guo et al.

For the detection task, RetinaNet [39] demonstrated an APS ,APM , and APL

of 11.8, 45.6, and 70.8, respectively. Our method demonstrated an APS ,APM ,
and APL of 12.78, 40.6, and 70.5. While our method performs better on smaller
objects, RetinaNet outperforms our method on medium and large – indicating
comparable overall performance. We can see that our method, which is simulta-
neously trained on the classification, segmentation, detection, and pose tasks, is
capable of competitive results with state-of-the-art models.

5 Conclusion

In this work, we proposed dynamic task prioritization for multitask learning. Our
method encourages a model to learn from difficult examples and difficult tasks.
Ablation studies analyzed the effect of explicit priority generated by our proposed
method and the implicit priority generated by a task hierarchy, embedded in the
network architecture. In conclusion, we showed that training a single multitask
model with dynamic task prioritization can achieve competitive performance
with existing single-task models. We believe our results provide useful insights for
both the application and research of single-task and multitask learning methods.

References

1. Coviello, D., Ichino, A., Persico, N.: Time allocation and task juggling. Am. Econ.
Rev. 104(2), 609–623 (2014)

2. Kenny, J., Fluck, A., Jetson, T., et al.: Placing a value on academic work: the
development and implementation of a time-based academic workload model. Aust.
Univ. Rev. 54(2), 50–60 (2012)

3. Kenny, J.D., Fluck, A.E.: The effectiveness of academic workload models in an
institution: a staff perspective. J. High. Educ. Policy Manag. 36(6), 585–602 (2014)

4. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., Ducheneaut, N.: What
a to-do: studies of task management towards the design of a personal task list
manager. In: Conference on Human Factors in Computing Systems (2004)

5. Kember, D.: Interpreting student workload and the factors which shape students’
perceptions of their workload. Stud. High. Educ. 29(2), 165–184 (2004)

6. Yang, Y., Hospedales, T.: Deep multi-task representation learning: a tensor fac-
torisation approach. arXiv (2016)

7. Jou, B., Chang, S.F.: Deep cross residual learning for multitask visual recognition.
In: Multimedia Conference (2016)

8. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-
task learning. In: CVPR. (2016)

9. Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence
to sequence learning. arXiv (2015)

10. Hashimoto, K., Xiong, C., Tsuruoka, Y., Socher, R.: A joint many-task model:
growing a neural network for multiple NLP tasks. arXiv (2016)

11. Dong, D., Wu, H., He, W., Yu, D., Wang, H.: Multi-task learning for multiple
language translation. In: ACL (2015)

12. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: ICML, pp. 160–167 (2008)

Dynamic Task Prioritization for Multitask Learning 297

13. Augenstein, I., Ruder, S., Søgaard, A.: Multi-task learning of pairwise sequence
classification tasks over disparate label spaces. arXiv (2018)

14. Wu, Z., Valentini-Botinhao, C., Watts, O., King, S.: Deep neural networks employ-
ing multi-task learning and stacked bottleneck features for speech synthesis. In:
ICASSP (2015)

15. Seltzer, M.L., Droppo, J.: Multi-task learning in deep neural networks for improved
phoneme recognition. In: ICASSP (2013)

16. Huang, J.T., Li, J., Yu, D., Deng, L., Gong, Y.: Cross-language knowledge transfer
using multilingual deep neural network with shared hidden layers. In: ICASSP, pp.
7304–7308 (2013)

17. Jaderberg, M., et al.: Reinforcement learning with unsupervised auxiliary tasks.
arXiv (2016)

18. Rusu, A.A., et al.: Progressive neural networks. arXiv (2016)
19. Devin, C., Gupta, A., Darrell, T., Abbeel, P., Levine, S.: Learning modular neural

network policies for multi-task and multi-robot transfer. In: ICRA (2017)
20. Fernando, C., et al.: Pathnet: evolution channels gradient descent in super neural

networks. arXiv (2017)
21. Kaiser, L., et al.: One model to learn them all. arXiv (2017)
22. Caruna, R.: Multitask learning: a knowledge-based source of inductive bias. In:

ICML (1993)
23. Pentina, A., Sharmanska, V., Lampert, C.H.: Curriculum learning of multiple

tasks. In: CVPR (2015)
24. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In:

ICML (2009)
25. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detec-

tion. In: T-PAMI (1998)
26. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection

with discriminatively trained part-based models. In: T-PAMI (2010)
27. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,

Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

28. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation:
new benchmark and state of the art analysis. In: CVPR (2014)

29. Elman, J.L.: Learning and development in neural networks: the importance of
starting small. Cognition 48, 71–99 (1993)

30. Pentina, A., Sharmanska, V., Lampert, C.H.: Curriculum learning of multiple
tasks. In: CVPR (2015)

31. Graves, A., Bellemare, M.G., Menick, J., Munos, R., Kavukcuoglu, K.: Automated
curriculum learning for neural networks. arXiv (2017)

32. Zaremba, W., Sutskever, I.: Learning to execute. arXiv (2014)
33. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.: Label efficient learning of transferable

representations across domains and tasks. In: NIPS (2017)
34. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment

classification: a deep learning approach. In: ICML (2011)
35. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across

domains and tasks. In: ICCV (2015)
36. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh

losses for scene geometry and semantics. In: CVPR (2018)

https://doi.org/10.1007/978-3-319-10602-1_48

298 M. Guo et al.

37. Kokkinos, I.: Ubernet: training auniversal’ convolutional neural network for low-,
mid-, and high-level vision using diverse datasets and limited memory. In: CVPR
(2017)

38. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
integrated recognition, localization and detection using convolutional networks.
arXiv (2013)

39. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. arXiv (2017)

40. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: gradient nor-
malization for adaptive loss balancing in deep multitask networks. arXiv (2017)

41. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models.
In: NIPS (2010)

42. Xu, D., Alameda-Pineda, X., Song, J., Ricci, E., Sebe, N.: Cross-paced representa-
tion learning with partial curricula for sketch-based image retrieval. arXiv (2018)

43. Li, C., Yan, J., Wei, F., Dong, W., Liu, Q., Zha, H.: Self-paced multi-task learning.
In: AAAI (2017)

44. Xu, W., Liu, W., Chi, H., Huang, X., Yang, J.: Multi-task classification with
sequential instances and tasks. Signal Process. Image Commun. 64, 59–67 (2018)

45. Oudeyer, P.Y., Kaplan, F., Hafner, V.V.: Intrinsic motivation systems for
autonomous mental development. Trans. Evol. Comput. 11(2), 265–286 (2007)

46. urgen Schmidhuber, J.: A possibility for implementing curiosity and boredom in
model-building neural controllers. In: From Animals to Animats: Proceedings of
the First International Conference on Simulation of Adaptive Behavior (1991)

47. Storck, J., Hochreiter, S., Schmidhuber, J.: Reinforcement driven information
acquisition in non-deterministic environments. In: International Conference on
Artificial Neural Networks (1995)

48. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vision Res. 49(10),
1295–1306 (2009)

49. Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., Abbeel, P.: Vime:
variational information maximizing exploration. In: NIPS (2016)

50. Rosenbaum, C., Klinger, T., Riemer, M.: Routing networks: adaptive selection of
non-linear functions for multi-task learning. arXiv (2017)

51. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
(2016)

52. Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.:
Unifying count-based exploration and intrinsic motivation. In: NIPS (2016)

53. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
54. Bilen, H., Vedaldi, A.: Integrated perception with recurrent multi-task neural net-

works. In: NIPS. (2016)
55. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)
56. Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: a deep multi-task learning

framework for face detection, landmark localization, pose estimation, and gender
recognition. In: T-PAMI (2017)

57. Anastasopoulos, A., Chiang, D.: Tied multitask learning for neural speech trans-
lation. arXiv (2018)

58. Baxter, J.: A bayesian/information theoretic model of learning to learn via multiple
task sampling. Mach. Learn. 28, 7 (1997)

59. Meyerson, E., Miikkulainen, R.: Pseudo-task augmentation: From deep multitask
learning to intratask sharing-and back. arXiv (2018)

60. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv (2017)

Dynamic Task Prioritization for Multitask Learning 299

61. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task net-
work cascades. In: CVPR, pp. 3150–3158 (2016)

62. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: Multinet: real-
time joint semantic reasoning for autonomous driving. arXiv (2016)

63. Ben-David, S., Borbely, R.S.: A notion of task relatedness yielding provable
multiple-task learning guarantees. Mach. Learn. 73, 273 (2008)

64. Meyerson, E., Miikkulainen, R.: Beyond shared hierarchies: deep multitask learning
through soft layer ordering. In: ICLR (2018)

65. Kang, Z., Grauman, K., Sha, F.: Learning with whom to share in multi-task feature
learning. In: ICML (2011)

66. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. In: JMLR (2011)

67. Søgaard, A., Goldberg, Y.: Deep multi-task learning with low level tasks supervised
at lower layers. In: Association for Computational Linguistics (2016)

68. Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H.: Enhancing and combining sequential
and tree LSTM for natural language inference. arXiv (2016)

69. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural
machine translation. arXiv (2016)

70. Zamir, A.R., et al.: Feedback networks. In: CVPR (2017)
71. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object

detection network. In: Multimedia Conference (2016)
72. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural net-

works for image segmentation. In: International Symposium on Visual Computing
(2016)

73. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)
74. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.

In: CVPR (2010)
75. Pishchulin, L., Jain, A., Andriluka, M., Thormählen, T., Schiele, B.: Articulated

people detection and pose estimation: Reshaping the future. In: CVPR (2012)
76. Gkioxari, G., Hariharan, B., Girshick, R., Malik, J.: Using k-poselets for detecting

people and localizing their keypoints. In: CVPR (2014)
77. Iqbal, U., Gall, J.: Multi-person pose estimation with local joint-to-person associ-

ations. In: ECCV, Springer (2016)
78. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation:

new benchmark and state of the art analysis. In: CVPR (2014)
79. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected

convolutional networks. In: CVPR (2017)
80. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic

segmentation. In: CVPR (2015)
81. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. In: ICML, pp. 448–456 (2015)
82. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
83. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-

mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8 29

84. Paszke, A., et al.: Pytorch: tensors and dynamic neural networks in python with
strong GPU acceleration (2017)

85. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous dis-
tributed systems. arXiv:1603.04467 (2016)

86. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS (2015)

https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
http://arxiv.org/abs/1603.04467

	Dynamic Task Prioritization for Multitask Learning
	1 Introduction
	2 Related Work
	2.1 Task Weighting
	2.2 Inter-Task Relationships

	3 Method
	3.1 Priority Based on Difficulty
	3.2 Implicit Priority from the Network Architecture

	4 Experiments
	4.1 Task-Level Prioritization
	4.2 Ablation Studies
	4.3 Comparison to Single-Task Models

	5 Conclusion
	References

