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Abstract. One core challenge in object pose estimation is to ensure
accurate and robust performance for large numbers of diverse foreground
objects amidst complex background clutter. In this work, we present
a scalable framework for accurately inferring six Degree-of-Freedom
(6-DoF) pose for a large number of object classes from single or mul-
tiple views. To learn discriminative pose features, we integrate three new
capabilities into a deep Convolutional Neural Network (CNN): an infer-
ence scheme that combines both classification and pose regression based
on a uniform tessellation of the Special Euclidean group in three dimen-
sions (SE(3)), the fusion of class priors into the training process via a
tiled class map, and an additional regularization using deep supervi-
sion with an object mask. Further, an efficient multi-view framework is
formulated to address single-view ambiguity. We show that this frame-
work consistently improves the performance of the single-view network.
We evaluate our method on three large-scale benchmarks: YCB-Video,
JHUScene-50 and ObjectNet-3D. Our approach achieves competitive or
superior performance over the current state-of-the-art methods.

Keywords: Object pose estimation · Multi-view recognition
Deep learning

1 Introduction

Estimating 6-DoF object pose from images is a core problem for a wide range of
applications including robotic manipulation, navigation, augmented reality and
autonomous driving. While numerous methods appear in the literature [1,2,5,
11,16,25,38,40], scalability (to large numbers of objects) and accuracy continue
to be critical issues that limit existing methods. Recent work has attempted to
leverage the power of deep CNNs to surmount these limitations [15,24,26,29,
34,37,41,43]. One naive approach is to train a network to estimate the pose of
each object of interest (Fig. 1 (a)). More recent approaches follow the principle of
“object per output branch” (Fig. 1 (b)) whereby each object class1 is associated
with an output stream connected to a shared feature basis [15,24,29,34,43]. In

1 An object class may refer to either an object instance or an object category.
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both cases, the size of the network increases with the number of objects, which
implies that large amounts of data are needed for each class to avoid overfitting.
In this work, we present a multi-class pose estimation architecture (Fig. 1 (c))
which receives object images and class labels provided by a detection system and
which has a single branch for pose prediction. As a result, our model is readily
scalable to large numbers of object categories and works for unseen instances
while providing robust and accurate pose prediction for each object.

Fig. 1. Illustration of different learning architectures for single-view object pose estima-
tion: (a) each object is trained on an independent network; (b) each object is associated
with one output branch of a common CNN root; and (c) our network with single out-
put stream via class prior fusion. Figure (d) illustrates our multi-view, multi-class pose
estimation framework where hm,k, the k-th pose hypothesis on view m, is first aligned
to a canonical coordinate system and then matched against other hypotheses for pose
voting and selection.

The ambiguity of object appearance and occlusion in cluttered scenes is
another problem that limits the application of pose estimation in practice. One
solution is to exploit additional views of the same instance to compensate for
recognition failure from a single view. However, naive “averaging” of multiple
single-view pose estimates in SE(3) [4] does not work due to its sensitivity
to incorrect predictions. Additionally, most current approaches to multi-view
6-DoF pose estimation [6,21,32] do not address single-view ambiguities caused
by object symmetry. This exacerbates the complexity of view fusion when multi-
ple correct estimates from single views do not agree on SE(3). Motivated by these
challenges, we demonstrate a new multi-view framework (Fig. 1 (d)) which selects
pose hypotheses, computed from our single-view multi-class network, based on
a distance metric robust to object symmetry.

In summary, we make following contributions to scalable and accurate pose
estimation on multiple classes and multiple views:

– We develop a multi-class CNN architecture for accurate pose estimation with
three novel features: (a) a single pose prediction branch which is coupled
with a discriminative pose representation in SE(3) and is shared by multiple
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classes; (b) a method to embed object class labels into the learning process by
concatenating a tiled class map with convolutional layers; and (c) deep super-
vision with an object mask which improves the generalization from synthetic
data to real images.

– We present a multi-view fusion framework which reduces single-view ambigu-
ity based a voting scheme. An efficient implementation is proposed to enable
fast hypothesis selection during inference.

– We show that our method provides state-of-the-art performance on public
benchmarks including YCB-Video [43], JHUScene-50 [21] for 6-DoF object
pose estimation [21,43], and ObjectNet-3D for large-scale viewpoint estima-
tion [41]. Further, we present a detailed ablative study on all benchmarks to
empirically validate the three innovations in the single-view pose estimation
network.

2 Related Work

We first review three categories of work on single-view pose estimation and then
investigate recent progress on multi-view object recognition.

Template Matching. Traditional template-based methods compute 6-DoF
pose of an object by matching image observations to hundreds or thousands
of object templates that are sampled from a constrained viewing sphere [1,11,
38,40]. Recent approaches apply deep CNNs as end-to-end matching machines
to improve the robustness of template matching [1,18,40]. Unfortunately, these
methods do not scale well in general because the inference time grows linearly
with the number of objects. Moreover, they generalize poorly to unseen object
instances as shown in [1] and suffer from poor domain shift from synthetic to
real images.

Bottom-Up Approaches. Given object CAD models, 6-DoF object pose
can be inferred by registering a CAD model to part of a scene using coarse-
to-fine ICP [46], Hough voting [36], RANSAC [27] and heuristic 3D descrip-
tors [7,31]. More principled approaches use random forests to infer local object
coordinates for each image pixel based on hand-crafted features [2,3,25] or auto-
encoders [5,16]. However, local image patterns are ambiguous for objects with
similar appearance, which prevents this line of work from being applied to generic
objects and unconstrained background clutter.

Learning End-to-End Pose Machines. This class of work deploys deep
CNNs to learn an end-to-end mapping from a single RGB or RGB-D image to
object pose. [24,26,34,41] train CNNs to directly predict the Euler angles of
object instances and then apply them to unseen instances from the same object
categories. Other methods decouple 6-DoF pose into rotation and translation
components and infer each independently. SSD-6D [15] classifies an input into
discrete bins of Euler angles and subsequently estimates 3D position by fitting
2D projections to a detected bounding box. PoseCNN [43] regresses rotation with
a loss function that is robust to object symmetry, and follows this with a bottom-
up approach to vote for the 3D location of the object center via RANSAC. In
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contrast to the above, our method formulates a discriminative representation of
6-DoF pose that enables predictions of both rotation and translation by a single
forward pass of a CNN, while being scalable to hundreds of object categories.

Multi-view Recognition. In recent years, several multi-view systems have
been developed to enhance 3D model classification [14,33], 2D object detec-
tion [19,28] and semantic segmentation [22,35,46]. For 6-DoF pose estimation,
SLAM++ [32] is an early representative of a multi-view pose framework which
jointly optimizes poses of both the detected object and the cameras. [22] com-
putes object pose by registering 3D object models over an incrementally recon-
structed scene via a dense SLAM system. These two methods are difficult to
scale because they rely on [27] whose running time grows linearly to the num-
ber of objects. A more recent method [6] formulates a probabilistic framework
to fuse pose estimates from different views. However, it requires computation
of marginal probability over all subsets of a given number of views, which is
computationally prohibitive when the number of views and/or objects is large.

Fig. 2. Multi-class network architecture for a single view; the figure shows the actual
number of layers used in our implementation. We note that the XYZ map which rep-
resents normalized 3D coordinates of each image pixel. If depth data is not available,
this stream is omitted.

3 Single-View Multi-class Pose Estimation Network

In this section, we introduce a CNN-based architecture for multi-class pose esti-
mation (Fig. 2). The input can be an RGB or RGB-D image region of interest
(ROI) of an object provided by arbitrary object detection algorithm. The net-
work outputs represent both the rotation R and the translation T of a 6-DoF
pose (R, T ) in SE(3).
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We first note that the a single rotation R relative to the camera corresponds
to different object appearances in image domain when T varies. This issue has
been discussed in [26] in the case of 1-D yaw angle estimation. To create a
consistent mapping from the ROI appearance to (R, T ), we initially rectify the
annotated pose to align to the current viewpoint as follows. We first compute
the 3D orientation v towards the center of the ROI (x, y): v = [(x− cx)/fx, (y −
cy)/fy, 1], where (cx, cy) is the 2D camera center and fx, fy are the focal lengths
for X and Y axes. Subsequently, we compute rectified XYZ axes [Xv , Yv , Zv ] by
aligning the Z axis [0, 0, 1] to v.

Xv = [0, 1, 0] × Zv , Yv = Zv × Xv , Zv =
v

‖v‖2 (1)

where symbol × indicates the cross product of two vectors. Finally, we project
(R, T ) onto [Xv , Yv , Zv ] and obtain the rectified pose ( ˜R, ˜T ): ˜R = Rv · R and
˜T = Rv · T , where Rv = [Xv ;Yv ;Zv ]. We refer readers to the supplementary
material for more details about the rectification step. When depth is available,
we rectify the XYZ value of each pixel by Rv and construct a normalized XYZ
map by centering the point cloud to the median along each axis.

Figure 2 illustrates the details of our network design. Two streams of convo-
lutional layers receive RGB image and XYZ map respectively and the final out-
puts are bin and delta vectors (described below) for both rotation and translation
(Sect. 3.1). These two streams are further merged with class priors (Sect. 3.2) and
deeply supervised by object mask (Sect. 3.3). When depth data is not available,
we simply remove the XYZ stream.

3.1 Bin & Delta Representation for SE(3)

Direct regression to object rotation R has been shown to be inferior to a classifi-
cation scheme over discretized SO(3)2 [15,26,30]. One common discretization of
SO(3) is to bin along each Euler angle (α, β, γ) (i.e. yaw, pitch and roll) [15,34].
However, this binning scheme yields a non-uniform tessellation of SO(3). Con-
sequently, a small error on one Euler angle may be magnified and result in a
large deviation in the final rotation estimate. In the following, we formulate two
new bin & delta representations which uniformly partition both SO(3) and R(3).
They are further coupled with a classification & regression scheme for learning
discriminative pose features.
Almost Uniform Partition of SO(3). We first exploit the sampling tech-
nique developed by [44] to generate N rotations {R̂1, ..., R̂N} that are uniformly
distributed on SO(3). These N rotations are used as the centers of N rotation
bins in SO(3). These are shared between different object classes. Given an arbi-
trary rotation matrix R, we convert it to a bin and delta pair (bR,dR) based on
{R̂1, ..., R̂N}. The bin vector bR contains N dimensions where the i-th dimen-
sion bRi indicates the confidence of R belonging to bin i. dR stores N rotations

2 SO(3) is the Special Orthogonal group of rations in three dimensions.
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(i.e. quaternions in our implementation) where the i-th rotation dR
i is the devi-

ation from R̂i to R. During inference, we take the bin with maximum score and
apply the corresponding delta value to the bin center to compute the final pre-
diction. In training, we enforce a sparse confidence scoring scheme for (bR,dR)
to supervise the network:

bRi =

⎧

⎪

⎨

⎪

⎩

θ1 : i ∈ NN1(R)
θ2 : i ∈ NNk(R) \ NN1(R)
0 : Otherwise

, dR
i =

{

R · R̂T
i : i ∈ NNk(R)

0 : Otherwise
(2)

where θ1 � θ2 and NNk(R) is the set of k nearest neighbors of R among
{R̂1, ..., R̂N} in terms of the geodesic distance d(R1, R2) = 1

2‖ log(RT
1 R2)‖F

between two rotations R1 and R2. Note that we design delta di to achieve
R = dR

i · R̂i and not R = R̂i ·dR
i because the former is numerically more stable.

Specifically, if d is the prediction of dRi with error δ such that d = δ ·dRi , the error
of final prediction R′ is also δ because R′ = d · R̂i = δR. If we define R = R̂i · dRi
instead, then R′ = R̂i ·d = (R̂iδ(R̂i)−1)R and the error will be R̂iδ(R̂i)−1. Thus,
the δ error of dRi may be magnified in the final rotation estimate R.
Gridding XYZ Axes. The translation vector is the 3D vector from the camera
origin to the object center. To divide the translation space, we uniformly grid
X, Y and Z axes independently. For RGB images, we align the X and Y axes to
image coordinates and the Z axis is optical axis of the camera. We also rescale
the ROI to a fixed scale for the CNN, so we further adjust the Z value of each
pixel to Z ′ such that image scale is consistent to the depth value: Z ′ = Z · s′

s ,
where s′ and s are image scales before and after rescaling, respectively. When
depth data is available, the XYZ axes are simply chosen to be the coordinate
axes of normalized point cloud.

We now discuss how to construct the bin & delta pair (bTx ,dTx) for X axis;
the Y and Z axes are done in the same way. We first create M non-overlapping
bins of equal size smax−smin

M between [smin, smax] 3. When the X value is lower
than smin (or larger than smax), we assign it to the first (or last bin). During
inference, we compute the X value by adding the delta to the bin center which
has the maximum confidence score. During training, similar to Eq. 2, we compute
bTx of an X value by finding its K ′ nearest neighbors among M bins. Then, we
assign θ′

1 for the top nearest neighbor and θ′
2 for the remaining K − 1 neighbors

(θ′
1 � θ′

2). Correspondingly, the delta values of the K ′ nearest neighbor bins are
deviations from the bin centers to the actual X value and others are 0. Finally,
we concatenate all bins and deltas of X, Y and Z axes: bT = [bTx , bTy , bTz ] and
dT = [dTx ,dTy ,dTz ]. One alternative way of dividing translation space is to
grindingXYZ space. However, the total number of bins grows exponentially as
M increases and we found no performance gain by doing so in practice.

3 smin and smax may vary across different axes.
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3.2 Fusion of Class Prior

Many existing methods assume known object class labels, provided by a detec-
tion system, prior to pose analysis [1,15,24,30,43]. However, they ignore the
class prior during training and only apply it during inference. Our idea is to
directly incorporate this known class label into the learning process of convo-
lutional filters for pose. This is partly inspired by prior work on CNN-based
hand-eye coordination learning [20] where a tiled robot motor motion map is
concatenated with one hidden convolutional layer for predicting the grasp suc-
cess probability. Given the class label of the ROI, we create a one-hot vector
where the entry corresponding to the class label is set to 1 and all others to
0. We further spatially tile this one-hot vector to form a 3D tensor with size
H × W × C, where C is the number of object classes and H,W are height and
width of a convolutional feature map at an intermediate layer chosen as part of
the network design. As shown in Fig. 2, we concatenate this tiled class tensor
with the last convolutional layers of both color and depth streams along the
filter channel. Therefore, the original feature map is embedded with class labels
at all spatial locations and the subsequent layers are able to model class-specific
patterns for pose estimation. This is critical in teaching the network to develop
compact class-specific filters for each individual object while taking advantage
of a shared basis of low level features for robustness.

3.3 Deep Supervision with Object Segmentation

Due to limited availability of pose annotations on real images, synthetic CAD
renderings are commonly used as training data for learning-based pose esti-
mation methods [11,15,43]. We take this approach but, following [23], we also
incorporate the deep supervision of an object mask at a hidden layer, (shown
in Fig. 2) for additional regularization of the training process. We can view the
object mask as an intermediate result for the final task of 6-DoF pose estima-
tion. That is, good object segmentation is a prerequisite for the final success of
pose estimation. Moreover, a precisely predicted object mask benefits a post-
refinement step such as Iterative Closest Point (ICP).

To incorporate the mask with the feature and class maps (Sect. 3.2), we
append one output branch for the object mask which contains one convolutional
layer followed by two de-convolution layers with upsampling ratio 2. We assume
that the object of interest dominates the input image so that only a binary mask
(“1” indicates object pixel and “0” means background or other objects) is needed
as an auxiliary cue. As such, the size of the output layer for binary segmentation
prediction is fixed regardless of the number of object instances in database, which
enables our method to scale well to large numbers of objects. Conversely, when
multiple objects appear in a scene, we must rely on some detection system to
“roughly” localize them in the 2D image first.
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3.4 Network Architecture

The complete loss function for training the network consists of five loss compo-
nents over the segmentation map, the rotation, and the three translation com-
ponents:

L = lseg+lRb
(˜bR, bR)+lRd

(˜dR,dR)+
∑

i∈{X,Y,Z}

(

lTb
( ˜bTi , bTi)+lTd

(˜dTi ,dTi)
)

(3)

where ˜bR, ˜dR, ˜bTi and ˜dTi are the bin and delta estimates of the groundtruth
bR, dR, bTi and dTi , respectively. We apply cross-entropy softmax to segmenta-
tion loss lseg on each pixel location and to the bin losses lRb

and lTb
. We employ

L2 losses for the delta values lRd
and lTd

. All losses are simultaneously back-
propagated to the network to update network parameters on each batch. For
simplicity, we apply loss weight 1 for each loss term.

Each convolutional layer is coupled with a batch-norm layer [12] and ReLU.
The size of all convolutional filters is 3 × 3. The output layer for each bin and
delta is constructed with one global average pooling (GAP) layer followed by one
fully connected (FC) layer with 512 neurons. We employ a dropout [17] layer
before each downsampling of convolution with stride 2. We deploy 23 layers in
total.

4 Multi-view Pose Framework

In this section, we present a multi-view framework which refines the outputs
of our single-view network (Sect. 3) during the inference stage. We assume that
camera pose of each frame in a sequence is known. In practice, camera poses can
be provided by many SLAM systems such as Kinect Fusion [13].

4.1 Motivation

Fig. 3. Top-K accuracies of our single-
view pose network on YCB-Video [43].

Recall that we can obtain top-K esti-
mates from all subspaces in SE(3)
including SO(3), X, Y, and Z spaces
(Sect. 3.1). Therefore, we can compute
K4 pose hypotheses by composing top-
k results from all subspaces. In turn,
we compute the top-K accuracy as the
highest pose accuracy achieved among
all K4 hypotheses. Fig. 3 shows the
curve of top-K accuracies of our pose
estimation network across all object
instances, in terms of the mPCK4 met-
ric on YCB-Video benchmark [43]. We observe that pose estimation performance
4 Please refer to Sect. 5 for more details on the mPCK metric.
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significantly improves when we initially increase K from 1 to 2 and almost satu-
rates at K = 4. This suggests that the inferred confidence score is ambiguous in
only a small range, which makes sense especially for objects that have symmet-
ric geometry or texture. The question is how we can resolve this ambiguity and
further improve the pose estimation performance. We now present a multi-view
voting algorithm that selects the correct hypothesis from the top-K hypothesis
set.

4.2 Hypothesis Voting

To measure the difference between hypotheses from different views, we first trans-
fer all hypotheses into view 1 using the known camera poses of all n views. We
consider a hypothesis set H = {h1,1, · · · , hi,j , · · · , hn,K4} from n views, where
hi,j indicates the pose hypothesis j in view i with respect to camera coordinate
of view 1. To handle single-view ambiguity caused by symmetrical geometry, we
test the consistency of “fit” to the observed data. More specifically, we employ
the distance metric proposed by [11] to measure the discrepancy between two
hypothesis h1 = (R1, T1) and h2 = (R2, T2):

D(h1, h2) =
1
m

∑

x1∈M
min
x2∈M

‖(R1x1 + T1) − (R2x2 + T2)‖2 (4)

where M denotes the set of 3D model points and m = |M|. D(h1, h2) yields
small distance when 3D object occupancies under poses h1 and h2 are similar,
even if h1 and h2 have large geodesic distance on SO(3). Finally, the voting score
V (hi,j) for hi,j is calculated as:

V (hi,j) =
∑

hp,q∈H\hi,j

max
(

σ − D(hi,j , hp,q), 0
)

(5)

where σ is the threshold for outlier rejection. We select the hypothesis with the
highest vote score as the final prediction. Fig. 1 (d) illustrates this multi-view
voting process.
Efficient Implementation. The above hypothesis voting algorithm is compu-
tationally expensive because the time complexity of Eq. 4 is at least O(m log m)
via a KDTree implementation. Our solution is to decouple translation and rota-
tion components in Eq. 4 and approximate D(h1, h2) by ˜D(h1, h2):

˜D(h1, h2) = ‖T1 − T2‖2 +
1
m

∑

x1∈M
min
x2∈M

‖R1x1 − R2x2‖2 (6)

In fact, ˜D(h1, h2) is an upper bound on D(h1, h2): D(h1, h2) ≤ ˜D(h1, h2) for
any h1 and h2, because ‖(R1x1 + T1) − (R2x2 + T2)‖2 ≤ ‖R1x1 − R2x2‖ +
‖T1 − T2‖ based on the triangle inequality. Since the complexity of ‖T1 − T2‖
is O(1), we can focus on speeding up the computation of rotation distance
1
m

∑

x1∈M minx2∈M ‖R1x1 −R2x2‖2. Our approach is to pre-compute a table of
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all pairwise distances between every two rotations from N uniformly sampled
rotation bins {R̂1, ..., R̂N} by [44]. For arbitrary R1 and R2, we search for their
nearest neighbors R̂N1(R1) and R̂N1(R2) from {R̂1, ..., R̂N}. In turn, we approxi-
mate the rotation distance as follows:

1
m

∑

x1∈M
min
x2∈M

‖R1x1 − R2x2‖2 ≈ 1
m

∑

x1∈M
min
x2∈M

‖R̂N1(R1)x1 − R̂N1(R2)x2‖2 (7)

where the right hand side can be directly retrieved from the pre-computed dis-
tance table during inference. When N is large enough, the approximation error
of Eq. 7 has little effect on our voting algorithm. In practice, we find the perfor-
mance gain saturates when N ≥ 1000. Thus, the complexity of Eq. 7 is O(log N)
for nearest neighbor search, which is significantly smaller than O(m log m) of
Eq. 5 (m >> N in general).

5 Experiments

In this section, we empirically evaluate our method on three large-scale datasets:
YCB-Video [43], JHUScene-50 [21] for 6-DoF pose estimation, and ObjectNet-
3D [41] for viewpoint estimation. Further, we conduct an ablative study to vali-
date our three innovations for the single-view pose network.

Evaluation Metric. For 6-DoF pose estimation, we follow the recently pro-
posed metric “ADD-S” [43]. The traditional metric [11] considers a pose estimate
h to be correct if D(h, h∗) in Eq. 4 is below a threshold with respect to the ground
truth value h∗. “ADD-S” improves this threshold-based metric by computing the
area under the curve of the accuracy-threshold over different thresholds within a
range (i.e. [0, 0.1]). We rename “ADD-S” as “mPCK” because it is essentially the
mean of PCK accuracy [45]. For viewpoint estimation, we use Average Viewpoint
Precision (AVP) used in PASCAL3D+ [42] and Average Orientation Similarity
(AOS) used in KITTI [8].

Implementation Details. The number of nearest neighbors we use for soft
binning is 4 for SO(3) and 3 for each of XYZ axes. We set binning scores as
θ1 = θ′

1 = 0.7 and θ2 = θ′
2 = 0.1. The number of rotation bins is 60. For

XYZ binning, we use 10 bins and [smin, smax] = [−0.2, 0.2] for each axis when
RGB-D data is used. For inference on RGB data, we use 20 bins, [smin, smax] =
[0.2, 0.8] for XY axes and 40 bins, [smin, smax] = [0.5, 4.0] for Z axis. In multi-
view voting, we set the distance threshold σ = 0.02 and the precomputed size
of distance table as 2700. The input image to our single-view pose network
is 64x64. The tiled class map is inserted at convolutional layer 15 with size
H = W = 16. We use stochastic gradient descent with momentum 0.9 to train
our network from scratch. The learning rate starts at 0.01 and decreases by
one-tenth every 70000 steps. The batch size is 105 for YCB-Video and 100 for
both JHUScene-50 and ObjectNet-3D. We construct each batch by mixing equal
number of data from each class. We name our Multi-Class pose Network as
“MCN”. The multi-view framework using n views is called as “MVn-MCN”.
Since MCN also infers instance mask, we use it to extract object point clouds
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when depth data is available and then run ICP to refined estimated poses by
registering the object mesh to extracted object clouds. We denote this ICP-based
approach as “poseCNN+ICP”.

5.1 YCB-Video

YCB-Video dataset [43] contains 92 real video sequences for 21 object instances.
80 videos along with 80,000 synthetic images are used for training and 2949 key
frames are extracted from the remaining 12 videos for testing. We fine tune the
current state-of-the-art “mask-RCNN” [10] on the training set as the detection
system. Following the same scenario in [43], we assume that one object appears
at most once in a scene. Therefore, we compute the bounding box of a particular
object by finding the one with highest detection score of that object. For our
multi-view system, one view is coupled with 5 other randomly sampled views in
the same sequence. Each view outputs top-3 results from each space of SO(3),
X, Y and Z and in turn 34 = 81 pose hypotheses.

Table 1 reports mPCK accuracies of our methods and variants of
poseCNN [43] (denoted as “P-CNN”). All methods are trained and tested fol-
lowing the same experiment setting defined in [43]. We first observe that the
multi-view framework (MV5-MCN) consistently improves the single-view net-
work (MCN) across different instances and achieves the overall state-of-the-art
performance. Such improvement is more significant on RGB data, where the
mPCK margin between MV5-MCN and MCN is 5.1% which is much larger than
the margin of 1.0% on RGB-D data for all instances. This is mainly because
single-view ambiguity is more severe without depth data. Subsequently, MCN
outperforms poseCNN by 1.7% on RGB and MCN+ICP is marginally better
than poseCNN+ICP by 0.2% on RGB-D. We can see that MCN achieves more
balanced performance than poseCNN across different instances. For example,
poseCNN+ICP only obtains 51.6% on class “052 larger clamp” which is 24.4%
lower than the minimum accuracy of a single class by MCN+ICP. This can
be mainly attributed to our class fusion design in learning discriminative class-
specific feature so that similar objects can be well-separated in feature space
(e.g. “051 large clamp” and “052 larger clamp”). We also observe that MCN is
much inferior to PoseCNN on some instances such as foam brick. This is mainly
caused by larger detection errors (less than 0.5 IoU with ground truth) on these
instances.

We also run MCN over ground truth bounding boxes and the overall mPCKs
are 86.9% on RGB (11.8% higher than the mPCK on detected bounding boxes)
and 91.0% on RGB-D (0.4% higher the mPCK on detected bounding boxes).
This indicates that MCN is sensitive to detection error on RGB while being
robust on RGB-D data. The reason is that we rely on the image scale of bound-
ing box to recover 3D translation for RGB input. In addition, we obtain high
instance segmentation accuracy5 of MCN across all object instances: 89.9% on
RGB and 90.9% on RGB-D. This implies that MCN does actually learn the

5 The ratio of the number of pixels with correctly predicted mask label versus all.
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intermediate foreground mask as part of pose prediction. We refer readers for
more numerical results in supplementary material, including segmentation accu-
racies, PCK curves of MCN and mPCK accuracies on groundtruth bounding box
on individual instance. Last, we show some qualitative results in upper part of
Fig. 4. We can see that MCN is capable of predicting object pose under occlusion
and MV5-MCN further refines the MCN result.

5.2 JHUScene-50

JHUScene-50 [21] contains 50 scenes with diverse background clutter and severe
object occlusion. Moreover, the target object set consists of 10 hand tool
instances with similar appearance. Only textured CAD models are available
during training and all 5000 real image frames comprise the test set. To cope
with our pose learning framework, we simulate a large amount of synthetic data
by rendering densely cluttered scenes similar to the test data, where objects
are randomly piled on a table. We use UnrealCV [39] as the rendering tool and
generate 100 k training images.

Table 2. mPCK accuracies of all objects in JHUScene-50 dataset [21]. The last row
indicates the average-per-class of mPCKs of all object instances. Best results are high-
lighted in bold.

Object RGB RGB-D

Manifold [1] MCN MV5-MCN ObjRec. [27] Manifold [1] MCN MV5-MCN

drill 1 10.6 33.4 36.5 14.5 70.3 76.8 78.1

drill 2 9.9 48.8 54.5 2.9 49.0 76.6 80.1

drill 3 7.6 45.5 48.0 3.7 50.9 81.5 85.4

drill 4 9.3 41.6 45.5 6.5 51.4 82.0 87.1

hammer 1 5.0 24.9 30.2 8.1 38.7 80.1 87.6

hammer 2 5.1 28.3 33.4 10.7 35.5 81.2 91.5

hammer 3 7.8 26.2 31.2 8.6 47.8 83.1 88.1

hammer 4 5.1 17.2 20.6 3.8 38.3 73.8 87.8

hammer 5 5.2 37.1 44.4 9.6 35.0 78.0 86.3

sander 10.7 35.6 39.5 9.5 54.3 76.0 75.5

All 7.6 33.9 38.4 7.8 47.1 78.9 84.8

We compare MCN and MV5-MCN with the baseline method ObjRe-
cRANSAC6 [27] in JHUScene-50 and one recent state-of-the-art pose manifold
learning technique [1]7. All methods are trained on the same synthetic training
set and tested on the 5000 real image frames from JHUScene-50. We compute
3D translation for [1] by following the same procedure used in [11]. We evaluate

6 https://github.com/tum-mvp/ObjRecRANSAC.
7 We re-implement this method because the source code is not publicly available.

https://github.com/tum-mvp/ObjRecRANSAC
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Table 3. Accuracies of object pose estimation on ObjectNet-3D benchmark [41]. All
methods perform over the same set of detected bounding boxes estimated by Fast R-
CNN [9]. Best results on both AOS and AVP metrics are shown in bold. For AVP, we
also report AVP

mAP
in parentheses.

mAP AOS AVP

Fast R-CNN [9] ObjectNet-3D [41] MCN ObjectNet-3D [41] MCN

Accuracy 61.6 51.9 56.0 39.4 (64.0) 50.0 (81.2)

different methods on the ground truth locations of all objects. Table 2 reports
mPCK accuracies of all methods. We can see that MCN significantly outper-
forms other comparative methods by a large margin, though MCN performs
much worse than on YCB-Video mainly because of the severe occlusion and
diverse cluttered background in JHUScene-50. Additionally, we observe that
MV5-MCN is superior to MCN on both RGB and RGB-D data. The perfor-
mance gain on RGB-D data achieved by MV5-MCN is much larger than the one
on YCB-Video, especially for the hammer category due to the symmetrical 3D
geometry. We visualize some results of MCN and MV5-MCN in the bottom of
Fig. 4. The bottom-right example shows MV5-MCN corrects the orientation of
MCN result which frequently occurs for hammer.

5.3 ObjectNet-3D

To evaluate the scalability of our method, we conduct an experiment on
ObjectNet-3D which consists of viewpoint annotation of 201, 888 instances from
100 object categories. In contrast to most existing benchmarks [11,21,43] which
target indoor scenes and small objects, ObjectNet-3D covers a wide range of
outdoor environments and diverse object categories such as airplane. We modify
the MCN model by only using the rotation branch for viewpoint estimation and
removing the deep supervision of object mask because the object mask is not
available in ObjectNet-3D. To our knowledge, only [41] reports viewpoint esti-
mation accuracy on this dataset, where a viewpoint regression branch is added
along with bounding box regression in the Fast R-CNN architecture [9]. For the
fair comparison, we use the same detection results for [41] as the input to MCN.
Because ObjectNet-3D only provides detection results on the validation set, we
train our model on the training split and test on the validation set. Table 3
reports the viewpoint estimation accuracies of different methods on the valida-
tion set,in terms of two different metrics AVP [42] and AOS [8]. The detection
performance in mAP is the upperbound of AVP. The numbers in parentheses are
the ratios of AVP versus mAP. We can see that MCN is significantly superior to
the large-scale model [41] on both AOS and AVP, even if [41] actually optimizes
the network hyper-parameters on the validation set. This shows that MCN can



Multi-view Multi-class Object Pose Estimation 277

be scaled to a large-scale pose estimation problem. Moreover, object instances
have little overlap between training and validation sets in ObjectNet-3D, which
indicates that MCN can generalize to unseen object instances within a category.

Table 4. An ablative study of different variants of pose estimation architectures on
YCB-Video, JHUScene-50 and ObjectNet-3D. We follow the same metrics as we eval-
uate in previous sections. For ObjectNet-3D, we report accuracies formatted as AOS /
AVP. The “*” symbol indicates that no segmentation mask is used in training because
it is unavailable in ObjectNet-3D.

Method RGB RGB-D

YCB-Video JHU ObjectNet-3D YCB-Video JHU

plain 61.0 25.0 51.7 / 38.3 61.8 19.6

BD + Seg 66.2 26.3 50.3* / 41.3* 89.5 70.0

BD + TC 68.5 29.3 56.0 / 50.0 90.1 76.4

Sep-Branch + Seg + BD 73.8 31.6 52.5* / 42.9* 90.2 77.7

Sep-Net + Seg + BD 62.1 28.7 NA 87.1 66.9

MCN (Seg + TC + BD) 80.2 33.9 NA 90.8 78.9

5.4 Ablative Study

In this section, we empirically validate the three innovations introduced in MCN:
bin & delta representation (“BD”), tiled class map (“TC”) and deep supervi-
sion of object segmentation (“Seg”). Additionally, we also inspect the baseline
architectures: separate network for each object (“Sep-Net”) and separate output
branch for each object (“Sep-Branch”), as shown in Figs. 1 (a) and (b) respec-
tively. To remove the effect of using “BD”, we directly regress quaternion and
translation (plain) as the comparison. Table 4 presents accuracies of different
methods on all three benchmarks. We follow previous sections to report mPCK
for YCB-Video and JHUScene-50, and AOS/AVP for ObjectNet-3D. Because
ObjectNet-3D does not provide segmentation groundtruth, we remove module
“Seg” in all analysis related to ObjectNet-3D. Also, we do not report accuracy
of “Sep-Net” on ObjectNet-3D because it requires 100 GPUs for training. We
have three main observations: 1. When removing any of the three innovations,
pose estimation performance consistently decreases. Typically, “BD” is a more
critical design than “Seg” and tiled class map because the removal of BD causes
larger performance drop; 2. “Sep-Branch” coupled with “BD” and “Seg” appears
to be the second best architecture, but it is still inferior to MCN especially on
YCB-Video and ObjectNet-3D. Moreover, the model size of “Sep-Branch” grows
rapidly with the increasing number of classes; 3. “Sep-Net” is expensive in train-
ing and it performs substantially worse than MCN because MCN exploits diverse
data from different classes to reduce overfitting.
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Fig. 4. Illustration of pose estimation results by MCN on YCB-Video (upper) and
JHUScene-50 (bottom). The projected object mesh points that are transformed by pose
estimates are highlighted by orange (YCB-Video) and pink (JHUScene-50). From left
to right of each data, we show original ROI, MCN estimates on RGB, MCN estimates
on RGB-D and MV5-MCN estimates on RGB-D. (color figure online)

6 Conclusion

We present a unified architecture for inferring 6-DoF object pose from single
and multiple views. We first introduce a single-view pose estimation network
with three innovations: a new bin & delta pose representation, the fusion of tiled
class map into convolutional layers and deep supervision of object mask at inter-
mediate layer. These modules enable a scalable pose learning architecture for
large-scale object classes and unconstrained background clutter. Subsequently,
we formulate a new multi-view framework for selecting single-view pose hypothe-
ses while considering ambiguity caused by object symmetry. In the future, an
intriguing direction is to embed the multi-view procedure into the training pro-
cess to jointly optimize both single-view and multi-view performance. Also, the
multi-view algorithm can be improved to maintain a fixed number of “good”
hypotheses for any incremental update given a new frame.

Acknowledgments. This work is supported by the IARPA DIVA program and the
National Science Foundation under grants IIS-127228 and IIS-1637949.
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