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Abstract. This paper proposes a segment-free method for geometric
rectification of a distorted document image captured by a hand-held cam-
era. The method can recover the 3D page shape by exploiting the intrin-
sic vector fields of the image. Based on the assumption that the curled
page shape is a general cylindrical surface, we estimate the parameters
related to the camera and the 3D shape model through weighted major-
ity voting on the vector fields. Then the spatial directrix of the surface
is recovered by solving an ordinary differential equation (ODE) through
the Euler method. Finally, the geometric distortions in images can be
rectified by flattening the estimated 3D page surface onto a plane. Our
method can exploit diverse types of visual cues available in a distorted
document image to estimate its vector fields for 3D page shape recovery.
In comparison to the state-of-the-art methods, the great advantage is
that it is a segment-free method and does not have to extract curved
text lines or textual blocks, which is still a very challenging problem
especially for a distorted document image. Our method can therefore
be freely applied to document images with extremely complicated page
layouts and severe image quality degradation. Extensive experiments are
implemented to demonstrate the effectiveness of the proposed method.

Keywords: Document image processing · Geometric rectification
Vector fields · 3D shape recovery · OCR

1 Introduction

Recent decades have witnessed the increasing popularity of using portable cam-
eras in the digitization of paper documents [1]. In comparison with the tradi-
tional flat-bed scanners, the use of portable cameras, e.g., smartphone cameras
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Fig. 1. An example of geometric rectification of a distorted document image by our
method. (a) the distorted document image, (b) the rectification result, (c) the recon-
structed 3D page surface, (d) the constructed mesh grid for image dewarping.

and compact cameras, provides many great advantages. For example, they are
portable, fast response and can be applied flexibly to documents with different
sizes. However, the images captured by a hand-held camera often suffer from
serious geometric distortions due to page curl and perspective of camera. This
generally happens when one captures the images of an opened thick and bound
book. Many sophisticated methods for document image analysis and recognition,
e.g., OCR and page layout analysis, are vulnerable to the geometric distortions
in images. Therefore, removing the geometric distortions is often a critical and
indispensable preprocessing step for many tasks related to camera-based docu-
ment images recognition [1,2].

Up to now, many efforts have been made to address this challenging issue.
According to how a dewarping mapping is derived, the existing methods can
be roughly categorized into two groups: the image-based methods [3–8] and the
model-based methods [9–19]. The former adopts a local [6–8] or global dewarping
transform [3–5] directly derived from image visual cues, e.g., the curved hori-
zontal text lines or the document boundaries, to rectify the distortions. These
methods can generally produce a desirable result with straightened text lines,
which is quite OCR friendly. However, the methods cannot completely remove
the distortions in images, since no 3D shape model is introduced to account for
the physical page distortion.

Later works pay more attention to the model-based methods and some signif-
icant advances have been made [9,10,13,14,16,18,19]. The model-based methods
introduce a 3D page surface model together with a camera model to explain the
geometric distortions in a document image. These methods differ in how the 3D
page shape is accurately recovered. Some early methods use shape-from-shading
techniques [16,19] to estimate the 3D page shape. These methods work desir-
ably for scanned document images, in which the illumination is well controlled in
the scanning process. However, they generally fail to images captured by hand-
held cameras, since the environmental illumination is extremely complicated in
reality.

The more robust approaches for page shape recovery are to use a 3D scanner
[9,15,20] or multiple images captured from different viewpoints [11,18]. The
advantage of these methods is that they can be applied to document images
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with much complicated geometric distortions. However, the use of additional
hardware and images makes them less attractive in the research. In contrast,
the methods based on a single document image exploit the extracted visual
cues, e.g., the curved text lines, to recover the 3D page shape. Representative
works include [10,13,14,17]. One disadvantage of these methods is that they
have to first detect and segment the curved text lines in the images. However,
this is generally quite challenging especially for a document image with severe
distortions. Moreover, these methods are also vulnerable to complicated page
layouts. This is especially true for document images with sparse text lines or
large areas of non-textual contents.

In this paper, we propose a method for geometric rectification of a curved
document image by exploiting its intrinsic vector fields. By assuming the page
shape is a general cylindrical surface, we recover the parameters of camera and
page shape information through weighted majority voting on the vector fields.
Finally, the image distortion is rectified by flattening the estimated page surface.
Our method is a segment-free approach and does not require to extract the
curved horizontal text lines or textual blocks, which is still an open problem due
to many challenging factors [1,21]. The proposed method is thus very robust to
document layouts and various types of image quality degradation that commonly
happen to a camera-captured document image, including severe image distortion,
non-uniform shading, cluttered backgrounds and serious image blur and noises.
Figure 1 illustrates an example of the rectification results and the reconstructed
3D page shape of our method for a single distorted document image captured
by a hand-held camera.

2 Approach

2.1 Vector Fields and Assumptions

The vector field of a document image essentially originates from the curled page
surface under perspective projection of camera [22]. Generally, the document
contents, e.g., text lines, figures or tables, are arranged and printed along a
group of straight and parallel baselines. These baselines are normally invisible
but can be inferred from the contents of the document [21]. Once the document
page is curled and projected onto the image plane, the underlying baselines get
distorted, yielding a deformed vector field, the vector of which at every point
gives the tangent direction of the curved baseline. Consequently, the vector field
of a document image encodes the 3D page shape information and the parameters
of camera.

To recover the 3D page shape information from the vector field, we have
to first introduce some basic assumptions. Firstly, we assume the curled page
shape is a general cylindrical surface (GCS). This assumption, which is very
suitable for modeling the page shape of an opened thick and bound book, is also
adopted in some previous works, e.g., [14]. Secondly, we require the rulings of
GCS to be perpendicular to the baselines. This orthogonality assumption plays
an important role on the estimation of model parameters, as will be shown later.
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Thirdly, we assume the page surface is smooth. This assumption will help the
estimation of spatial directrix of GCS against significant noises and outliers.

2.2 Estimation of Model Parameters

From the above assumptions, we can derive an important relationship between
the page shape and the parameters of camera. For a general cylindrical surface,
its rulings are a group of parallel straight lines. Therefore, after perspective
projection of camera, these rulings will intersect at a common vanishing point,
denoted by (v0, v1). Similarly, according to the property of cylindrical surfaces,
the tangent vectors of the curved baselines along the same ruling are parallel
to each other. Hence, these tangent vectors after perspective projection will
converge at a common vanishing point, denoted by (x, y). Using the orthogonality
assumption between the baselines and rulings, we can derive the equation of
vanishing line that each (x, y) is satisfied, i.e.,

v0x + v1y + f2 = 0, (1)

where f is the focal length of the camera. Figure 2 illustrates the geometric
relationship of the vanishing points of the projected rulings and the tangents of
baselines. The above equation gives the equality constraint that the vanishing
points of the tangent vectors of baselines across the same ruling have to be
satisfied. Next, we will exploit this equation to estimate the model parameters
and recover the 3D page shape from the vector fields of the document image.

Fig. 2. Geometric relationship of the vanishing points of the projected rulings and the
tangents of baselines.

Estimation of vector field. The vector field of a document image consists of
the unit tangent vectors of the underlying curved baselines. Hence, the estimation
of vector field is actually to recover the local orientations of image. This problem
has been extensively studied in the context of skew estimation for the scanned
document images with a global skew angle [2]. In this study, we compute the
local projections of image across various angles by Radon transform to estimate
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the local orientations. The angle with the maximum variance of local projections
is taken as the estimate of local orientation.

To facilitate the efficient computation of the local projections at every pixel,
we also introduce an intermediate integral image. This makes the total computa-
tional complexity comparable to that of the Radon transform of image. Figure 3
shows an example of vector field estimation by computing the local projections
at each foreground edge pixel. Although the estimated vector field is sparse and
noisy due to local projections, it can be well exploited to robustly estimate the
model parameters by weighted majority voting.

Fig. 3. Estimation of the vector field of image by computing the variances of local
projections. (a) the image edge map, (b) the estimated vector field of image.

Vanishing point of projected rulings. The vanishing point (v0, v1) is the
common intersection point of the projected rulings. We use the Radon transform
to detect the potential projected rulings in the image and then vote them for
the vanishing point.

For a curved general cylindrical surface, its rulings are the only linear struc-
tures on the surface. After perspective projection, these rulings remain straight
in the image. Many related visual cues are available in a document image for the
detection of these straight lines, for example, the vertical boundaries of docu-
ments, text blocks and inserted photos or vertical lines in tables or some vertical
strokes of characters. We adopt the Radon transform on the image edge map to
detect these potential lines.

The Radon transform is the line integral of an image along a group of straight
lines. Let R(ρ, θ) be the Radon transform of the image edge map, where (ρ, θ)
defines a straight line, along which the line integral of edge map is computed.
We calculate the likelihood of lines being projected rulings as the local variances
of Radon transform along the ρ-axis, i.e.,

L(ρ, θ) =
∫ ρ+δ

ρ−δ

(R(ρ̃, θ) − m(ρ, θ))2 dρ̃, (2)

where δ is the window size for computing the local variance, m(ρ, θ) is the local
mean of the Radon transform along the ρ-axis, defined as:

m(ρ, θ) =
1
2δ

∫ ρ+δ

ρ−δ

R(ρ̃, θ)dρ̃. (3)
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A weighted majority voting on a sphere is adopted to estimate the vanish-
ing point. To this end, we first introduce the spherical coordinates of (v0, v1)
under the stereographic projection. The stereographic projection maps a point
on the sphere to a unique point on the plane, as illustrated in Fig. 4. Denote the
corresponding spherical coordinates of (v0, v1) as (α, β), where α and β are two
angles, satisfying: ⎧⎪⎨

⎪⎩
v0 = d tan α · cos β,

v1 = d tan α · sin β,

α ∈ [0, π
2 ), β ∈ [0, 2π)

(4)

where d is the diameter of the sphere. The benefit of using the spherical coor-
dinates is that they are bounded. Therefore, we can discretize them in a given
range and vote them according to the likelihood of projected rulings.

Fig. 4. The stereographic projection maps a point on the sphere to a unique point on
the plane.

The voting process is as follows: for every candidate projected ruling defined
by (ρ, θ), we vote for all pairs of (α, β) satisfying the equation of the projected
ruling, i.e.,

tan α · cos(β + θ) =
ρ

d
. (5)

The voting weight is given by the likelihood of (ρ, θ) defined in Eq. (2). Actually,
Eq. (5) defines a transform from L(ρ, θ) to the voting space V(α, β). The point
with the maximum votes in V(α, β) is finally taken as the estimate of the van-
ishing point. Figure 5 illustrates an example for the estimation of the vanishing
point of projected rulings. Once the vanishing point is estimated, we actually
recover all the projected rulings in the image.

Estimating the focal length of camera. Given the estimation of (v0, v1),
we can vote for the focal length f of the camera according to Eq. (1). To this
end, we first sample a sequence of projected rulings. For each projected ruling,
we randomly select several pairs of foreground points, say, p and q. Then the
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Fig. 5. Estimation of the vanishing point of projected rulings. (a) the Radon transform
R(ρ, θ) on the image edge map in Fig. 3(a), (b) the likelihood of projected rulings
L(ρ, θ), (c) the voting space V(α, β), (d) the estimated projected rulings.

vanishing point of tangents can be easily computed as the intersection point of
the tangent lines at p and q, i.e.,

{
x = ρp cos θq−ρq cos θp

sin(θq−θp)

y = ρp sin θq−ρq sin θp

sin(θq−θp)

, (6)

where (x, y) is the vanishing point of tangents, θp and θq are the included angles
of the tangent vectors at p and q with the x-axis, respectively. ρp and ρq are
computed as below:

ρp = yp cos θp − xp sin θp

ρq = yq cos θq − xq sin θq

, (7)

where (xp, yp) and (xq, yq) are the coordinates of p and q in the image, respec-
tively.

Fig. 6. The estimation of focal length of camera by majority voting of points from the
projected rulings. (a) the voting histogram of ρ, (b) the vanishing points of tangents
and the estimated vanishing line (the blue line). (color figure online)

We introduce a signed distance ρ between the origin and the vanishing line
in Eq. (1), defined as:

ρ =
xv0 + yv1√

v2
0 + v2

1

. (8)

Instead of directly voting for f , we vote for ρ according to the estimated (x, y)
in Eq. (6). One benefit of voting ρ is that we can avoid the problem caused by
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sign flipping of (x, y) and (v0, v1). This problem commonly happens when (x, y)
or (v0, v1) is approaching to the infinity. In this case, a small error may cause
the reversal of signs in (x, y) and (v0, v1).

The focal length f is finally calculated as:

f =

√
|ρ∗|

√
v2
0 + v2

1 , (9)

where ρ∗ is the ρ with the maximum votes. Figure 6 illustrates an example of
focal length estimation by majority voting of points from the projected rulings.
In the figure, we also show the computed vanishing points of tangents and the
estimated vanishing line.

2.3 3D Reconstruction of Page Surface

Estimation of unit tangent vectors. A general cylindrical surface is gener-
ated by moving a straight line (i.e., the ruling) along a curve called directrix.
We can estimate the directrix by recovering the unit tangent vectors of spatial
baselines.

According to our assumptions, the unit tangent vectors of spatial baselines
across the same ruling are uniquely determined by their vanishing point in
the image. Moreover, these vanishing points satisfy the vanishing line equation
defined in Eq. (1). Therefore, we can parameterize each unit tangent vector with
a single parameter φ, i.e., the included angle between the unit tangent vector
and the vanishing line L, as illustrated in Fig. 7.

Fig. 7. The unit tangent vectors of directrix. Given the vanishing line L, the unit
tangent vector is uniquely determined by the included angle φ between L and the unit
tangent vector.

The parameter φ corresponding to each projected ruling is estimated by
majority voting of points on the ruling. For every point p on a projected ruling,
we first compute the intersection point (x, y) of the tangent line at p with the
vanishing line L (see Fig. 7). Then φ is calculated and voted.

The estimated φ may be noisy or even erroneous for some projected rulings
in page margins or photographic regions due to the sparse and noisy vector
field. We further use the smoothness assumption on the page surface to refine
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the estimation. To this end, we sample a sequence of projected rulings, 	k(1 ≤
k ≤ n), where n is the total number of sampled rulings. For each projected
ruling, its corresponding φk is estimated by majority voting. Further denote the
corresponding maximum votes as wk. The smoothness of page surface also means
that φ is a smooth curve. Therefore, we can fit a smooth curve to the estimated
φk by solving the following 1D optimization problem:

min
φ(t)

n∑
k=1

wkgτ (|φ(tk) − φk|) + λ

∣∣∣∣d
2φ(tk)
dt2

∣∣∣∣
2

, (10)

where gτ (·) is a robust influence function, defined as

gτ (x) =

{
x2, if x2 ≤ τ

τ, else
. (11)

The above optimization problem can be efficiently solved by the half-quadric
splitting technique [23]. Figure 8(a) illustrates an example of the estimation of
the unit tangent vectors. In the example, due to the non-smoothness of the book
surface along the spine line, we manually split the estimated φ at the spine point
into two pieces and fit them separately.

Fig. 8. 3D reconstruction of page surface. (a) the fitted φ, (b) the weight wk, (c) the
recovered spatial directrix, (d) the reconstructed 3D page surface.

Recovery of directrix and 3D page reconstruction. Once the unit tangent
vectors of spatial baselines are estimated, we can recover a 3D directrix on the
plane determined by the optical center O of camera and the vanishing line L.
The 3D directrix can be estimated by solving the following ordinary differential
equation:

{
dC(s)
ds = t(s)

∣∣∣dC(s)
ds

∣∣∣
C(s0) = (u0, v0)

, (12)

where C(s) is the 3D directrix parameterized by s, t(·) is the estimated unit tan-
gent vector, which is directly determined by the corresponding angle φ, (u0, v0) is
the given boundary condition at s0. The above ordinary differential equation can
be efficiently solved by using the Euler method. Figure 9 illustrates the process
of solving for the directrix by the Euler method.
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Fig. 9. Estimation of the 3D directrix by solving the ordinary differential equation
with the Euler method. The Euler method iteratively constructs polygonal lines to
approximate the solution curve.

After the directrix is estimated, the 3D page surface can be reconstructed by
moving the directrix along the ruling direction. In Fig. 8(c) and (d), we illustrate
the recovered spatial directrix and the reconstructed 3D page surface of the image
in Fig. 3(a).

Once the 3D page surface is estimated, we can rectify the geometric distortion
in the image through mesh warping. This can be done by fattening the estimated
3D page surface onto a plane to construct a mesh grid. In this process, the
correspondence between the points on the plane and the image can be made.
Then the dewarping functions for mesh warping can be derived through cubic
spline fitting.

3 Experiments

3.1 Results on Real-Captured Images

To evaluate the performance of our method, we implemented a sequence of
experiments on real-captured document images by hand-held cameras and smart-
phone cameras. Figure 10 illustrates several representative images captured from
opened books and documents by using a smartphone camera. The document
images have complex page layouts with multiple columns and various types of
contents other than text-lines, such as inserted large areas of figures, formulas
and cluttered backgrounds. Besides, the documents consist of different languages
and are taken from different viewpoints, thus having different levels of perspec-
tive distortion and defocusing blur. These images are generally challenging for
some text-lines based methods, e.g., [14], since it is quite difficult to accurately
extract the curved baselines in distorted document images with complicated
layouts. Our method does not require the segmentation of curved text-lines and
thereby is robust to complex page layouts. As can be seen from the results, our
method work quite well on these images.
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Fig. 10. Geometric rectification results of real-captured document images. From top
to bottom: the distorted document images, the reconstructed 3D page surface, the
constructed mesh grids and the rectification results.

We also tested our method on the DFKI dataset 1 [24]. The dataset is spe-
cially designed for the evaluation of methods for curved document images recti-
fication. Figure 11 illustrates several typical examples of the rectification results
of our method on the dataset. The dataset consists of binary English document
images captured from opened book pages with various types of document con-
tents. All the document pages in the dataset are approximately distorted in
general cylindrical shapes and thus are very suitable for the evaluation of our
method. As we can see from the results, the proposed method is able to remove
all types of distortions in the images quite desirably, including geometric distor-
tions along horizontal text-lines and perspective distortion of camera in vertical
direction.

3.2 Comparisons with Kim et al.’s Method

Kim et al.’s method 2 [25] adopts a similar cylindrical page shape assumption
for geometric rectification. Their method relies on a connected component anal-
ysis technique to group characters into text-lines and text blocks. Then the
curved baselines is extracted to estimate the parameters of their 3D page model.
Figure 12 illustrates the comparisons of rectification results of our method with
their method. Kim et al.’s method works not well on the given examples mainly
due to two reasons. First, Kim et al.’s method requires the focal length of cam-
era to be provided manually. An erroneous focal length of camera will result
in a large rectification error. Second, accurate segmentation of text-lines and

1 The dataset can be downloaded from http://staffhome.ecm.uwa.edu.au/∼00082689/
downloads.html.

2 The executable codes can be downloaded from http://ispl.snu.ac.kr/bskim/
DocumentDewarping/.

http://staffhome.ecm.uwa.edu.au/~00082689/downloads.html
http://staffhome.ecm.uwa.edu.au/~00082689/downloads.html
http://ispl.snu.ac.kr/bskim/DocumentDewarping/
http://ispl.snu.ac.kr/bskim/DocumentDewarping/
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Fig. 11. Geometric rectification results of our method on DFKI dataset. From top
to bottom: the distorted document images, the reconstructed 3D page surface, the
constructed mesh grids and the rectification results.

Fig. 12. Comparisons of our method with Kim et al.’s method [25]. (a) the distorted
document images, (b) the extracted text-lines by Kim et al.’s method, (c) the rectifi-
cation results of Kim et al.’s method, (d) the constructed mesh grid of our method, (e)
the rectification results of our method.
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Fig. 13. Comparisons of our method with the SEG method [26], the SKEL method
[27], the CTM method [28] and the Snakes based method [29] on the DFKI dataset.
(a) the distorted document images, (b) results of the SEG method, (c) results of the
SKEL method, (d) results of the CTM method, (e) results of the Snakes based method,
(f) results of our method, (g) the constructed mesh grids of our method.

text blocks in a distorted document image is challenging. The proposed con-
nected component analysis technique is sensitive to languages and often fails to
document images with spare text-lines, as can be seen from the results in the
figure.

3.3 Comparisons on DFKI Dataset

We also compared our method with several state-of-the-art methods on DFKI
dataset, including the SEG method [26], the SKEL method [27], the CTM
method [28] and the Snakes based method [29]. The SEG method [26] segments
each word in the image and rotates them onto straight lines to correct local
skews. The SKEL method [27] extracts the outer skeletons of a text image and
then fits a Bezier surface to the whole page to estimate a deformation mapping.
The CTM method [28] extracts the curved horizontal text-lines by a morpho-
logical method and adopts a cylindrical shape model to rectify the image. The
Snakes based method [29] employs a coupled snake model to extract curved text
baselines for image rectification. Figure 13 illustrates the comparisons of our
method with the four methods. We also give the box plot of the OCR accuracy
of the five methods in Fig. 14.

From the results, we can see that the SEG method and the Snakes based
method cannot rectify the distortions of non-textual objects in the images, e.g.,
tables and formulas. The SKEL method fails to estimate the deformation func-
tion robustly when an image contains large area of non-textual objects. In com-
parison, the CTM method and our method work quite well. We point out that
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Fig. 14. The comparisons of the OCR accuracy of the five methods on the DFKI
dataset.

the performance of the CTM method heavily depends on the accuracy of the
extracted text lines. The morphological method used in the method is very sen-
sitive to the structure element sizes, which are vulnerable to many challenging
factors, including the variations of image resolution and font sizes, image dis-
tortion, image blur and document layouts. In comparison, our method does not
rely on text-lines detection and segmentation. It can thus be used to document
images with complex page layouts and severe quality degradation.

4 Conclusion

In this paper, we have proposed a segment-free method for geometric rectifica-
tion of curved document images captured by a hand-held camera. By assuming
that the curved page shape is a general cylindrical surface, we can reconstruct
the underlying 3D page shape from a single document image by exploiting its
intrinsic vector fields. In comparison with the widely used text-lines based meth-
ods, e.g., [14,25], our method does not require the detection and segmentation
of curved horizontal text lines or textual blocks, which is still an open prob-
lem especially for severely distorted document images with complex page lay-
outs. The proposed method can exploit various types of available visual cues in
images for 3D page shape recovery. It is thus can be applied to document images
with complicated page layouts and serious image quality degradation. We also
implemented extensive experiments on real-captured document images to test
the performance of our method.
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