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Abstract. Given a single RGB image of a complex outdoor road scene
in the perspective view, we address the novel problem of estimating an
occlusion-reasoned semantic scene layout in the top-view. This challeng-
ing problem not only requires an accurate understanding of both the 3D
geometry and the semantics of the visible scene, but also of occluded
areas. We propose a convolutional neural network that learns to pre-
dict occluded portions of the scene layout by looking around foreground
objects like cars or pedestrians. But instead of hallucinating RGB val-
ues, we show that directly predicting the semantics and depths in the
occluded areas enables a better transformation into the top-view. We fur-
ther show that this initial top-view representation can be significantly
enhanced by learning priors and rules about typical road layouts from
simulated or, if available, map data. Crucially, training our model does
not require costly or subjective human annotations for occluded areas or
the top-view, but rather uses readily available annotations for standard
semantic segmentation in the perspective view. We extensively evaluate
and analyze our approach on the KITTI and Cityscapes data sets.

Keywords: 3D scene understanding · Occlusion reasoning
Semantic top-view representations

1 Introduction

Visual completion is a crucial ability for an intelligent agent to navigate and
interact with the three-dimensional (3D) world. Several tasks such as driving
in urban scenes, or a robot grasping objects on a cluttered desk, require innate
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reasoning about unseen regions. A top-view or bird’s eye view (BEV) represen-
tation1 of the scene where occlusion relationships have been resolved is useful
in such situations [11]. It is a compact description of agents and scene elements
with semantically and geometrically consistent relationships, which is intuitive
for human visualization and precise for autonomous decisions.

Fig. 1. Given a single RGB image of a typical street scene (left), our approach creates
an occlusion-reasoned semantic map of the scene layout in the bird’s eye
view. We present a CNN that can hallucinate depth and semantics in areas occluded by
foreground objects (marked in red and obtained via standard semantic segmentation),
which gives an initial but noisy and incomplete estimate of the scene layout (middle).
To fill in unobserved areas in the top-view, we further propose a refinement-CNN that
induces learning strong priors from simulated and OpenStreetMap data (right), which
comes at no additional annotation costs.

In this work, we derive such top-view representations through a novel frame-
work that simultaneously reasons about geometry and semantics from just a
single RGB image, which we illustrate in the particularly challenging scenario
of outdoor road scenes. The focus of this work lies in the estimation of the scene
layout, although foreground objects can be placed on top using existing 3D
localization methods [24,38]. Our learning-based approach estimates a geomet-
rically and semantically consistent spatial layout even in regions hidden behind
foreground objects, like cars or pedestrians, without requiring human annota-
tion for occluded pixels or the top-view itself. Note that human supervision for
such occlusion-reasoned top-view maps is likely to be subjective and of course,
expensive to procure. Instead, we derive supervisory signals from readily avail-
able annotations for semantic segmentation in the perspective view, a depth
sensor or stereo (for visible areas) and a knowledge corpus of typical road scenes
via simulations and OpenStreetMap data. Figure 1 provides an illustration.

Specifically, in Sect. 3.1, we propose a novel CNN that takes as input an
image with occluded regions (corresponding to foreground objects) masked out,
and estimates the segmentation labels and depth values over the entire image,
essentially hallucinating distances and semantics in the occluded regions. In con-
trast to standard image in-painting approaches, we operate in the semantic
and depth spaces rather than the RGB image space. Section 3.1 shows how to
train this CNN without additional human annotations for occluded regions. The

1 We use the terms “top-view” and “bird’s eye view” interchangeably.
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hallucinated depth map is then used to map the hallucinated semantic segmen-
tation of each pixel into the bird’s eye view, see Sect. 3.2.

This initial prediction can be incomplete and erroneous, for instance, since
BEV pixels far away from the camera can be unobserved due to limited image
resolution or due to imperfect depth estimation. Thus, Sect. 3.3 proposes a refine-
ment and completion neural network to leverage easily obtained training data
from simulations that encode general priors and rules about road scene layouts.
Since there is no correspondence between actual images and simulated data,
we employ an adversarial loss for teaching our CNN a generative aspect about
typical layouts. When GPS is available for training images, we also show how
map data provides an additional training signal for our models. We demonstrate
this using OpenStreetMap (OSM) [19]. Maps provide rough correspondence with
RGB images through the GPS location, but it can be noisy and lacks informa-
tion on scene scale, besides mislabels in the map itself. We handle these issues
by learning a warping function that aligns OSM data with image evidence using
a variant of spatial transformer network [13]. Note that a single RGB image is
used at test time, with simulations or OSM limited to training.

In Sect. 4, we evaluate our proposed semantic BEV synthesis on the KITTI [8]
and Cityscapes [4] datasets. For a quantitative evaluation, we manually annotate
validation images with the scene layout in both the perspective and the top-view,
which is a time-consuming and error-prone process but again highlights the ben-
efit of our method that resorts only to readily available annotations. Since, to
the best of our knowledge, no prior work exists solving this problem in a simi-
lar setup to allow a fair comparison, we comprehensively evaluate with several
baselines to study the role of each module. Our experiments consider roads and
sidewalks for layout estimation, with cars and persons as occluding foreground
objects, although extensions to other semantic classes are straightforward in
future work. While not our focus, we visualize a simple application in Sect. 4.3
to include foreground objects such as cars and pedestrians in our representation.
We observe qualitatively meaningful top-view estimates, which also obtain low
errors on our annotated test set.

2 Related Work

General scene understanding is one of the fundamental goals of computer vision
and many approaches exist that tackle this problem from different directions.

Indoor: Recent works like [2,16,26] have shown great progress by leveraging
strong priors about indoor environments obtained from large-scale data sets.
While these approaches can rely on strong assumptions like a Manhattan world
layout, our work focuses on less constrained outdoor driving scenarios.

Outdoor: Scene understanding for outdoor scenes has received a lot of interest
in recent years [5,10,27,30,37], especially due to applications like driver assis-
tance systems or autonomous driving. Wang et al. [29] propose a conditional
random field that infers 3D object locations, semantic segmentation as well as
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a depth reconstruction of the scene from a single geo-tagged image, which also
enables the use of OSM data. At test time, their approach requires as input accu-
rate GPS and map information. In contrast, we require only the RGB image at
test time. Seff and Xiao [21] leverage OpenStreetMap (OSM) data to predict
several road layout attributes from a single image, like the distance to an inter-
section, drivable directions, heading angle, etc.While we also leverage OSM for
training our models and make predictions only from a single RGB image, we
infer a full semantic map in the top view instead of a discrete set of attributes.

Top-View Representations: Sengupta et al. [22] derive a top-view representa-
tion by relating semantic segmentation in perspective images to a ground plane
with a homography. However, this is a simplifying (flat-world) assumption where
non-flat objects will produce artifacts in the ground plane, like shadows or cones.
To alleviate these artifacts, they aggregate semantics over multiple frames. How-
ever, removing all artifacts would require viewing objects from many different
angles. In contrast, our approach enables reasoning about occlusion from just a
single image, which is enabled by automatically learned and context-dependent
priors about the world. Geiger et al. [7] represent road scenes with a complex
model in the bird’s eye view. However, input to the model comes from multi-
ple sources (vehicle tracklets, vanishing points, scene flow, etc.) and inference
requires MCMC, while our approach efficiently computes the BEV representa-
tion from just a single image. Moreover, their hand-crafted parametric model
might not account for all possible scene layouts, whereas our approach is non-
parametric and thus more flexible. Máttyus et al. [18] combine perspective and
top-view images to estimate road layouts and Zhai et al. [34] predict the semantic
layouts of top-view images by learning the transformation between the perspec-
tive and the top-view. Gupta et al. [11] demonstrate the suitability of a BEV
representation for mapping and planning, even though it is not explicitly learned.

Occlusion Reasoning: Most recent works in this area focus on occlusions of
foreground objects and use complex hand-crafted models [5,30,37,38]. In con-
trast, we estimate the layout of a scene occluded by foreground objects. Guo
and Hoiem [10] employ a scene parsing approach that retrieves existing shapes
from training data based on visible pixels. Our approach learns to hallucinate
occluded areas and does not rely on an existing and fixed set of polygons from
training data. Liu et al. [17] also hallucinate the semantics and depth of regions
occluded by foreground objects. However, (i) their approach relies on a hand-
crafted graphical model while ours is learning-based and (ii) they assume sparse
depth from a laser scanner as input, while we estimate depth from a single RGB
image (the sparse depth maps are actually ground truth for training our models).

3 Generating Bird’s Eye View Representations

We now present our approach for transforming a single RGB image in the per-
spective view into an occlusion-reasoned semantic representation in the bird’s eye
view, see Fig. 1. We take as input an image I ∈ R

h×w×3 with spatial dimension
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h and w and a semantic segmentation Sfg ∈ R
h×w×C of the visible scene, where

C is the number of categories. Note that any semantic segmentation method
can be used and we rely on the recently proposed pyramid scene parsing (PSP)
network [35]. Sfg provides the location of foreground objects that occlude the
scene. In this work, we consider foreground objects like cars or pedestrians as
occluders but other definitions are possible as well.

To reason about these occlusions, we define a masked image IM , where pixels
of foreground objects have been removed. In Sect. 3.1, we propose a CNN that
takes IM as input and hallucinates the depth as well as the semantics of the
entire image, including occluded pixels. The occlusion-reasoned depth map Dbg

allows us to map the occlusion-reasoned semantic segmentation Sbg into 3D and
then into the bird’s eye view (BEV), see Sect. 3.2.

While this initial BEV map Binit is already better than mapping the non-
occlusion reasoned semantic map Sfg into 3D, there can still be unobserved or
erroneous pixels. In Sect. 3.3, we thus propose a CNN that learns priors from
simulated data to further improve our representation. If a GPS signal is available,
OpenStreetMap (OSM) data can be additionally included as supervisory signal.

3.1 Learning to see Around Foreground Objects

An important step towards an occlusion-reasoned representation of the scene is
to infer the semantics and the geometry behind foreground objects.

Masking: Given the semantic segmentation Sfg, we define the mask of fore-
ground pixels as M ∈ R

h×w, where a pixel in the mask Mij is 1 if and only
if the segmentation at that pixel Sfg

ij belongs to any of the foreground classes.
Otherwise, the pixel in the mask is 0. In order to inform the CNN about which
pixels have to be in-painted, we apply the mask on the input RGB image and
define each pixel in the masked input IM as

IM
ij =

{
m̄, if Mij = 1
Iij , otherwise,

where m̄ is the mean RGB value of the color range, such that after normalization
the input to the CNN is zero for those pixels. Given IM , we extract a feature
representation by applying ResNet-50 [12]. Similar to recent semantic segmen-
tation literature [35], we use a larger stride in convolutions and dilation [32] to
increase the feature map resolution from h

32 × w
32 to h

8 × w
8 .

In addition to masking the input image, we explicitly provide the mask as
input to the CNN for two reasons: (i) While the value m becomes 0 after centering
the input of the CNN, other visible pixels might still share the same value and
confuse the training of the CNN. (ii) An explicit mask input allows encoding
more information like the category of the occluded pixel. We thus define another
mask M cls ∈ R

h×w×Cfg
, where Cfg is the number of foreground classes and each

channel corresponds to one of them. We encode M cls with a small CNN and fuse
the resulting feature with the one from the masked image, see Fig. 2a.
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Fig. 2. (a) The inpainting CNN first encodes a masked image and the mask itself. The
extracted features are concatenated and two decoders predict semantics and depth for
visible and occluded pixels. (b) To train the inpainting CNN we ignore foreground
objects as no ground truth is available (red) but we artificially add masks (green) over
background regions where full annotation is already available

Hallucination: We then put two decoders on the fused feature representa-
tion of IM and M cls for predicting semantic segmentation and the depthmap
of the occlusion-free scene. For semantic segmentation, we again use the PSP
module [35], which is particularly useful for in-painting where contextual infor-
mation is crucial. For depth prediction, we follow [15] in defining the network
architecture. Both decoders are followed by a bilinear upsampling layer to pro-
vide the output at the same resolution as the input, see Fig. 2a. While traditional
in-painting methods fill missing pixels with RGB values, note that we directly go
from an RGB image to the in-painted semantics and the geometry of the scene,
which has two benefits: (1) The computational costs are smaller as we avoid the
(in our case) unnecessary detour in the RGB space. (2) The task of in-painting
in the RGB space is presumably harder than in-painting semantics and depth
as there is no need for predicting any texture or color.

Fig. 3. The process of mapping the semantic segmentation with corresponding depth
first into a 3D point cloud and then into the bird’s eye view. The red and blue circles
illustrate corresponding locations in all views.

Training: We train the proposed CNN in a supervised way. However, as men-
tioned before, it would be very costly to annotate the semantics and particularly
the geometry behind foreground objects. We thus resort to an alternative that
only requires standard semantic segmentation and depth ground truth. Because
our desired ground truth is unknown for real foreground objects in the masked
input image IM , we do not infer any loss at those pixels. However, we augment
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IM with additional randomly sampled masks, but for which we still have ground
truth, see Fig. 2b. In this way, we can teach our CNN to hallucinate occluded
areas of the input image without acquiring costly human annotations. Note that
an alternative to masking regions in the input image is to paste real foreground
objects into the scene. However, this strategy requires separate instances of fore-
ground objects cropped at the semantic boundaries and a good understanding
of the scene geometry for generating a realistic looking training image.

3.2 Mapping into the Bird’s Eye View

Given the depth map Dbg and the intrinsic camera parameters K, we can map
each coordinate of the perspective view into the 3D space. We drop the z-
coordinate (height axis) for each 3D point and assign x and y coordinates to
the closest integer, which gives us a mapping into bird’s eye view representa-
tion. We use this mapping to transfer the class probability distribution of each
pixel in the perspective view, i.e., Sbg, into the bird’s eye view, which we denote
Binit ∈ R

k×l×Cbg
, where Cbg is the number of background classes and k and l

are the spatial dimensions. Throughout the paper, we use k = 128 and l = 64
pixels that we relate to 60× 30 meters in the point cloud. For all points that are
mapped to the same pixel in the top view, we average the corresponding class
distribution. Figure 3 illustrates the geometric transformation.

Note that Binit is our first occlusion-reasoned semantic representation in the
bird’s eye view. However, Binit also has several remaining issues. Some pixels
in Binit will not be assigned any class probability, especially those far from the
camera due to image foreshortening in the perspective view. Imperfect depth
prediction is also an issue because it may assign a well classified pixel in the
perspective view a wrong depth value, which puts the point into a wrong location
in top-view. This can lead to unnatural arrangements of semantic classes in Binit.

3.3 Refinement with a Knowledge Corpus

To remedy the above mentioned issues, we propose a refinement CNN that takes
Binit and predicts the final output Bfinal ∈ R

k×l×Cbg
, which has the same dimen-

sions as Binit. The refinement CNN has an encoder-decoder structure with a
fully-connected bottleneck layer, see Fig. 4b. The main difficulty in training the
refinement CNN is the lack of semantic ground truth data in the bird’s eye
view, which is very hard and costly to annotate. In the following we present two
sources of supervisory signals that are easy to acquire.

Simulation: The first source of information we leverage is a simulator that
renders the semantics of typical road scenes in the bird’s eye view. The simulator
models roads with different types of intersections, lanes and sidewalks, see Fig. 4a
for some examples. Note that it is easy to create such a simulator as we do not
need to model texture, occlusions or any perspective distortions in the scene. A
simple generative model about road topology, number of lanes, radius for curved
roads, etc.is enough. Since there is no correspondence with the real training
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data, we rely on an adversarial loss [1] between predictions of the refinement
CNN Bfinal and data from the simulator Bsim

Lsim =
m∑

i=1

d
(
Bfinal

i ;Θdiscr

) −
m∑

i=1

d
(
Bsim

i ;Θdiscr

)
,

where m is the batch size and d (.;Θdiscr) is the discriminator function with
parameters Θdiscr. Note that d (.;Θdiscr) needs to be a K-Lipschitz function [1],
which is enforced by gradient clipping on the parameters Θdiscr during training.
While any other variant of adversarial loss is possible, we found [1] to provide
the most stable training. The adversarial loss injects prior information about
typical road scene layouts and remedies errors of Binit like unobserved pixels or
unnatural shapes of objects due to depth or semantic prediction errors.

Fig. 4. (a) Simulated road shapes in the top-view. (b) The refinement-CNN
is an encoder-decoder network receiving three supervisory signals: self-reconstruction
with the input, adversarial loss from simulated data, and reconstruction loss with
aligned OpenStreetMap (OSM) data. (c) The alignment CNN takes as input the
initial BEV map and a crop of OSM data (via noisy GPS and yaw estimate given). The
CNN predicts a warp for the OSM map and is trained to minimize the reconstruction
loss with the initial BEV map.

Since Lsim operates without any correspondence, the refinement network
needs additional regularization to not deviate too much from the actual input,
i.e., Binit. We add a reconstruction loss between Binit and Bfinal to define the
final loss as L = Lsim + λ · Lreconst with

Lreconst =
‖(Binit − Bfinal) � M‖2∑

ij M
,

where � is an element-wise multiplication and M ∈ R
k×l is a mask of 0’s for

unobserved pixels in Binit and 1’s otherwise.

OpenStreetMap Data: Driving imagery often comes with a GPS signal and
an estimate of the driving direction, which enables the use of OpenStreetMap
(OSM) data as another source of supervisory signal for the refinement CNN. The
most simple approach is to render the OSM data for the given location and angle,
Bosm, and define a reconstruction loss with Bfinal as LOSM = ‖Bfinal − Bosm‖2.
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This loss can be included into the final loss L in addition to or instead of Lreconst.
In any case, LOSM ignores noise in the GPS and the direction estimate as well as
imperfect renderings due to annotation noise and missing information in OSM.

We therefore propose to align the initial OSM map Bosm with the seman-
tics and geometry observed in the actual RGB image with a warping function
B̂osm = w (Bosm; θ) parameterized by θ. We use a composition of a similarity
transformation implemented as a parametric spatial transformer (handling trans-
lation, rotation, and scale; denoted “Box”) and a non-parametric warp imple-
mented as bilinear sampling (handling non-linear misalignments due to OSM
rendering; denoted “Flow”) [13], see Fig. 5. We minimize the masked reconstruc-
tion between B̂osm and the initial BEV map Binit,

θ∗ = arg min
θ

‖(Binit − w (Bosm; θ)) � M‖2∑
ij M

+ λ2Γ (w (Bosm; θ)) + λ3‖θ‖22 ,

Fig. 5. (a) We use a composition of similarity transform (left, “box”) and a non-
parametric warp (right, “flow”) to align noisy OSM with image evidence. (b, top)
Input image and the corresponding Binit. (b, bottom) Resulting warping grid overlaid
on the OSM map and the warping result for 4 different warping functions, respectively:
“box”, “flow”, “box+flow”, “box+flow (with regularization)”. Note the importance of
composing the transformations and the induced regularization.

where w (.; θ) is differentiable [13], and Γ (.) is a low-pass filter similar to [28,
36], and ‖.‖22 the squared �2-norm, both acting as regularizing functions. The
hyper-parameters λ2 and λ3 are manually set.

To minimize the alignment error the first choice is non-linear optimization,
e.g., LBFG-S [3]. However, we found this to produce satisfactory results only for
parts of the data, while a significant portion would require hand-tuning of several
hyper-parameters. This is mostly due to noise in the initial BEV map Binit as
well as the rendering Bosm. An alternative, which proved to be more stable
and easy to realize, is to learn a function that predicts the warping parameters,
which has the benefit that the predictive function can implicitly leverage other
examples of (Binit, Bosm) pairs in the training corpus. We thus train a CNN
that takes Binit and Bosm as inputs and predicts the warping parameters θ by
minimizing the alignment error. Also, we can either train this CNN separately or
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jointly with the refinement CNN, thus providing different training signals for the
refinement module. We evaluate these options in Sect. 4.2. Figure 4c illustrates
the process of aligning the OSM data.

4 Experiments

Our quantitative and qualitative evaluation focuses on occlusion reasoning via
hallucination in the perspective view (Sect. 4.1) and scene completion via the
refinement network in the bird’s eye view (Sect. 4.2).

Datasets: Creating the proposed BEV representation requires data for learning
the parameters of the modules described above. Importantly, the only super-
visory signal that we need is semantic segmentation (human annotation) and
depth (LiDAR or stereo), although not both are required for the same input
image. Both KITTI [8] and Cityscapes [4] fulfill our requirements. Both data
sets come with a GPS signal and a yaw estimate of the driving direction, which
allows us to additionally leverage OSM data during training.

Fig. 6. Qualitative example of our hallucination CNN: Semantics and depth without
(left) and with (right) hallucination.

Table 1. Hallucination results for two general in-painting strategies and different mask
encodings

Method Random-boxes Human-gt

Hidden Visible Hidden

IoU ARD IoU IoU

RGB-inpaint 68.83 .1428 79.25 55.79

Direct 64.63 .1413 81.12 60.06

RGB-only 63.07 .1440 79.71 60.77

+ mask 63.47 .1435 80.14 60.24

+ cls-encode 64.79 .1453 80.63 61.06

The KITTI [8] data set contains many sequences of typical driving scenarios
and contains accurate GPS location and driving direction as well as a 3D point
cloud from a laser scanner. However, annotation for semantic segmentation is
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scarce. We create two versions of the data set based on segmentation annotation:
KITTI-Ros consists of 31 sequences (14201 frames) for training, where 100 of
them have semantic annotation, and of 9 sequences (4368) for validation, where
46 images are annotated for segmentation. The segmentation ground truth comes
from [20]. KITTI-RAW consists of 31 sequences (16273 frames) for training and
9 sequences (2296 frames) for validation. 1074 images from the training set and
233 images from the validation set have ground truth annotations for semantic
segmentation, which we collected on our own.

The Cityscapes data set [4] contains 2975 training and 500 validation images,
all of which are fully annotated for semantic segmentation and are provided
as stereo image pairs. For ease of implementation, we rely on a strong stereo
method [33] to serve as our training signal for depth, although unsupervised
methods exists for direct training from stereo images [6,9]. GPS location and
heading are also provided, although accuracy is lower compared to KITTI.

Validation Data for Occlusion-Reasoning: For a quantitative evaluation of
occlusion reasoning in the perspective view as well as in the bird’s eye view,
we manually annotated all validation image of the three data sets that also
have semantic segmentation ground truth. We asked annotators to draw the
scene layout by hand for the categories “road” and “sidewalk”. Other pixels are
annotated as “background”.

Implementation Details: We train our in-painting models with a batch size
of 2 for 80k iterations with ADAM [14]. The initial learning rate is 0.0002, which
is decreased by a factor of 10 for the last 20k iterations. The refinement network
is trained with a batch size of 64 for 80k iterations and a learning rate of 0.0001.

4.1 Occlusion Reasoning by Hallucination

Here we analyze our hallucination CNN proposed in Sect. 3.1, which targets at
in-painting the semantics and depth of areas occluded by foreground objects.
To the best of our knowledge, there is no prior art that can serve as a fair
comparison point. Although [17] addresses the same task, their approach assumes
sparse depth information as input, which serves as ground truth in our approach.
Nevertheless, we have created fair baselines that justify our design choices.

Evaluation Protocol: We split our evaluation protocol into two parts. First, we
follow [17] by randomly masking out background regions in the input and eval-
uate the predictions of the hallucination CNNs (random-boxes). For this case,
note that evaluation can be done for all semantic classes and depth. While this is
the only possible evaluation without human annotation for occluded areas, the
sampling process may not resemble objects realistically. Thus, we also evaluate
with our newly acquired annotations (human-gt) for the categories “road” and
“sidewalk”, which was not done in [17]. We measure mean IoU for segmentation
and absolute relative distance (ARD) for depth estimation as in [15].

Semantics and Depth Space Versus RGB Space: We compare our hallu-
cination CNN with a baseline that takes the traditional approach of in-painting
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and operates in the RGB pixel space. This baseline consists of two CNNs, one
for in-painting in the RGB space and one for semantic and depth prediction.
For a fair comparison, we equip both CNNs with the same ResNet-50 feature
extractor. For RGB-space in-painting, we use the same decoder structure as
for depth prediction but with 3 output channels and train it with the random
mask sampling strategy. The second CNN has the exact same architecture as
our hallucination CNN and is trained without masking inputs but instead uses
the already in-painted RGB images. From Table 1 we can see that the proposed
direct hallucination network outperforms in-painting in the RGB space for depth
prediction and segmentation with the human-provided ground truth while it
trails for segmentation of all categories with random boxes. The reason for the
inferior performance might be missing context information that is available to
the baseline by the RGB-space supervision. However, note that the proposed
architecture is twice as efficient, since in-painting and prediction of semantics
and depth are obtained in the same forward pass. Qualitative examples of our
direct hallucination CNN are given in Fig. 6.

Mask-Encoding: We also analyze different variants of how to encode the fore-
ground mask as input to the proposed hallucination CNN. Table 1 demonstrates
the beneficial impact of explicitly encoding the foreground mask (“+mask”) in
addition to masking the RGB image (“RGB-only”), as well as providing the class
information of the foreground objects inside the mask (“+cls-encode”).

4.2 Refining the BEV Representation

We now evaluate the refinement model described in Sect. 3.3 on all three data
sets with the acquired annotations in the bird’s eye view. The evaluation met-
ric again is mean IOU for the categories “road” and “sidewalk”. We compare
four models: (1) The initial BEV map, without refinement. (2) A refinement
heuristic, where missing semantic information at pixel (i, j) is filled with the
semantics of the closest pixels in y-direction towards the camera. (3) The pro-
posed refinement module with simulated data and the self-reconstruction loss.

Table 2. (a) Results on the KITTI-RAW data set showing the impact of the refinement
module with simulated and OSM data compared to Binit and a simple refinement
heuristic. We also show the impact of hallucination and depth prediction. (b) Results
for KITTI-Ros and Cityscapes

(a)

Setting (KITTI-RAW) Road Sidewalk Mean

BEV-init 58.13 29.33 43.73
Refine-heuristic 67.93 30.12 49.02
Simulation 66.98 29.73 48.36
Simulation+OSM 68.89 30.35 49.62

no halluc. 51.85 24.76 38.31
no halluc. (refine) 65.67 25.91 45.79
no depth pred. 44.54 8.61 26.58
no depth pred. (refine) 46.11 7.73 26.92

(b)

Dataset Setting Road Sidewalk Mean

KITTI- BEV-init 56.93 40.71 48.82
Ros Refine-heuristic 69.59 41.31 55.45

Simulation 62.96 43.19 53.08
Simulation+OSM 71.82 44.77 58.29

City- BEV-init 51.40 17.47 34.43
scapes Refine-heuristic 52.06 17.22 34.64

Simulation 52.89 17.89 35.39
Simulation+OSM 56.46 19.60 38.03
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Table 3. An ablation study of the proposed BEV-refinement module. We analyze
different types of warping functions and OSM alignment optimization strategies

Experiment Setting Road Sidewalk Mean

Warping-method Box 64.77 30.51 47.64

Flow 66.03 30.74 48.39

Box+Flow 68.89 30.35 49.62

Warp-optimization LBFGS 22.31 29.24 25.78

CNN 63.91 29.19 46.55

CNN-joint 68.89 30.35 49.62

(4) The refinement module with the additional OSM-reconstruction loss. Table 2
clearly shows that the combination of simulated and aligned OSM data provides
the best supervisory signal for the refinement module on all three data sets.
Interestingly, the refinement heuristic is a strong competitor but this is proba-
bly because evaluation is limited to only “road” and “sidewalk”, where simple
rules are often correct. This heuristic will likely fail for classes like “vegetation”
and “building”. Importantly, all refinement strategies improve upon the initial
BEV map. Because no fair comparison point to prior art is available to us, we
further analyze two alternative baselines on the KITTI-RAW data set.
Importance of Hallucination: We train a refinement module that takes as
input BEV maps that omit the hallucination step (“No halluc.”). To create this
BEV map, we train a joint segmentation and depth prediction network (same
architecture as for hallucination) with standard foreground annotation and map
the semantics of background classes into the BEV map as described in Sect. 3.2.
Table 2 shows that avoiding the hallucination step hurts the performance. Note
that the proposed refinement CNN recovers most errors for roads, while the
relative performance drop for sidewalks is larger. We believe this is due to long
stretches of non-occluded roads in the KITTI data set. Sidewalks, on the other
hand, are typically more occluded due to parked cars and pedestrians.

Fig. 7. Examples of our BEV representation. Each one shows the masked RGB
input, the hallucinated semantics and depth, as well as three BEV maps, which are
(from left to right), The BEV map without hallucination, with hallucination, and after
refinement.
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Importance of Depth Prediction: We train a CNN that takes as input the
RGB image in the perspective view and directly predicts the BEV map, without
depth prediction (“No depth pred.”). The CNN extracts basic features with
ResNet-50 [12], applies strided convolutions for further down-sampling, a fully-
connected layer resembling a transformation from 2D to 3D, and transposed
convolutions for up-sampling into the BEV dimensions. To create a training
signal for this network, we map ground truth segmentation with the ground
truth depth data (LiDAR) into the bird’s eye view. On top of the output of this
CNN, we still apply the proposed refinement module for a fair comparison. The
importance of depth prediction becomes clearly evident from Table 2. In this
case, not even the refinement-CNN is able to recover. While there can be better
architectures for directly predicting a semantic BEV map from the perspective
view than our baseline, it is important to note that depth is an intermediary that
clearly eases the task by enabling the use of known geometric transformations.

Warping OSM Data: In Table 3, we compare different warping functions and
optimization strategies for aligning the OSM data, as described in Sect. 3.3. Our
results show that the composition of “Box” (translation, scale and rotation) and
“Flow” (displacement field) is superior to individual warps. We can also see that
the proposed alignment CNN trained jointly with the refinement module pro-
vides the best training signal from OSM data. As already mentioned in Sect. 3.3,
LBFG-S alignment failed for around 30% of the training data, which explains
the superiority of the proposed CNN for predicting warping parameters.

Qualitative Results: Figure 7 demonstrates the beneficial impact of both the
hallucination and refinement modules with several qualitative examples. In the
first three cases, we can observe the learned priors of the hallucination CNN
that correctly handles largely occluded areas, which is evident from both the
hallucinated semantics and the difference in the first two illustrated BEV maps
(before and after hallucination). Other examples illustrate how the refinement
CNN completes unobserved areas and even completes whole side roads and inter-
sections.

Fig. 8. Two examples of a BEV map including foreground objects, like cars here.
For each example, we also shows the input image, the semantic segmentation and the
predicted depth map.
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4.3 Incorporating Foreground Objects into the BEV Map

Finally, we show how foreground objects like cars or pedestrians can be handled
in the proposed framework. Since it is not the main focus of this paper, we use
a simple baseline to lift 2D bounding boxes of cars into the BEV map. Impor-
tantly, we demonstrate that our refinement module is able to handle foreground
objects as well. First we leverage the 3D ground truth annotations of the KITTI
data set and estimate the mean dimensions of a 3D bounding box. Then, for a
given 2D bounding box in the perspective view, we use the estimated depth map
to compute the 3D point of the bottom center of the bounding box, which is
then used to translate our prior 3D bounding box in the BEV map. The refine-
ment network takes the initial BEV map that now includes foreground objects.
We extend the simulator to render objects as rectangles in the top-view and
employ a self-reconstruction loss since OSM cannot provide such information.
Figure 8 gives two examples of the obtained BEV-map with foreground objects
for illustrative purpose. A full quantitative evaluation for localization accuracy
and consistency with background requires significant extensions to be studied in
our future work.

5 Conclusion

Our work addresses a complex problem in 3D scene understanding, namely,
occlusion-reasoned semantic representation of outdoor scenes in the top-view,
using just a single RGB image in the perspective view. This requires solving the
canonical challenge of hallucinating semantics and geometry in areas occluded
by foreground objects, for which we propose a CNN trained using only standard
annotations in the perspective image. Further, we show that adversarial and
warping-based refinement allow leveraging simulation and map data as valuable
supervisory signals to learn prior knowledge. Quantitative and qualitative eval-
uations on the KITTI and Cityscapes datasets show attractive results compared
to several baselines. While we have shown the feasibility of solving this problem
using a single image, incorporating temporal information might be a promising
extension for further gains. We finally note that with the use of indoor data sets
like [23,25], along with simulators [31] and floor plans [16], a similar framework
may be derived for indoor scenes, which will be the subject of our future work.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. (IIS-1553116). The work was part of M. Zhai’s
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22. Sengupta, S., Sturgess, P., Ladický, L., Torr, P.H.S.: Automatic dense visual seman-
tic mapping from street-level imagery. In: IROS (2012)

23. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33715-4 54

24. Song, S., Chandraker, M.: Robust scale estimation in real-time monocular SFM
for autonomous driving. In: CVPR (2014)

https://doi.org/10.1007/978-3-319-46484-8_45
https://doi.org/10.1007/978-3-319-46484-8_45
https://doi.org/10.1007/978-3-642-33715-4_55
https://doi.org/10.1007/978-3-642-33715-4_55
https://doi.org/10.1007/978-3-319-46466-4_16
https://doi.org/10.1007/978-3-319-46466-4_16
https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org
http://arxiv.org/abs/1611.08583
https://doi.org/10.1007/978-3-642-33715-4_54


Learning to Look around Objects 831

25. Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: a RGB-D scene understanding
benchmark suite. In: CVPR (2015)

26. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic
scene completion from a single depth image. In: CVPR (2017)
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