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Abstract. In this paper, we propose the Broadcasting Convolutional
Network (BCN) that extracts key object features from the global field
of an entire input image and recognizes their relationship with local
features. BCN is a simple network module that collects effective spa-
tial features, embeds location information and broadcasts them to the
entire feature maps. We further introduce the Multi-Relational Network
(multiRN) that improves the existing Relation Network (RN) by utiliz-
ing the BCN module. In pixel-based relation reasoning problems, with
the help of BCN, multiRN extends the concept of ‘pairwise relations’ in
conventional RNs to ‘multiwise relations’ by relating each object with
multiple objects at once. This yields in O(n) complexity for n objects,
which is a vast computational gain from RNs that take O(n2). Through
experiments, multiRN has achieved a state-of-the-art performance on
CLEVR dataset, which proves the usability of BCN on relation reasoning
problems.

Keywords: Visual relational reasoning · BCN · Broadcast · CLEVR
Multi-RN · Visuo-spatial features

1 Introduction

A complete cognizance of a visual scene is achieved by relational reasonings of
a set of detected entities in an attempt to discover the underlying structure
[18]. Reasoning comparative relationships allows artificial intelligence to infer
semantic similarities or transitive orders among objects in scenes with various
perspectives and scales [5]. While the core of relational reasoning instrumentally
depends on spatial learning [3,28], the relational networks (RNs) [27,29] have
fostered the performance vastly on related tasks based on their spatial grid fea-
tures. However, the number of objects in conventional RNs upsurges as their
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method assumes that each grid represents an object at the corresponding posi-
tion within the scene regardless of the existence of an object at a grid position.
Moreover, the computational cost increases quadratically as RNs are based on
pairwise computation of objects’ relations for relational reasoning.

This computational burden is inevitable for visual reasoning problems if
conventional architectures of convolutional neural networks (CNNs) [21] are
used. Although, CNNs have allowed success in many computer vision problems
[6,7,9,12,19,24], yet they still suffer from difficulties in generalization over geo-
metric variations of scenes. This is mainly due to the receptive fields that are
mapped with convolution filters at fixed areas, which derives CNNs to disregard
spatial locations in the process of searching for optimal features. Either bigger
size of filters that embrace multiple input entities or repetitive usage of smaller
filters in deeper networks are typically used to learn spatial relationships. CNNs,
however, still show limited performances for large deformations of inputs as long
as the receptive fields of convolution or pooling filters stay local and small-sized
[13,14,23,25].

In order to learn relationships among objects, the correlation of objects
needs to be defined along with the segregation of non-object features. And,
CNNs’ structural loss of spatial information also needs to be overcome to han-
dle dynamic variations of object sizes and locations. We are motivated to solve
such issues through globally extending receptive fields of object features and effi-
ciently learning correlations among objects in an end-to-end manner. To this end,
we propose a modular technique named Broadcasting Convolutional Network
(BCN) that can be applied in any CNNs to enable learning spatial features with
absolute positional information, broadcasting the features and analyzing visual
relations among given objects. This technique not only overcomes the limitations
of conventional narrow-sighted convolution operations by extending the recep-
tive fields ideally to the global manner, but also allows to define a novel neural
network called the Multi-relational Network (multiRN) that outperforms on the
relational reasoning tasks in terms of both performance and computational effi-
ciency. The proposed multiRN achieves the state-of-the-art performance on the
CLEVR dataset which is the representative dataset for relational reasoning.

The paper is organized as follows. In Sects. 2 and 3, the proposed BCN and
multiRN are explained in detail. In Sect. 4, the novelty of our work is described
by comparing the methods with the related works. Section 5 shows experimental
results and finally, Sect. 6 concludes the paper.

2 Broadcasting Convolutional Network

In this section, we first describe the overall architecture of BCN with details of
our implementations and their purposes. The proposed BCN is depicted in Fig. 1
which mainly consists of three components: (1) coordinate channel embedding
(CCE), (2) encoding visual features with objective spatial information and (3)
broadcasting globally max-pooled features through expansions.

The BCN is applied after each pixel of the feature maps acquires proper
sizes of receptive fields through basic convolutions. The module makes feature
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Fig. 1. Broadcasting Convolutional Network Modules. Feature maps acquired
from previous convolution layers are concatenated with coordinate planes during CCE
phase. Then, additional light-weight convolution layer(s) (e.g. two layers of 1 × 1 con-
volution with ReLU activation) is(are) applied. An 1 × 1 × n vector is generated by
max-pooling from each filter channel of the n resultant feature maps. The vector is
then expanded to emulate the size of the original feature maps, and merged with the
original feature maps as an input to the next layer of convolution.

maps that represent the coordinate information and concatenates them with the
original CNN feature maps. Then, rather simple convolution operations (e.g.
a few layers of 1 × 1 convolution with ReLU activation) are applied, which is
followed by a global max-pooling stage. Let us say that a feature map in the
shape of h×w×n is generated from the previous convolution operations, where
n is the number of filters and h and w represent height and width of the feature
maps produced, respectively. In this sense, a maximum element can be extracted
from each filter so that an 1 × 1 × n vector is generated. The feature vector is
then expanded to emulate the same size of the original feature maps, and then
merged with the original feature maps to be convolutionally mapped together.

Our intention of such structure concentrates on reusing the relationship
among current positional features and broadcasting them for global compar-
isons during further convolution operations. Concatenating extracted features
with the original feature maps, further convolution filters are able to correlate
the objective visuospatial features (convolved features with CCE) and the rela-
tive visuospatial features (broadcasting features).

The whole structure of BCN can be succinctly described in an equation as:

BCN (F ) = [E(max([F,C] ∗ k), h, w), C], (1)

where [·, ·] refers to the concatenation of feature maps. Here, F ∈ R
h×w×n′

is
the input feature map for the broadcast convolution module, C ∈ R

h×w×nc

is nc coordinate planes, ∗k represents a few layers of convolutional operations
whose structure is defined in k (e.g. two layers of 1 × 1 convolution with ReLU
activation). Assuming that n is the number of filters in the last layer of successive
convolution operations ∗k, the max-pooling operation is taken for each of n
output feature maps such that it results in an 1 × 1 × n vector. E denotes an
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Fig. 2. An example of coordinate planes, cx, cy and cr, for feature maps with 2:1 aspect
ratio of width to height. The brighter, the higher value.

expansion operation which copies its input vector to the entire h × w positions.
The proposed BCN outputs a broadcast feature map B ∈ R

h×w×(n+nc) which
is concatenated with the original feature maps F and fed to the next layer as
shown in Fig. 1.

The convolution layer(s) right after the CCE phase can be one or multiple,
however the major purpose of its(their) presence is to generate abstract repre-
sentations based on locations. This allows the further convolutional mappings in
the later process to infer relative positions among features with the implanted
information on the objective positions. In this paper, we have implemented two
or three layers of 1 × 1 convolution after CCE for all experiments to make each
pixel in feature maps being convolved depth-wise with undissolved coordinate
information. Additionally, the number of feature maps has kept fairly small so
that the coordinate planes can be adequately reflected to the outputs after con-
volution operations. Yet, the number of coordinate planes can apparently be
adjusted if needed. This simple setting allows a large improvement on efficiency
of extracting and utilizing spatial features in CNNs without much additional
computation.

Since CNNs have performed generalization by taking advantage of sharing
convolutional kernels in all input locations, their consequential structures are
difficult to conserve spatial information throughout the layers. One of the intu-
itive ways to reflect location information to filtered outputs is to embed unique
coordinates into the inputs. In our method, the feature location information is
implanted in original feature maps as additional channels. This specific deci-
sion comes from the motivation to assign objective positional components to
each feature during convolutions before the max-pooling phase, and to establish
relative location for the comparison against other spatial features when broad-
casting. This furthers the productivity of coordinate embedded visual features
and allows additional convolutional mappings to reflect the feature positions
when generating higher level features.

Three different coordinate planes are defined as in Fig. 2 and used in this
paper; one for the x-axis, cx, another for the y-axis, cy and the last one for
the radial distance from the center, cr. Similar to the conventional coordinate
feature embedding approaches [22,26,29,32], these planes with the normalized
coordinates reduce initial learning bias and provide additional feature location
information. Since inputs of our module may not necessarily have the shape of
a square, elements of each plane are normalized according to the aspect ratio of
inputs. As it can be seen in Fig. 2, the Cartesian coordinates cx and cy tend to be
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Fig. 3. Multi-Relational Networks. For visual relational reasoning problems, input
scenes are fed into ordinary convolutional layers and a BCN module. Since the outputs
of BCNs connote visuospatial features of multiple objects, they can be merged with
the original features and the expanded question tensor for further convolution opera-
tions, gθ. Then, global sum poolings are operated on feature maps produced, and the
outcomes are integrated to answer questions.

zero towards the center. This prevents features from being initially biased near
bottom right-side which occurs if coordinates near top left start from zero as
used in usual computer graphics. Also, when inputs with different aspect ratios
are given, initial values in CCE are scaled to cope with the different aspect ratio.

3 Multi-relational Network

Visuospatial tasks necessitate recognition of relevant features from the spatial
organization of stimuli and selection of stimulus that matches one or more of
these identified features [3,28]. Algorithms such as relation networks (RNs) [27,
29] have introduced solutions for relational reasoning problems including CLEVR
dataset [16] based on their spatial grid features – the dataset is explained in a
more detailed manner later in this paper. Utilizing BCN, RNs can be greatly
improved in both performance and computational efficiency.

In [29], an RN module for a set of n objects, O = {o1, · · · , on}, is introduced,
which consists of two functions fφ and gθ such that:

RN (O) = fφ(
∑

i

∑

j

gθ(oi, oj)), (2)

where fφ represents multi-layer perceptron (MLP) operations on the visuospatial
relation features that have been generated by another MLP operation gθ from all
pairwise combinations of objects. The ‘relations’ are the outputs of O(n2) time
of computations from gθ. Earlier in this paper, we have explained how BCN
allows multiple spatial features to be represented in one dimensional vector.
With the help of BCN described in (1), original RN in (2) can be revised into
Multi-Relational Networks (multiRN) as follows:

multiRN (O) = fφ(
∑

i

gθ(oi,BCN (O))). (3)
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Since BCN (O) connotes multi-location features for multiple objects, each object
feature can be paired with multiple object location features, fed into gθ and com-
puted in O(n). This allows not only exponential gain in computation complexity
but also relational comparison with multiple objects at once. The outputs of gθ

should, in our context, be redefined as ‘multiple relations’, and can be trained
end-to-end to convey information about how much of certain object feature at
particular location should be reflected for visual relational reasoning.

Furthermore, the number of objects, n, in pixel-based relational reasoning
problems is defined by n = h × w where h,w are height and width of resultant
3-dimensional tensors from previous convolution layers. Such trait allows us to
replace the MLP operation for gθ in RNs with 1 × 1 convolution after channel
concatenations of BCN outputs as shown in Fig. 3. The non-pixel-based objects
such as questions in visual question and answering (VQA) problems can be
additionally concatenated in channels. The final form of our multi-relational
network is:

multiRN(O) = fφ(
∑

i

gθ(oi,BCN (O), question). (4)

In practice, questions are expanded for channel embedding, and the final tensor
is fed into gθ-convolution operations to achieve ‘multiple relations’.

4 Related Works

Our motif has two aspects: 1. extracting and condensing dynamic spatial features
and 2. globally projecting them to previous feature maps which largely widen
the receptive fields just as demanded in multi-scale reasonings and full resolution
dense relational predictions.

Many previous computer vision related researches have used pooling tech-
niques for extracting meaningful spatial features [4]. Spatial pyramid pooling [8]
uses manual control over pooling scales and regional features are extracted from
variations of hand-engineered pooling scopes. This issue has been developed in
[15] where a large set of various pooling bins are initiated and the algorithm
learns to select sparse subset of them. These works take hand-crafted pooling
regions that cannot be learned end-to-end.

ROI pooling structure [4,5] is similar to our method’s in a way of executing
pooling methods in channel-wise. Each channel represents feature maps from
starting stride point to last, and thus may possess objective spatial features.
However, with conventional ROI pooling methods, each feature map does not
reflect any relations among feature maps.

While effective receptive field size is previously known to increase linearly
with the number of convolutional layers [25], the works in [5] have found that
it actually increases with square root of the number of layers which is a much
slower rate. This finding further leads to a logical doubt that deep CNNs may
not have large enough receptive field size even at top layers. This phenomenon is
prominent in fully convolutional networks (FCNs) with a large input image. To
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overcome the issue, large enough receptive field size is not the only aspect that
is essential but the learning of its flexibility depending upon situations, which
explains why atrous convolution methods are used widely.

Deformable convolutional neural networks (Deformable ConvNet) [5] is
engaged with deformable convolutions that learn the applicable filters with adap-
tive receptive fields. Their convolution filters are chained with offset parameters
which represent the mapping of the original receptive fields to unique and irregu-
larly dispersed receptive fields from each spatial location. The offset parameters
are optimized along with the convolutional filters during back-propagation. How-
ever, Deformable ConvNets require extra computation upon original CNNs, and
their feature map sampling method in a local manner hinders themselves from
having complete spatial support. They, as their primitive motivation, further
emphasize the importance of adaptive receptive learning in the needs of effec-
tively computing large enough receptive fields at top layers.

Other atrous convolution usages include increasing the receptive field size
by sampling from dilated sparse regions [11]. This allows to retain the same
computational complexity as previous CNNs’ while increasing receptive field
sizes, and thus is widely used in semantic segmentation problems [1,24,33]. If
depth conditions are excluded, the method is still doubted on utilizing enough
size of receptive fields. Our model handles extracted convolutional features by
projecting them to global receptive fields, intending to convolve the features
from various spatial locations with the original features.

A dominant approach used in the visual relational reasoning domain is the
Relation Network module (RN) [29]. As mentioned in Sect. 3, RN learns the rela-
tions among objectified features of CNN through pairwise combinations, com-
putations of which increase quadratically with the number of the objects while
multiRN gains a comparable improvement on computation efficiency through
manipulation of ‘multiple relations’ induced by the BCN module. A FiLM mod-
ule [26], as another method for relational reasoning problems, conditions fea-
tures before activation functions in a similar way as done in LSTM gates [10]
and SENET’s feature excitations [12]. Such attempt of learning visual feature
conditionings for reasoning largely differs from our method of extracting and
broadcasting key object features to the entire receptive fields. Also, compared
to their suggested model that incorporates multiple residual blocks and large
GRUs and MLPs, a multiRN model requires much smaller networks to achieve
similar performances.

5 Experiments

The proposed method is tested in several experiments and compared with other
similar methods to verify the effectiveness of BCN and MultiRN. The purposes
of the experiments are to investigate the followings:

(1) the capability of BCN in representation power of features, (2) the effec-
tiveness of MultiRN on visual reasoning problems, (3) feasible extensions of
receptive fields caused by BCN and practical expressions of multiple objects in
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multiRN as specified in Sect. 3, and (4) variations of coordinate embeddings in
visual features and their performances.

5.1 Tasks

We have experimented our methods on four datasets, Scaled-MNIST, STL-10,
Sort-of-CLEVR with pixels, and CLEVR with pixels, for different purposes.

Scaled-MNIST dataset is our own remodeled version of original MNIST
dataset [20] to verify that the BCN can effectively handle positional informa-
tion while globally extending the receptive field. Locating the original MNIST
of size 28×28 to 128×128 image space, we randomly scale the width irregularly
ranging from 28 to 105 pixels and the aspect ratio from 1:0.8 to 1:1.2. All digits
are positioned randomly within the new image space, preserving its complete
form. Along with the class labels, another label is added for the locations of
center points for each digit in order to evaluate localization performances of the
models.

STL-10 [2] is used to evaluate the capability of BCN for natural image classifi-
cation problems. It is a set of natural image with ten class labels each of which
has 500 training images and 800 test images. There are also unlabeled images
within the dataset, but we do not use them because experiments on them are
irrelevant to our intentions. The data consists of images sized in 96 × 96 with
higher resolution than those of CIFAR-10 but less number of training images.

CLEVR with pixels [16] is one of the visual QA datasets which is a challeng-
ing problem set requiring high-level relational reasonings. The dataset contains
images of 3-D rendered objects and corresponding questions asking about several
attributes of the objects. We have experimented only on the pixel version of the
CLEVR dataset whose images are represented in 2-D pixel-wise.

Sort-of-CLEVR with pixels [29] is our main experiment for multiRN. Sort-
of-CLEVR is a more simplified version of CLEVR, which is a set of images
combined with caption dataset for relation and non-relation reasonings. Each
image contains six of differently colored 2-D geometric shapes, and corresponding
20 questions; 10 for relational and 10 for non-relational reasonings. Questions in
this dataset are already vectorized, and thus the experiments are independent
from any additional vector embedding models, which allows more reasonable
comparison based on the results.

5.2 Evaluation of BCN

For all experiments, BCN uses multiple convolution layers with different size of
1×1 kernels and ReLUs for non-linearity. The number of filters in m convolution
layers for a BCN is written in the form of [S1, · · · , Sm] in each experiment.

Scaled-MNIST: As a baseline model, we have stacked three to five of convo-
lutional layers with 24 of 3 × 3 kernels, stride size of 2 and padding size of 1 for
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Table 1. The model with BCN has the highest classification accuracy and the
lowest localization error on the Scaled-MNIST data. Skip-connection denotes using
the shape of 1 × 1 convolution layers for BCN. This can be viewed just the same as
skip-connection [30]

Model Classification Acc. Localization Err. #Params Runtime1

Baseline 84.4% 0.151 11.2K 4.5ms

Baseline(depth 4) 94.9% 0.149 16.5K 5.1ms

Baseline(depth 5) 96.4% 0.089 21.9K 5.5ms

Baseline(depth 5, 2× filters) 97.2% 0.077 85.2K 8.5ms

Base + Deformable Conv [5] 90.8% 0.087 32.0K 16.7ms

Base + Dilated Conv [33] 91.0% 0.152 11.2K 4.7ms

Base + CCE 84.8% 0.088 11.9K 4.6ms

Base + Skip-connection 87.0% 0.151 29.0K 8.4ms

Base + CCE + Skip-connection 87.9% 0.071 29.2K 8.41ms

Base + BCN w/ average pooling 92.7% 0.064 29.2K 8.42ms

Base + BCN 97.5% 0.023 29.2K 8.42ms

each edge, followed by a ReLU activation function and a batch normalization,
depending on the comparison target. With the same baseline model (a 3-layered
CNN), experiments of deformable convolutions and dilated convolutions are also
done. The deformable convolution filters are applied to all three layers, and the
dilated convolution filters are applied in the second layer of the baseline model
with 2 × 2 dilation. A BCN with an output channel length of [64, 64, 128] is
applied once in between the second and third layers. After applying the BCN,
the number of feature maps increases, so in order to match the input dimension
of the third layer, 1 × 1 convolutions are operated for dimension reduction to
24. This setting is purposefully designed to compare performance of a simpler
model with BCN against that of baseline model with more depths and kinds of
convolution on the given data. Also, the network structure of expanding channels
from 24 to 128 is intended for having more channels when globally max-pooling
spatial features to preserve enough visual context information for broadcasting.

Table 1 shows1 the performance enhancement of our method on both classi-
fication and localization results on the Scaled-MNIST dataset. Considering the
baseline model achieves 97.8% classification accuracy in our experiment on the
original MNIST, its performance of the Scaled-MNIST clearly implies its struc-
turally inherent limitation as the size of the required receptive field increases
while making the model deeper to extend the receptive field yields a better
result as shown in the table. Even if we increase the receptive field by deepening
the convolution net with up to five layers, it can be seen that our method with
a shallower depth of three layers reaches a higher performance. The model with
BCN even shows better performance than the 5-layer baseline model with twice

1 All runtimes are the training time measured on Nvidia Titan X (Pascal) GPU and
8 core CPU(i7-6700K) per 100 samples.
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Table 2. Results on STL-10. All models are trained from scratch without any
external dataset

Model Accuracy #Params Runtime1

Tho17-2 Single [31] 75.76% 1.46 M –

Tho17-2 Ensemble [31] 78.66% 1.46 M –

Baseline 68.75% 114 K 18.1 ms

Baseline + Skip-connection 69.79% 192.7 K 18.2 ms

Baseline + BCN 72.18% 193.2 K 18.2 ms

Resnet18 76.27% 11.2M 102.2 ms

Resnet18 + BCN 77.00% 11.46 M 105.5 ms

the number of filters by 0.3% for classification and three times less error for
localization.

Furthermore, the significance of the broadcasting phase can be well analyzed
from the results. While embedding additional coordinate information reduces
the localization error and the skip-connection alone improves the classification
performance, compared to the model using both, the model with BCN improves
the classification accuracy by 9.6% and reduces the localization error by 0.48.
Besides from aspects of CCE and the skip-connection technique, concatenation
of expanded max-pooled features of BCN allows the network to globally broaden
receptive fields and directly learn visually relational features. And the result of
the BCN using average-pooling instead of max-pooling shows a significant per-
formance decline, which indicates that average-pooling is not a suitable method
considering that the purpose of max-pooling is to extract key features.

The goal of deformable convolutions is similar to ours in many ways, and the
implementation has also led to desirable results, getting better scores on both
classification and localization. The model with dilated convolutions has also
resulted in an impressive improvement on classification accuracy while conserv-
ing the same parameter numbers and computation speed as those of the baseline.
Nonetheless, the performance of BCN model outperforms both models. In addi-
tion, BCN shows relatively high robustness against deformations compared to
other methods, and the experimental results are included in the supplementary
material.

STL-10: For a baseline model for the STL-10 dataset, four layers of convolutions
with 64 of 3 × 3 kernels with the stride size of 2 and the padding size of 1 for
each edge are applied. A ReLU activation function and a batch normalizing
operation follow after each convolution layer. A BCN module of size [128, 128,
256] is applied in between the third and the fourth convolution layers. After
applying the BCN module, the number of feature maps increases, so in order
to match the input dimension of the fourth layer, an 1 × 1 convolution layer is
used for dimension reduction to 64. We, in addition, have applied the same size
of BCN to a Resnet18 model [9]. The BCN module within the Resnet18 model
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is applied between the third and the fourth residual blocks. Then, 256 of 1 × 1
convolution filters are used to reduce number of feature maps, and the entire
model is trained end-to-end from scratch.

We compare our model against the baseline model in Table 2 to evaluate
the performance of BCN for a natural image classification problem. Because
BCN extends the receptive field size to whole image grids, it allows 3.4% of
performance enhancement. Also, this is an even better result than the model
using the same convolution layers of BCN as a Skip-connection. The additional
experiment where BCN is applied within the Resnet18 model shows that our
approach sets a new state-of-the-art performance in STL-10 experiment on a
single network basis with 77.0% accuracy, which is 1.24% higher than the single
model of Tho17-2 [31].

Table 3. Results on Sort-of-CLEVR. RN∗ is the reproduced result with same
model of [29] on a single GPU. RN† is a model of which the network structure is set
the same as multiRN except that pairwise comparison for a fair comparison. CNNh

denotes the CNN that has 1 stride for fourth convolution layer instead of 2 stride to
handle more objects

Model Relational Non-relational #Params Runtime1

CNN+RN [29] 94%↑ 94%↑ 19.5 M -

CNN+RN∗ 91.0% 99.6% 19.5M 575.8 ms

CNN+RN† 89.9% 99.8% 365K 23.5 ms

CNNh+RN† 96.5% 99.9% 365K 315.6 ms

CNN+MLP 74.2% 65.0% 239 K 6.2 ms

CNN+CCE+MLP 72.9% 64.5% 258 K 6.2 ms

CNN+multiRN w/o BCN 88.7% 99.3% 224 K 7.5 ms

CNN+multiRN 92.9% 99.9% 345 K 8.3 ms

CNNh+multiRN 96.7% 99.9% 345 K 9.9 ms

5.3 Pixel-Based Relational Reasoning Problem

Model: For relational reasoning experiments, we construct our multiRN model
based on the RN model that is used for the CLEVR dataset out of two models
reported in [29] which consists of one trained for the Sort-of-CLEVR dataset
and a shallower model for the CLEVR. Four convolution layers with 24 of 3 × 3
kernels, followed by ReLU activations and batch normalizations, are used for the
CNN part. MultiRN consists of a BCN of size [128, 128, 256], two convolution
layers with 256 1 × 1 kernels for gθ, and two MLP layers of 256 units for fφ.
Also, to verify that multiRNs use computation resource efficiently, we change
the fourth convolution layer’s stride from 2 to 1 in the CNNh, which quadruples
the number of objects that the following network has to handle. MultiRN, for
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the CLEVR task, uses LSTM of 128 hidden unit of 2 layers for natural language
question processing.

Sort-of-CLEVR: Results of Table 3 suggest that using our version of RN (mul-
tiRN) is better than the RN with similar structure at reasoning relations by 3%,
which is the main job of Sort-of-CLEVR task, despite of comparably less compu-
tational cost. Compared to both RN and multiRN, CNN+MLP model performs
far poorly. Even embedding coordinate information into the same model worsens
the performance, supposedly, due to overfitting. This implies that the perfor-
mance enhancement of RN and multiRN is not simply caused by the addition of
coordinate maps. For a further ablation study, the BCN module is removed along
with the coordinate encoding function, while having gθ and fφ remained in order
to generate the ‘CNN+multiRN w/o BCN’ model. This model lacks information
of correlations among multiple objects, and thus performs 4.2% lower than the
CNN+multiRN model. To check the efficiency when the number of object inputs
upsurges for the multiRN to manage, we reduce the stride of the last layer of
the preceding CNN from 2 to 1, denoting as CNNh. Since the computation com-
plexity of multiRN is O(n), which is a strong advantage over RNs with O(n2)
for n number of objects, the multiRN’s computation cost is only quadrupled
(25 to 100) for CNNh while RN takes 16 times greater computation loads (625
to 10000). Both RN and multiRN with CNNh have achieved impressive perfor-
mance gain with increase in the number of feature objects, but there is a large
difference in computational efficiency.

Table 4. Results on CLEVR from Pixel. RN∗ is the result when we reproduce
the same model as the paper [29] on a single GPU. ‡ denotes the result of changing
the size of an input image from 128× 128 to 224× 224, which is the same as FiLM [26]

Model Overall Count Exist Compare numbers Query attribute Compare attribute

Human [17] 92.6 86.7 96.6 86.5 95.0 96.0

Q-type baseline [17] 41.8 34.6 50.2 51.0 36.0 51.3

LSTM [17] 46.8 41.7 61.1 69.8 36.8 51.8

CNN+LSTM [17] 52.3 43.7 65.2 67.1 49.3 53.0

CNN+LSTM+SA [17] 68.5 52.2 71.1 73.5 85.3 52.3

CNN+LSTM+RN [29] 95.5 90.1 97.8 93.6 97.9 97.1

CNN+LSTM+RN∗ 90.9 86.7 97.4 90.0 90.2 93.5

CNN+GRU+FiLM

with ResNet-101 [26]

97.7 94.3 99.1 96.8 99.1 99.1

CNN+GRU+FiLM

from raw pixels [26]

97.6 94.3 99.3 93.4 99.3 99.3

CNN+LSTM+

multiRN

92.3 85.2 96.5 93.6 95.1 92.9

CNNh+LSTM+

multiRN

97.2 94.1 98.9 98.3 98.6 97.6

CNNh+LSTM+

multiRN‡
97.7 94.9 99.2 97.2 98.7 98.3

CLEVR: An experiment has been done on a more challening relational reason-
ing problem to test the performance of multiRN compared to existing methods.
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The model is replicated having internal RN module replaced with multiRN to
create ‘CNN+LSTM+MultiRN’. The structure of multiRN model is the same
as it was used for Sort-of-CLEVR dataset, and question vectors are generated
from an LSTM model which is also implemented in the original RN module.

The results of the comparative experiments on CLEVR are shown in Table 4.
The RN*, our reproduced version of the relational network from [29], has not
been able to achieve the same performance as in the paper due to lack of orig-
inal version’s details of hyper-parameters and additional network control fac-
tors. However, since the input convolutional feature maps and question vectors
are generated with the same CNN+LSTM settings, reasonable comparisons can
still be made among the candidate methods. For this problem, our implementa-
tion using multiRN performs 1.4% better than RN*, and multiRN with CNNh

achieves even far better performance enhancement of 6.3%. This is an impressive
result considering that the same CNN+LSTM+RN model architecture is used as
in RN* and allows 95.5% of performance whilst both of multiRN and multiRN
with CNNh require a much smaller amount of computation. We have not been
able to proceed an experiment with the CNNh+LSTM+RN model because of
the out-of-memory problem when dealing with an increased number of objects.
Furthermore, our model achieves 97.7% of test accuracy by changing the size of
an input image to 224 × 224 which is the same as it is in FiLM [26]. For the
best of our knowledge, this score is the state-of-the-art performance on CLEVR
with raw pixels, and is compatible with FiLM using ResNet-101 [9] pre-trained
on ImageNet [6].

Fig. 4. Activation map shows how much information is broadcasted at each location.
From top to bottom are Scaled-MNIST and STL-10 on the left, Sort-of-CLEVR and
CLEVR on the right. More activation maps are included in the supplementary material.

5.4 Can BCN Extend the Receptive Field Globally and Represent
Multiple Objects?

For better understanding of our model, visualization of activation maps for differ-
ent images of each experiment is provided in Fig. 4. Activation maps are acquired
by unsampling the global max-pooling layer, and simply masking the pixel as 1
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Table 5. Results on coordinate embedding methods. Our method outperforms con-
ventional coordinate methods in both Scaled-MNIST and Sort-of-CLEVR

Scaled-MNIST Sort-of-CLEVR

Method Accuracy Localization err. Relational acc. Non-relational acc.

No Coordinate channels 92.5% 0.151 91.4% 91.8%

X, Y Coordinates with
top-left zero

96.9% 0.029 92.6% 99.9%

X, Y Coordinates with
zero-centered

97.5% 0.025 96.1% 99.9%

X, Y Coordinates with
zero-centered + Radial
distance

97.5% 0.023 96.7% 99.9%

from where it was chosen. The number of masks is the same as the number of
1 × 1 convolution filters, and summing them through feature dimension outputs
of the activation map. In activation maps for Scaled-MNIST, we can intuitively
find that the activation map corresponds well with each digit’s location in the
original image. The Scaled-MNIST dataset may have too many zero inputs for
a network to easily respond to spatial features, but activation maps in STL-10
apparently show that BCN makes abstractions of features well even in natural
images. Notably, we could observe that activation maps tend to draw features
from important locations, such as edges, faces, legs and so on. As this infor-
mation is broadcast to all locations, the receptive field expands globally. For
Sort-of-CLEVR task and CLEVR task, we can obviously see that BCN is well
trained to make abstractions of multiple objects in their image. This means that
the ‘multiple relations’ of multiRN described in Sect. 3 is established through
BCN. Note that since activation maps only represent the maxpooled features, it
does not have to include all objects by themselves. Output convolution features
that are inputted to the BCN module, which will be further combined with BCN
output, also contain features of objects.

5.5 Study on Coordinate Embedding Methods

Our demonstration on the effects of coordinate channels is shown in Table 5. The
result without coordinate channels has far less score compared to the result with
the coordinate channels embedded. The model of coordinates with zero-centered
shows a significantly higher relational accuracy than the model of conventional
coordinates with top-left zero for Sort-of-CLEVR, but it is slightly worse than
that of three planes with extra radial distance plane included. Figure 5 shows
the absolute values of the output from the convolution kernel with randomly
initialized weights passing through the coordinate channels. As shown, a coor-
dinate system with a conventional top-left of zero is deflected diagonally, but
a coordinate system with zero center is deflected to the outside. On the other
hand, by adding coordinate channels with radial distances, it can be seen that
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most of the deflection can be removed while providing additional coordinate
information. Furthermore, although we have expected better feature represen-
tation and localization performance by concatenating an additional coordinate
plane and reducing initial weight bias, the performance gain has only occurred
in the localization aspect. This evidently implies that convolution operations are
inherently biased towards the center with Gaussian distribution [25], and thus
the additional coordinate plane have not been a critical catalyst.

Fig. 5. The outputs of coordinate planes through the convolution kernel. Left: X, Y
coordinates with top-left zero. Center: X, Y coordinates with zero-centered. Right: X,
Y coordinates with zero-centered and additional Radial channel. The right has the
least deflection.

6 Conclusion

We have shown that utilizing Broadcasting Convolutional Network (BCN) allows
conventional CNNs to effectively collect and represent spatial information with
efficient extension of receptive fields, which results in remarkable performance on
localization problems. With BCN’s ability of representing compounded spatial
features in all receptive fields, we have proposed Multi-Relational Networks that
greatly improve RN [29] in terms of computational gains while achieving a state-
of-the-art performance in pixel-based relation reasoning problems.

In future works, we intend to study whether BCN can be applied to other
domains such as object detection or semantic segmentation. And we need to
study applying multiRN to various problems that require visual relational rea-
soning.
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