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Abstract. As facial appearance is subject to significant intra-class vari-
ations caused by the aging process over time, age-invariant face recogni-
tion (AIFR) remains a major challenge in face recognition community.
To reduce the intra-class discrepancy caused by the aging, in this paper
we propose a novel approach (namely, Orthogonal Embedding CNNs,
or OE-CNNs) to learn the age-invariant deep face features. Specifically,
we decompose deep face features into two orthogonal components to
represent age-related and identity-related features. As a result, identity-
related features that are robust to aging are then used for AIFR. Besides,
for complementing the existing cross-age datasets and advancing the
research in this field, we construct a brand-new large-scale Cross-Age
Face dataset (CAF). Extensive experiments conducted on the three pub-
lic domain face aging datasets (MORPH Album 2, CACD-VS and FG-
NET) have shown the effectiveness of the proposed approach and the
value of the constructed CAF dataset on AIFR. Benchmarking our algo-
rithm on one of the most popular general face recognition (GFR) dataset
LFW additionally demonstrates the comparable generalization perfor-
mance on GFR.

Keywords: Age-invariant face recognition
Convolutional neural networks · Cross-age face dataset

1 Introduction

As one of the most important topics in computer vision and pattern recognition,
face recognition has attracted much attention from both academic and industry
for decades [2,4,18,19,23,37,40,44]. With the evolution of deep learning, the
performance of general face recognition (GFR) has been significantly improved
in recent years, even higher than humans’ abilities [24,32–35,39,43]. As a major
challenge in face recognition, age-invariant face recognition (AIFR) is extremely
valuable on various application scenarios, such as looking for lost children after
decades, matching face images in different ages, etc. In contrast to GFR, AIFR
involves more diversity with the significant intra-class variations caused by the
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aging process and thus is more challenging. It is very often that the inter-class
variation is much smaller than the intra-class variation in the presence of age
variation, as illustrated in Fig. 1a. Figure 1b also exhibits the difficulty of AIFR
where the same identity greatly varies in appearance with the aging process.

Fig. 1. The major challenge of AIFR: the intrinsic large intra-class variations in the
aging process. (a) An example where intra-class distance is larger than inter-class
distance. (b) The cross-age images for one subject in the FG-NET [1].

Recent AIFR researches primarily concentrate on two technical schemes: gen-
erative scheme and discriminative scheme. The generative scheme models the
AIFR by synthesizing faces to one or more fixed age category then performs
recognition with the artificial face representations [9,16,28]. Benefited from the
advancement of the deep generative model, the generative scheme becomes more
promising on AIFR as well [3,8,46]. However, the generative scheme still remains
several significant shortcomings. Firstly, generative scheme usually separates the
recognition process into two steps. Hence it is not easy for the generative models
to optimize recognition performance in an end-to-end manner. Secondly, gener-
ation models are often unstable so the synthesizing face images will introduce
additional noises, which may result in negative effects on the recognition process.
Moreover, constructing an accurate, parametric generation model is fairly diffi-
cult since the aging process of humans’ face is easily impacted by many latent
factors such as social environments, diet, etc.

The discriminative scheme aims at constructing the sophisticated discrimina-
tive model to solve the problem of AIFR. Related works on discriminative model
include [5–7,10,11,17,20–22]. By combining the deep learning algorithm, the dis-
criminative scheme has achieved substantial improvement on AIFR. For exam-
ple, Wen et al. [42] extended the HFA method [10] to a deep CNN model called
latent factor guided convolutional neural networks (LF-CNNs), which achieved
the state-of-the-art recognition accuracy in this field. Zheng et al. [47] also used
the linear combination of jointly-learned deep features to represent identity and
age information, which is similar to the HFA based deep CNN model.

In this paper, we aim at designing a new deep learning approach to effectively
learn age-invariant components from features mixed with age-related informa-
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tion. The key idea of our approach is to decompose face features into age-related
and identity-related components, where the identity-related component is age-
invariant and suitable for AIFR. More specifically, inspired by a recent state-of-
the-art deep learning GFR system with A-Softmax loss [24] where features of
different identities are discriminated by different angles, we decompose face fea-
tures in the spherical coordinate system which consists of radial coordinate r and
angular coordinates φ1, . . . , φn. Then the identity-related components are repre-
sented with angular coordinates, and the age-related information is encoded with
radial coordinate. Features separated by the two mutually orthogonal coordi-
nate systems are then trained jointly with different supervision signals. Identity-
related features are trained as a multi-class classification task supervised by
identity labels with the A-Softmax loss, and age-related features are trained as
a regression task supervised by age labels. As such, we extract age-invariant
features from angular coordinates by separating age-related components with
radial coordinates. Since face features are decomposed into mutually orthogo-
nal coordinate systems, we name our approach as orthogonal embedding CNNs
(OE-CNNs). A related work Decoupled Network also discussed how to decouple
the CNN with orthogonal geometry in details. Nevertheless, this work merely
studies the generalization of networks rather than specifically modeling the age
into decomposed features in the AIFR application scenario. We verify the effec-
tiveness of OE-CNNs with extensive experiments on three face aging datasets
(MORPH Album2 [30], CACD-VS [5] and FG-NET [1]) and one GFR dataset
(LFW [12]), and achieve the state-of-the-art performances.

The major contributions of this paper are summarized as follows:

1. We propose a new approach called OE-CNNs to tackle the problem on how to
jointly model the age-related features and identity-related features in a deep
CNN model. Based on the proposed model, age-invariant deep features can
be effectively obtained for improved AIFR performance.

2. We introduce a new large-scale Cross-Age Face dataset, named CAF, to help
advance the research in this field. This dataset contains more than 313,986
images from 4,668 identities. The face data in CAF has been manually cleaned
in order to be noise-free.

3. We demonstrate the effectiveness of our proposed approach with several
extensive experiments over three face aging datasets (MORPH Album2 [30],
CACD-VS [5] and FG-NET [1]) and one GFR dataset (LFW [12]). The experi-
mental results have shown the superior performance of the proposed approach
over the state-of-the-art either on AIFR or GFR.

2 Proposed Approach

2.1 Orthogonal Deep Features Decomposition

Two certain difficulties involved in AIFR include the considerable variations
of the identical individual in different age categories (intra-class variations)
caused by aging process (such as shape changes, texture changes, etc.), and
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Fig. 2. The proposed ResNet-Like CNN architecture.

the inevitable mixture of unrelated components in the deep features extracted
from a general deep CNN model. Large intra-class variation usually leads to
erroneous identification on a pair of faces from the same individual at different
ages. The mixed features (age features and identity features) potentially reduce
the robustness of recognizing cross-age faces. To address this, we propose a new
approach called orthogonal embedding CNNs. Below we first walk through the
problem of deep AIFR in detail.

Given an observed Fully-Connected (FC) feature x extracted from the deep
CNN model, we decompose it into two components (vectors). One is identity-
related component xid and the other is age-related component xage. Thus,
after removing xage from x, we can obtain xid that is supposed to be age-
invariant. Recent works [10,42,47] use a linear combination to model xage and
xid as the solution. In this paper, we propose a new approach to model xage

and xid in an orthogonal manner with deep convolutional neural networks.
Inspired by A-Softmax [24], where features of different identities are discrimi-
nated by different angles, we decompose feature x in spherical coordinate system
xsphere = {r;φ1, φ2, ..., φn}. The angular components {φ1, φ2, ..., φn} represent
identity-related information, and the rest radial component r is used to encode
age-related information. Formally, x ∈ Rn is decomposed under xsphere as

x = xage · xid, (1)

where xage = ||x||2, and xid = { x1
||x||2 , x2

||x||2 , ..., xn

||x||2 }, with ||xid||2 = 1. Here ||.||2
represents for L2 norm, and xn is the n-th component of x. For convenience, we
will use nx to represent for ||x||2 and x̃ for x

||x||2 .

2.2 Multi-task Learning

According to Eq. 1, feature x output from the last FC layer is decomposed into
xage and xid. In this part, we describe a multi-task based learning algorithm to
jointly learn these features. An overview of the proposed CNN model is illus-
trated in Fig. 2.

Learning Age-Related Component. In order to dig out the intrinsic clues
of age information, we utilize an age estimation task to learn the relationship
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between the component xage (nx) and the ground truth of age. For simplicity,
linear regression is adopted to the age estimation task, and the regression loss
can be formulated as follows:

Lage =
1

2M

M∑

i=1

||f(nxi
) − zi||22 (2)

where nxi
is the L2 norm of the i-th embedding feature xi, zi is the corresponding

i-th age label. f(x) is a mapping function aimed to associate nxi
and zi. Since

the L2 norm nxi
is a scalar, we use linear polynomial f(x) = k · x + b as the

mapping function. We also explored other more complicated functions such as
non-linear multi-layer perceptron network, but they did not perform as well as
a simple linear transformation. We believe this is because a more complicated
model overfits the underlying feature which is one-dimensional here.

Learning Identity-Related Component. When performing face verification
or identification, x̃ is the only part which participates in the final similarity
measure. Thus, the identity-related component xid should be as discriminative
as possible. Following the recent state-of-the-art GFR algorithm A-Softmax [24],
we use a similar loss function to increase classification margin between different
training persons in angular space:

Lid =
1
M

M∑

i=1

− log(
es·ψ(θyi,i

)

es·ψ(θyi,i
) +

∑
j �=yi

es·cos(θj,i)
) (3)

in which ψ(.) is defined as ψ(θyi,i) = (−1)k cos(mθyi,i) − 2k, θyi,i is the angle
between the i-th feature x̃i and label yi’s weight vector, θyi,i ∈ [kπ

m , (k+1)π
m ],

and k ∈ [0,m − 1]. m ≥ 1 is an integer hyper-parameter that controls the
size of angular margin, and s > 0 is an adjustable scale factor introduced to
compensate the learning of Softmax. From the geometric perspective, Eq. 3 adds
a constraint which guarantees the angle of the feature x with its corresponding
weight vector should less than 1

m of the angle between the feature x and any
other weight vectors. Consequently, the margin between two arbitrary classes can
be increased. Compared with the original A-Softmax, Eq. 3 replaces L2 norm of
x̃ with an adjustable scalar factor s. In our model, according to Eq. 1, ||x̃||2 is
always equal to 1. Thus, it is necessary to introduce an extra free variable to
compensate for the loss of L2 norm.

Overall, the two losses are combined to a multi-task loss for jointly optimiz-
ing, as below:

L = Lid + λLage (4)
where λ is a scalar hyper-parameter to balance the two losses. Equation 4 is used
to guide the learning of our CNN model in the training phase. In the testing
phase, only the identity-related component xid is used for the AIFR task.

2.3 Discussion

Compared with HFA Based AIFR Methods. The HFA based AIFR meth-
ods [10,11,42] suggest modeling the identity-related component and age-related
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Fig. 3. Visualization of deep features learned with Softmax (Left), A-Softmax (Middle)
and the proposed algorithm (Right). It is noteworthy that only 10 individuals are
used to train CNN models, and the output dimension is set to 2. Colors are used
to distinguish identities, and placement of face images is based on the corresponding
features.

component of features by the simple linear combination. Specifically, given a fea-
ture x, the HFA based methods decompose the x as x = m + Uxage + V xid + ε,
where m is the mean feature regarding identity-related component, ε is the addi-
tional noise and U, V are the transformation matrices for identity-related compo-
nent xid and age-related component xage respectively. The major advancements
of the proposed approach over the HFA based methods are described in the fol-
lowing aspects: Firstly, the proposed approach revises the decomposition of x in
the HFA based methods to the multiplication of hidden components xid and xage,
which is more intuitive and concise to model the unrelated components with less
extra hyper-parameters. Secondly, we explicitly project the identity features on
a hypersphere to match the cosine similarity measurement for effectively com-
bining the improvement strategies based on the Softmax loss and the margin of
decision boundaries. Thirdly, the HFA based methods have to iteratively run the
EM algorithm in contrast to our approach which jointly trains the network in
the desirable end-to-end manner of feature learning. For the foregoing reasons,
our method is more recommendable to be embedded into CNN framework for
the purpose of learning age-invariant features, as supported by our experimental
results.

Compared with SphereFace. SphereFace [24] introduces A-Softmax loss to
learn the angular margin between identities for GFR. Though we train the
identity-related component with a loss function similar to A-Softmax, the pro-
posed algorithm takes advantage of the age information to explicitly train age-
related component with an additional age regression task (Eq. 2). To intuitively
investigate the impact by introducing such additional age regression task, we
construct a toy example to compare features learned by Softmax, A-Softmax
and our proposed algorithm. Specifically, we train CNN models with 10 indi-
viduals and set the output dimension of feature x as 2. For simplicity we let
f(x) = x (see Eq. 2) in this case. Figure 3 is the visualization for training
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Fig. 4. Overview of the CAF dataset. (a) Example images of CAF. Note that since our
images are collected from Internet, CAF not only varies in ages but also in poses, races,
etc. (b) The distribution of CAF. Top: The distribution of the number of different ages.
Bottom: The distribution of the number of different identities.

features. Based on this example, we conclude that: (1) features of different per-
sons are discriminated mostly by angles, which intuitively justifies our decompo-
sition design; (2) both A-Softmax and the proposed algorithm have noticeably
larger classification margins than Softmax, as a result of the A-Softmax loss; (3)
most importantly, for our model age of a person is reflected in radial direction
(e.g. larger L2 norms for older faces), while the other two models do not have this
property. We believe this property further constrains the training problem, which
reduces the risk of over-fitting and consequently leads to superior performance
for AIFR.

Generalization of Our Approach. One of the noticeable highlights of the
proposed algorithm is its generalization capability. Intuitively, our method is
specifically designed to fit cross-age training data. However, the experimental
results surprisingly unfold the excellent performance of the proposed method
even trained with general training data (as shown in Sect. 4.4). Furthermore,
as the objective of the algorithm is to generate identity-related features, the
proposed algorithm is not only suitable for AIFR but also for GFR. Finally, The
age component can be easily generalized to any other common component such
as pose, illumination, emotion, etc.

3 Large-Scale Cross-Age Face Dataset (CAF)

In order to further motivate the development of AIFR and enrich the capability
of the current model, a dataset with a large age gap is urgently needed. Besides,
the dataset size should be large enough to avoid overfitting. To this end, we
collect a new dataset with a large number of cross-age celebrities’ faces, named
large-scale Cross-Age Face dataset (CAF).
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3.1 Dataset Collection

To build the cross-age celebrity dataset, it is inevitable to collect celebrity’s
name to form a list. The collected names in the list come from multiple sources
such as IMDB, Forbes celebrity list, child actors name list from Wikipedia, etc.
This guarantees the comparatively large age gap in the later data collection.
Next, we iteratively search the name in the list by the Google Search Engine.
Each searching term has been thresholded to a certain number, that is, we keep
the name in the list if the number of responses exceeds a certain threshold,
which ensures the sufficient number of data for each celebrity. Moreover, to the
best of our knowledge, the current public cross-age datasets have very limited
Asian individuals. For the purpose of increasing the diversity of our cross-age
dataset, we collect a large number of Asian celebrities. After filtering the name
list, we download the face images on several commercial image search engine
(such as Google, Baidu) querying by the celebrity’s name companied with several
keywords like yearbook, past and now, childhood, young, from young to old, etc.,
to obtain the face images with different age categories. The data cleaning is
performed thereafter. Specifically, we apply face detection algorithm MTCNN
[14] to filter the images without any faces, then manually wipe off the near-
duplicates and false face images (faces do not belong to that celebrity). Finally,
we delete some of the images that have a large proportion in a certain age
category to keep the age distribution more balanced.

Table 1. Comparison over cross-age datasets.

Dataset CAF IMDB-WIKI [31] CACD [5] MORPH [30] AgeDB [26] FG-NET [1]

# Images 313K 523K 163K 78K 16K 1K

# Subjects 4,668 20,284 2,000 20,000 568 82

Noise-free Yes No Yes Yes Yes Yes

3.2 Dataset Statistics

Following the above labeling and cleaning process, we construct a cross-age face
dataset which totally includes about 313,986 face images from 4,668 identities.
Each identity has approximately 80 face images. All of these images have been
carefully and manually annotated. Example images of the dataset are shown
in Fig. 4a. Considering the lack of exact age information, we utilize the public
pre-trained age estimation model DEX [31] to predict the rough age label for
each face image. Figure 4b shows the distribution histogram of CAF. One can
observe our data are well-distributed in every possible age category. Table 1 fairly
compares our dataset with existing released cross-age datasets. It is clear that
except IMDB-WIKI [31], we have the comparatively largest scale in terms of the
number of pictures and the number of individuals. Furthermore, as IMDB-WIKI
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is collected by automatically online crawling, some of the downloaded data might
be redundant and noise-severe. Superior to IMDB-WIKI, CAF has minimized
the noise data by manually annotating.

4 Experiments

For a direct and fair comparison to the existing work in this field, we evaluate our
approach on existing public-domain cross-age face benchmark datasets MORPH
Album 2 [30], CACD-VS [5] and FG-NET [1]. We also evaluate our algorithm
on LFW [12] for verifying the generalization performance on GFR.

4.1 Implementation Details

The training set is composed of two parts: a cross-age face dataset and a general
face dataset (without cross-age face data). The cross-age face dataset that we
use is the collected CAF dataset introduced in Sect. 3 while the general face
dataset consists of three public face datasets: CASIA-WebFace [45], VGG Face
[29] and celebrity+ [25]. The same identities appeared in different datasets are
carefully merged together. Since our testing dataset contains MORPH, CACD-
VS, FG-NET, and LFW, we have excluded these data from the training set.
Finally, our training set contains 1,765,828 images with 19,976 identities in total,
which includes 313,986 cross-age face images with 4,668 identities and 1,451,842
general face images with 17609 identities respectively. In addition, the age label
predicted from the public pre-trained age estimation model DEX [31] is treated
as the regression target of Euclidean loss. Prior to training stage, we perform
the same pre-processing on both training set and testing set: Using MTCNN
[14] to detect the face and facial key points in images, then applying similarity
transformation to crop the face patch to 112 × 96 pixels according to the 5
facial key points (two eyes, nose and two mouth corners), finally normalizing the
cropped face patch by subtracting 127.5 then divided by 128. The proposed loss
in Eq. 3 serves as the supervisory signal of identity classification. In terms of the
age branch, we use Euclidean loss function to guide the network to learn the
age label. The hyper-parameters m, s mentioned in Eqs. 3 and 4 are set to 4, 32
according to the recommendations of [24,38]. For the factor λ, we empirically
selected an optimal value 0.01 to balance the two losses. All models are trained
with Caffe [13] framework and optimized with stochastic gradient descent (SGD)
algorithm. Training batch size is set to 512 and the number of iterations is set
to 21 epochs. The initial learning rate is set to 0.05 and the training process
adaptively decreases the learning rate 3 times when the loss becomes stable
(roughly at the 9-th, 15-th and 18-th epoch).

4.2 Experiments on the MORPH Album 2 Dataset

Following [10,11,17,42], in this study we use an extended version of MORPH
Album 2 dataset [30] for performance evaluation. It has 78,000 face images of
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20,000 identities in total. The data has been split into training and testing set.
The training set contains 10,000 identities. The rest of 10,000 identities belong
to testing set where each identity has 2 photos with a large age gap. The testing
data have been divided into gallery set and probe set. We follow the testing
procedure given by [10] to evaluate the performance of our algorithm. We set up
several schemes for comparison including: (1) Softmax: the CNN-baseline model
trained by the original Softmax loss, (2) A-Softmax: the CNN-baseline model
guided by the A-Softmax loss, (3) OE-CNNs: the proposed approach, and (4)
other recently proposed top-performing AIFR algorithm in the literatures.

Firstly, we compare the proposed approach to baseline algorithms that are
most related to the proposed algorithm to demonstrate its effectiveness. Table 2
compares the rank 1 identification rates testing on 10,000 subjects of Morph
Album 2 over Softmax, A-Softmax, and OE-CNNs, with and without CAF
dataset. As shown in the table, The proposed OE-CNNs significantly outper-
forms both Softmax and A-Softmax under both settings. Specifically, though
we’ve used similar loss function with A-Softmax for training the identity-related
features, OE-CNNs noticeably improves the performance of A-Softmax, which
confirms the effectiveness of our features decomposition method for AIFR. Note
that, all compared networks have the same base network (from input to FC
layer). When comparing performances trained with and without CAF dataset,
we can see that with CAF the identification rate improves consistently for all
systems, which confirms that the CAF dataset is valuable to AIFR research.

Secondly, for ensuring a fair comparison with other methods, we neglect the
CAF dataset and conduct an experiment with the same training data as related
work [42] has used. Specifically, WebFace [45], celebrity+ [25] and CACD [5]
form the training set to train a CNN base model. The trained model is later fine-
tuned with Morph training data. Table 3 depicts our result compared with other
methods. There are conventionally two evaluation schemes on Morph benchmark:
testing on 10,000 subjects or 3,000 subjects. For fairly comparing against other
methods, we evaluate the proposed OE-CNN approach on both schemes. As can
be seen in Table 3, the OE-CNN approach shows its capability by substantially
outperforming all other methods in both two evaluation schemes. Particularly,
our method surpasses the LF-CNN model by 1.0% and AE-CNN model by 0.5%,
which is an outstanding improvement on the accuracy level above 98%.

4.3 Experiments on the CACD-VS Dataset

CACD dataset comprises comprehensively 163,446 images from 2,000 distinct
celebrities. The age ranges from 10 to 62 years old. This dataset collects the
celebrity’s images with the effect of various illumination condition, different poses
and makeup, which can effectively reflect the robustness of the AIFR algorithm.
CACD-VS is a subset of CACD which is picked from CACD to composes 2,000
pairs of positive sample and 2,000 pairs of negative samples, and 4,000 pairs of
samples in total. We follow the pipeline of [5] to calculate the similarity score of
all sample pairs and the ROC curves and its corresponding AUC. We take 9 folds
from 10 folds that have already been separated officially to compute threshold



774 Y. Wang et al.

Table 2. Performance comparisons of different baselines on Morph Album 2.

Training dataset Method Rank-1 identification rates

Public datasets Softmax 94.84%

Public datasets A-Softmax 96.27%

Public datasets OE-CNNs 97.46%

Public datasets + CAF Softmax 95.49%

Public datasets + CAF A-Softmax 96.59%

Public datasets + CAF OE-CNNs 98.57%

Table 3. Performance comparisons of different approaches on Morph Album 2.

Method #Test subjects Rank-1 identification rates

HFA [10] 10,000 91.14%

CARC [5] 10,000 92.80%

MEFA [11] 10,000 93.80%

MEFA+SIFT+MLBP [11] 10,000 94.59%

LPS+HFA [17] 10,000 94.87%

LF-CNNs [42] 10,000 97.51%

OE-CNNs 10,000 98.55%

GSM [21] 3,000 94.40%

AE-CNNs [47] 3,000 98.13%

OE-CNNs 3,000 98.67%

Fig. 5. ROC comparisons of different approaches on CACD-VS.

references and use this threshold to evaluate on the rest of 1 fold. By repeating
this procedure 10 times, we finally calculate the average accuracy as another
measure.
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Table 4. Performance comparisons of different approaches on CACD-VS.

Method Acc AUC

High-dimensional LBP [7] 81.6% 88.8%

HFA [10] 84.4% 91.7%

CARC [5] 87.6% 94.2%

LF-CNNs [42] 98.5% 99.3%

Human, Average [6] 85.7% 94.6%

Human, Voting [6] 94.2% 99.0%

Softmax 98.4% 99.4%

A-Softmax 98.7% 99.5%

OE-CNNs 99.2% 99.5%

The results of all the baselines are shown in Table 4 and Fig. 5. As illustrated,
the proposed OE-CNN approach significantly outperforms all the other baselines.
Furthermore, our approach also surpasses the human-level performance, which
demonstrates the effectiveness of our proposed age-invariant deep features.

4.4 Experiments on the FG-NET Dataset

The FG-NET dataset consists of 1,002 pictures from 82 different identities, each
identity has multiple face images with huge variability in the age covering from
child to elder. Following the evaluation protocols of Megaface challenge 1 (MF1)
[15] and Megaface challenge 2 (MF2) [27] we employ the 1 million images from
Flickr as the distractor set. Particularly, under the small protocol of MF1, we
reduce our training data to 0.5 million images from 12,073 identities in the
training phase. The cross-age face images in FG-NET servers as the probe set
in which a probe image is compared against each image from distractor set. We
evaluate the rank-1 performance of the presented algorithm under the protocols
of MF1 and MF2, as shown in Tables 5 and 6, respectively.

Under the small protocol of MF1, the proposed method not only obtains a
significant performance improvement over Softmax and A-Softmax baseline but
also surpasses the existing methods (including a specific age-invariant method
TNVP [8]) by a clear margin. Under the protocol of MF2, all the algorithms need
to be trained using the same training dataset (which does not involve the cross-
age training data) provided by MF2 organizer. It is encouraging to see that
our algorithm also outperforms all other methods with a large margin, which
strongly proves the effectiveness of our algorithm on AIFR.

4.5 Experiments on the LFW Dataset

LFW is a very famous benchmark for general face recognition. The dataset has
13,233 face images from 5,749 subjects acquiring from the arbitrary environment.
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Table 5. Performance comparisons of different approaches under the protocols of MF1
[15] on FG-NET.

Method Protocol Rank-1 identification rates

FUDAN-CS SDS [41] Small 25.56%

SphereFace [24] Small 47.55%

TNVP [8] Small 47.72%

Softmax Small 35.11%

A-Softmax Small 46.77%

OE-CNNs (single-patch) Small 52.67%

OE-CNNs (3-patch ensemble) Small 58.21%

Table 6. Performance comparisons of different approaches under the protocol of MF2
[27] on FG-NET.

Method Protocol Rank-1 identification rates

GRCCV Large 21.04%

NEC Large 29.29%

3DiVi Large 35.79%

GT-CMU-SYSU Large 38.21%

OE-CNNs (single-patch) Large 53.26%

Table 7. Performance comparisons of different approaches on LFW.

Method Images Networks Acc

General approaches DeepFace [36] 4M 3 97.35%

FaceNet [32] 200M 1 99.65%

DeepID2+ [35] – 25 99.47%

Center loss [43] 0.7M 1 99.28%

SphereFace [24] 0.5M 1 99.42%

Cross-age approaches LF-CNNs [42] 0.7M 1 99.10%

OE-CNNs 0.5M 1 99.35%

OE-CNNs 1.7M 1 99.47%

We experiment our algorithm on LFW following the official unrestricted with
labeled outside data protocol. We test our model on 6,000 face pairs. The training
data are disjoint from the testing data. Table 7 exhibits our results. One can see
that the proposed OE-CNN approach achieves comparable performance without
any ensemble trick to the state-of-the-art approaches, which demonstrates the
excellent generalization ability of the proposed approach. Additionally, after we
expand the training dataset to 1.7M (including CAF dataset), the performance
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of OE-CNNs further improves to 99.47%, which also proves that our CAF dataset
is not only valuable for AIFR but also helpful for GFR.

5 Conclusion

AIFR is a remained challenging computer vision task on account of the aging
process of the human. Inspired by pioneering work and the observation of hidden
components, this paper proposes a novel approach which separates deep face fea-
ture into the orthogonal age-related component and identity-related component
to improve AIFR. The highly discriminative age-invariant features can be con-
sequently extracted from a multi-task deep CNN model based on the proposed
approach. Furthermore, we build a large cross-age celebrity dataset named CAF
that is both noise-free and vast in the number of images. As a part of training
data, CAF greatly boosts the performance of the models for AIFR. Extensive
evaluations of several face aging datasets have been done to show the effective-
ness of our orthogonal embedding CNN (OE-CNN) approach. More studies on
how to incorporate the generative scheme and improve the discriminative scheme
will be explored in our future work to benefit the AIFR community.
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