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Abstract. We propose a video story question-answering (QA) archi-
tecture, Multimodal Dual Attention Memory (MDAM). The key idea
is to use a dual attention mechanism with late fusion. MDAM uses self-
attention to learn the latent concepts in scene frames and captions. Given
a question, MDAM uses the second attention over these latent concepts.
Multimodal fusion is performed after the dual attention processes (late
fusion). Using this processing pipeline, MDAM learns to infer a high-level
vision-language joint representation from an abstraction of the full video
content. We evaluate MDAM on PororoQA and MovieQA datasets which
have large-scale QA annotations on cartoon videos and movies, respec-
tively. For both datasets, MDAM achieves new state-of-the-art results
with significant margins compared to the runner-up models. We confirm
the best performance of the dual attention mechanism combined with
late fusion by ablation studies. We also perform qualitative analysis by
visualizing the inference mechanisms of MDAM.

Keywords: Video story QA · Visual QA · Attention mechanism
Multimodal learning · Deep learning

1 Introduction

Question-answering (QA) on a video story based on multimodal content input is
an emerging topic in artificial intelligence. In recent years, multimodal deep
learning studies have been successfully improving QA performance for still
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Fig. 1. The system architecture of Multimodal Dual Attention Memory (MDAM). (1)
At the self-attention step, MDAM learns the latent variables of frames and captions
based on the full video content. (2) For a given question, MDAM attend to the latent
variables to remove unnecessary information. (3) At the multimodal fusion step, the
question, caption, and frame information are fused using residual learning. During the
whole inference process, multimodal fusion occurs only once.

images [1,3,10,23] and video along with supporting content like subtitles, scripts,
plot synopses, etc. [9,12,16,24]. Please note that video story QA is more chal-
lenging than image QA for the following two reasons.

First, video story QA involves multimodal content aligned on time-series. The
model must learn the joint representations among at least two multimodal con-
tents and given questions, and those joint representations must consider dynamic
patterns over the time-series. Therefore, the use of multimodal fusion methods
such as concatenation [8,15] or Multimodal Bilinear Pooling [3,11,16] along with
time axis might be prohibitively expensive and have the risk of over-fitting.

Second, video story QA requires to extract high-level meanings from the mul-
timodal contents, i.e., scene frames and captions segmented based on the con-
sistency of story. However, scene frames and captions in a video are redundant,
highly-complex, and sometimes ambiguous information for the task, although
humans can easily reason and infer based on the understanding of the video
storyline in an abstract-level. It implies that humans can successfully extract
the latent variables related to the multimodal content, which are used by the
process of reasoning and inference. These latent variables are conditioned on a
given question to give a correct answer. However, the previous work on video
story QA has focused on the understanding of raw scene frames and captions
without modeling on the latent variable [9,12,16,24].
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Here, we propose a novel model for video story QA task, Multimodal Dual
Attention Memory (MDAM), which uses ResNet [6], GloVe [18], positional
encoding [4], and casing features [19] to represent scene frames and captions of a
video. Then, using multi-head attention networks [22], self-attention calculates
the latent variables for the scene frames and captions. For a given question, the
MDAM attends to the subset of the latent variables to compress scene frame and
caption information to each single representation. After that, multimodal fusion
occurs only once during the entire QA process, using the multimodal residual
learning used in image QA [10]. This learning pipeline consists of five submod-
ules, preprocessing, self-attention, attention by question, multimodal fusion, and
answer selection, which is learned end-to-end, supervised by given annotations.
Figure 1 shows the proposed model at an abstract level.

We evaluate our model on the large-scale video story QA datasets,
MovieQA [20] and PororoQA [12]. The experimental results demonstrate two
hypotheses of our model that (1) maximize QA related information through the
dual attention process considering high-level video contents, and (2) multimodal
fusion should be applied after high-level latent information is captured by our
early process.

The main contributions of this paper are as follow: (1) we propose a novel
video story QA architecture with two hypotheses for video understanding; dual
attention and late multimodal fusion, (2) we achieve the state-of-the-art results
on both PororoQA and MovieQA datasets, and our model is ranked at the first
entry in the MovieQA Challenge at the time of submission.

2 Related Works

2.1 Video Story QA Datasets

MovieQA aims to provide a movie dataset with high semantic diversity [20]. The
dataset consists of 408 movies and 14,944 multiple choices QAs. The dataset
includes the stories of various genres such as action, fantasy, and drama; hence
a QA model must be able to handle a variety of stories. The tasks of MovieQA
can be divided into a text story QA mode (8,482 QA pairs) and a video story
QA mode (6,462 QA pairs). The MovieQA Challenge provides the evaluation
server for test split so that participants can evaluate the performance of their
models from this server.

Unlike MovieQA, PororoQA focuses on a coherent storyline [12]. Since the
videos are from a cartoon series, they provide more structured and simpler story-
lines. The dataset contains 27,328 scene descriptions and 8,834 multiple choices
QA pairs with 171 videos of the children’s cartoon video series, Pororo.

2.2 Video Story QA Models

Deep Embedded Memory Networks (DEMN) [12] replaces videos with generated
text by combining scene descriptions and captions represented in a common
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linear embedding space. To solve QA tasks, DEMN evaluates all question-story
sentence-answer triplets with the supervision of question and story sentence.

Read Write Memory Networks (RWMN) [16] fuse individual captions with
the corresponding frames using Compact Bilinear Pooling [3] and store them
in memory slots. Given the fact that each memory slot is not an independent
entity, multi-layer convolutional neural networks are used to represent tempo-
rally adjacent slots. Our model provides a better solution to capture the latent
variables of scene frames and captions through our dual attention mechanism
for the full memory slots compared to the convolutional approach. Note that our
multimodal fusion is applied to the latent variables instead of the early fusion
in this work for high-level reasoning process.

ST-VQA applies attention mechanism on both spatial and temporal features
of the videos [9]. Unlike our proposed model, these attentions are only given
to scene frames since the input of ST-VQA is short video clips such as GIFs
without captions. ST-VQA concatenates C3D [21] and residual network features
extracted from every interval of a video clip to obtain the spatial features. The
model then calculates the temporal features of the intervals by feeding the spatial
features into an LSTM. Given a question, attention mechanism is applied to both
spatial and temporal features.

3 Multimodal Dual Attention Memory

Our goal is to build a video QA model that maximizes information needed for QA
through attention mechanisms and fuses the multimodal information at a high-
level of abstraction. We tackle this problem by introducing the two attention
layers, which leverage the multi-head attention functions [22], followed by the
residual learning of multimodal fusion.

Figure 2 shows the overall architecture of our proposed model - Multimodal
Dual Attention Memory(MDAM) for video story QA. The MDAM consists of five
modules. (1) The first module is the preprocessing module. All input including
frames and captions of a given video is converted to the tensor formats. (2)
In the self-attention module, the MDAM learns to obtain latent variables of the
preprocessed frames and captions based on the whole video content. This process
mimics a human who watches the full content of a video and then understands
the story by recalling the frames and captions himself using the episodic buffer
[2]. (3) In the attention by question module, the MDAM learns to give attention
scores to find the relevant latent variables for a given question. It can be regarded
as a cognitive process of finding points that contain answer information based on
the understood story. (4) These attentively refined frames and captions, and a
question are fused using the residual function in the multimodal fusion module.
(5) Finally, the answer selection module selects the correct answer by producing
confidence score values over the five candidate answer sentences.
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Fig. 2. Five steps in our processing pipeline of Multimodal Dual Attention Memory for
the video story QA task. (1) All given inputs are embedded as tensors and stored into
long-term memory (Sect. 3.1). (2) The frame tensor M self

V and caption tensor M self
C

have latent variables of the frames and captions through the self-attention mechanism
(Sect. 3.2 and Fig. 3). (3) By using attention once again but with a question, the frames
and captions are abstracted by the rank-1 tensors v and c (Sect. 3.3 and Fig. 3). (4)
The fused representation o is calculated using residual learning fusion (Sect. 3.4 and
Fig. 4). (5) Finally, the correct answer sentence is selected with element-wise operations
followed by the softmax classifier (Sect. 3.5).

3.1 Preprocessing

The input of the model is composed of (1) a sequence of frames V frames and (2)
a sequence of captions C captions of a video clip I clip = {V frames, C captions}, (3)
a question, and (4) a set of five candidate answer sentences Aanswers = (a1, . . . ,
a5). V frames and C captions consist of N multiple frames and captions, V frames =
(v1, . . . , vN), C captions = (c1, . . . , cN), where ci is a i -th dialogue caption of the
I clip, and v i is an image frame sampled at the midpoint between the start and
end times of the caption ci. The value of the story length N is fixed differently
depending on the dataset used in this work. If the number of captions in the
video is less than N, zero padding is added. In Sect. 4.2, we will report the values
of the hyperparameters.

The main purpose of the preprocessing module is to transform the raw input
as tensor formats, MV ∈ R

N×2048, MC ∈ R
N×512, q ∈ R

512,A ∈ R
5×512,

respectively, and store these in long-term memory, e.g., RAM.

Linguistic Inputs. We first convert C captions, question, Aanswers as word-level
tensor representations, EC ∈ R

N×M×305, Eq ∈ R
M×305, EA ∈ R

5×M×305,
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respectively. M is the fixed value denoting the maximum number of words in a
sentence. Like the story length N , the value of M depends on the dataset. For
a sentence with less than M words, zero padding is added. To represent each
word of the inputs, we concatenate 300-D GloVe [18] with positional encoding
[4], and 5-D casing features.

GloVe and Positional Encoding. Each word in the sentences is mapped to a
GloVe embedding followed by positional encoding.

ei = gi + pi ∈ R
300 (1)

where gi is GloVe embedding, and pi is the learnable embedding vector of the
position index i. ei is an output embedding.

Casing Features. As is used in the existing NLP studies [19], we add the following
5-D flag for each word representation. (1) A capitalization flag. This flag assigns
the label True if at least one character of a word is upper-cased. (2) A numeric
flag that assigns the label True if at least one character is numeric. (3) A personal
pronouns flag that captures whether the word is a personal pronoun, e.g., she, he,
they. (4) A unigram flag and (5) A bigram flag that indicate whether there is a
unigram/bigram match between question and captions or question and candidate
answer sentences. The casing feature is mapped to a five-dimensional zero-one
vector.

To obtain 512-D sentence-level tensor representations, we apply the shared
1-D convolution layers consisting of filters with varying window sizes we1

conv ∈
R

M×1×1×128, we2
conv ∈ R

M×2×1×128, we3
conv ∈ R

M×3×1×128, we4
conv ∈ R

M×4×1×128

and max pooling operations to the word-level tensor representations, EC , Eq,
EA [13].

MC [i] = max(ReLU(conv(EC [i, :, :], [we1
conv, w

e2
conv, w

e3
conv, w

e4
conv]))) (2)

q = max(ReLU(conv(Eq, [we1
conv, w

e2
conv, w

e3
conv, w

e4
conv]))) (3)

A[j] = max(ReLU(conv(EA[j, :, :], [we1
conv, w

e2
conv, w

e3
conv, w

e4
conv]))) (4)

where conv (input, filters) means the convolution layer, ReLU is the elementwise
ReLU activation [17]. Finally, the output tensors for the captions, question,
answer sentences are MC ∈ R

N×512, q ∈ R
512, A ∈ R

5×512, respectively, and
they are stored into long-term memory.

Visual Inputs. The 2048-D sized activation output of 152-layer residual net-
works [6] is used to represent V frame as MV ∈ R

N×2048. It is stored in long-term
memory.

3.2 Self-attention

This module imports the frame tensor MV ∈ R
N×2048, and caption tensor

MC ∈ R
N×512 from the long-term memory as input. The output is the tensors
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M self
V ∈ R

N×2048 and M self
C ∈ R

N×512 that have latent values of the input by
using attention layers [22]. The module provides separate attention to frames
and captions.

Figure 3(a) shows the process of the attention layers consisting of Lattn iden-
tical layers [22]. Each layer has two sub-layers; (1) multi-head self-attention
networks and (2) point-wise fully connected feed forward networks. There are a
residual connection and layer normalization between each sub-layer. The Lattn

layers use different learning parameters for each layer.

Multi-head Self-attention Networks. In this sub-layer, each frame and cap-
tion can attend to all frames and captions including itself to obtain a latent
variable. It is achieved by selecting one pivot from the frames or captions and
updating it using the attention mechanism. Figure 3(b) illustrates the detailed
process. There are a pivot p ∈ R

dk and key set K ∈ R
N×dk . K is the output

of the previous layer or the input embedding, i.e., MV , MC , for the first layer.
Each row vector of K is a key whose latent variable is to be computed. dk is the
dimension of the key, i.e., 512 or 2048. The pivot p is selected from one of the
N keys of K.

First, the networks project the pivot p and N keys to dproj dimensions h
times, with different, learnable projection matrices. Then, for each projection,
the weighted average using the scores obtained from the dot product-based atten-
tion by pivot p aggregates N keys.

headi = average(DotProdAttn(pW p
i ,KWK

i ))) ∈ R
dproj (5)

where DotProdAttn(x, Y ) = softmax(xY T /
√

dproj)Y (6)

h outputs are concatenated and projected once again to become the updated
key value K̃[j, :] if the pivot p is K [j,:].

K̃[j, :] = (head1 ⊗ · · · ⊗ headh)Wo ∈ R
dk (7)

where ⊗ denotes concatenation, and Wo ∈ R
hdproj×dk is a projection matrix.

The networks change a pivot p from K [1,:] to K [N,:] and repeat the Eqs. (5)–(7)
to obtain the updated key set K̃.

In this work, we use h = 8, dproj = 64. In Sect. 4.3, we will report the model
performances according to the various Lattn values.

Feed Forward Networks. Fully-connected feed forward networks apply two
linear transformations and a ReLU activation function separately and identically
for every point of the input.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (8)

where x is a point of the input. The dimension size of input and output is dk,
and the inner-layer has a dimension size of 2dk.
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3.3 Attention by Question

This module takes the final output tensors, M self
V , M self

C , of the self-attention
module and again calculates the attention scores separately, by using the ques-
tion. Attention information is aggregated using the 1-D convolutional neural
networks to produce the output, v ∈ R

512 and c ∈ R
512, for the frames and

captions, respectively.

Multi-head Attention Networks. Like the self-attention module of Sect. 3.2,
this module uses the attention layers consisting of Lattn identical layers illus-
trated in Fig. 3(a) [22]. However, the attention layers differ from that of the
self-attention module in that they have the multi-head attention networks inside.

Figure 3(c) shows the multi-head attention networks. The networks calculate
the updated key set K̃ by applying attention to the key set K as in Eqs. (5)–
(7), but there are three differences when calculating Eqs. (5) and (7). (1) The
networks use the question tensor q as a pivot by reading from the long-term
memory. (2) The networks calculate the attention output values without average,
i.e., head i =DotProdAttn(...) ∈ R

N×dproj . (3) The output of the Eq. (7) becomes
K̃ ∈ R

N×dk which is not a specific point of K̃.
We denote the final output of the attention layers as M q

V ∈ R
N×2048 and

M q
C ∈ R

N×512. Then, these are seperately aggregated using the 1-D convolu-
tional neural networks and max pooling operation to get the outputs v ∈ R

512

and c ∈ R
512.

v = max(ReLU(conv(M q
V , [wv1

conv, w
v2
conv, w

v3
conv, w

v4
conv]))) (9)

c = max(ReLU(conv(M q
C , [wc1

conv, w
c2
conv, w

c3
conv, w

c4
conv]))) (10)

Fig. 3. (a) Illustration of the attention layers consisting of Lattn identical layers. The
self-attention module uses the multi-head self-attention networks while the attention
by question module uses the multi-head attention networks. (b) The multi-head self-
attention networks select a pivot p from the key set K to obtain the updated key set
K̃. (c) The multi-head attention networks use the question q as a pivot to obtain the
updated key set K̃.
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Fig. 4. A schematic diagram of the multimodal fusion module with the two deep resid-
ual blocks. The final output o is the concatenation of the outputs from the two residual
blocks, H(2)(question q - frame v) and H(2)(question q - caption c), followed by a linear
projection and tanh activation.

where wvi
conv ∈ R

2048×i×1×128 denote 1-D convolution filters of length i for M q
V ,

and wci
conv ∈ R

512×i×1×128 denote 1-D convolution filters of length i for M q
C .

3.4 Multimodal Fusion

During the entire QA process, multimodal fusion occurs only once in this module.
The module fuses the refined frames v ∈ R

512, and captions c ∈ R
512, with the

question q ∈ R
512 to output a single representation o ∈ R

512. We borrow the
idea of multimodal residual learning [10].

Figure 4 illustrates an example of our multimodal fusion module. The final
output, o, is the concatenation of the two deep residual blocks, followed by
linear projection and tanh activation. Each of the deep residual blocks consists
of element-wise multiplication of question q and frames v, or q and captions c,
with residual connection.

o = σ(Wo(H(Lm)(q,v) ⊗ H(Lm)(q, c))) (11)

where H(Lm)(q, x) = q

Lm∏

l=1

W (l)
q +

Lm∑

l=1

{F (l)(H(l−1), x)
M∏

n=l+1

W (n)
q } (12)

F (l)(H,x) = σ(HW
(l)
H ) � σ(σ(xW

(l)
1 )W (l)

2 ) (13)

where Lm is the depth of the learning blocks. We use various values for Lm in
this work. ⊗ is the concatenation operation, σ is the element-wise tanh activa-
tion, and � is the element-wise multiplication. H(Lm)(q,v) and H(Lm)(q, c) use
different learning parameters.
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3.5 Answer Selection

This module learns to select the correct answer sentence using the basic element-
wise calculation between the output of multimodal fusion module, o ∈ R

512,
and the answer sentence tensor, A ∈ R

5×512, which is read from the long-term
memory, followed by the softmax classifier.

OA = (otile � A) ⊗ (otile ⊕ A) (14)
z = softmax(OAW + b) (15)

where otile ∈ R
5×512 is the tiled tensor of o. ⊕ is the element-wise addi-

tion. z ∈ R
5 is the confidence score vector over the five candidate answer

sentences. Finally, we predict the answer y with the highest score value, y =
argmaxi∈[1,5](zi).

4 Experimental Results

4.1 Dataset

The MovieQA dataset for the video QA mode consists of 140 movies with 6,462
QA pairs [20]. Each question is coupled with a set of five possible answers; one
correct and four incorrect answers. A QA model should choose a correct answer
for a given question only using provided video clips and subtitles. The average
length of a video clip is 202 s. If there are multiple video clips given in one
question, we link them together into a single video clip. The number of QA pairs
in train/val/test are 4318/886/1258, respectively.

The PororoQA dataset has 171 episodes with 8,834 QA pairs [12]. Like
MovieQA, each question has one correct answer sentence and four incorrect
answer sentences. One episode consists of a video clip of 431 s average length.
For experiments, we split all 171 episodes into train(103 ep.)/val(34 ep.)/test(34
ep.) sets. The number of QA pairs in train/val/test are 5521/1955/1437, respec-
tively. Unlike the MovieQA, the PororoQA has supporting fact labels that indi-
cate which of the frames and captions of the video clip contain correct answer
information, and description set. However, because our model does not use any
supporting fact label or description, we do not use them in the experiment.

4.2 Experimental Setup

Pretrained Parameters. In the preprocessing module, ResNet-152 [6] pre-
trained with ImageNet is used to encode the raw visual input, Vframe. GloVe
[18] pre-trained with Gigaword 5 and Wikipedia 2014 consisting of 6B tokens is
used to encode the raw linguistic input, C captions, question, and Aanswers.
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Hyperparameters. For MovieQA, we limit the number of sentences per video
clip to 40, i.e., N = 40, and the number of words per sentence to 60, i.e.,
M = 60. For PororoQA, we use N = 20 and M = 100. These are the maximum
lengths of the sentences and words in each dataset. Sentences or words below
the given length are padded with zero values. We prevent the zero padding from
participating in the error in the learning process.

The learnable parameters are initialized using the Xavier method [5] except
for the pretrained models. The batch size is 16, and the number of epochs is
fixed to 160. Adam [14] is used for optimization, and dropouts [7] are used for
regularization.

For learning rate and loss function, we empirically found that good param-
eters can be obtained by pre-training the model with the cross-entropy loss
between the ground-truth one-hot vector zgt and prediction z at a learning rate
of 0.01 and then learning it again with the categorical hinge loss at a learning
rate of 0.0001 from the best point.

We train 20 different models and ensemble them using bayesian optimization.

Baselines. To compare the performance of each component, we conduct
the ablation experiments with the following five model variants. (1) MDAM-
MulFusion: model using element-wise multiplication instead of the residual learn-
ing function in the multimodal fusion module (self-attention is used). (2) MDAM-
FrameOnly: model using only scene frames. (3) MDAM-CaptOnly: model using
only captions. (4) MDAM-EarlyFusion: model that moves the position of the
multimodal fusion module forward in the QA pipeline; thus the information
flow goes through the following steps (i) preprocessing, (ii) multimodal fusion,
(iii) self-attention, (iv) attention by question, (v) answer selection. The fusions
of frames and captions occur N times by fusing MV and MC . (5) MDAM-
NoSelfAttn: model without the self-attention module. Furthermore, we measure
the performance comparisons between our MDAM and other state-of-the-art
models.

4.3 Quantitative Results

MovieQA. We report the experimental results of our model for validation and
test sets. We conduct the ablation experiments using the validation set to set
the hyper-parameters of our models. Based on these results, we participated in
the MovieQA Challenge. At the time of submission of the paper, our MDAM
has recorded the highest accuracy of 41.41%
Ablation Experiments Fig. 5 shows the results of the ablation experiments. Due
to the small size of the MovieQA data set, the overall performance pattern shows
a tendency to decrease as the depth of the attention layers Lattn and the depth
of the learning blocks in the multimodal fusion module Lm increase. Comparing
the performance results by module, the models, in which multimodal fusions
occur early in the QA pipeline (MDAM-EarlyFusion), shows little performance
difference with the models, which use only sub-part of the video input (MDAM-
FrameOnly, MDAM-CaptOnly). In addition, even if multimodal fusion occurs
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Fig. 5. The results of the model variants on the validation set of MovieQA. Lattn

denotes the number of layers in the attention networks. Lm denotes the depth of the
learning blocks in the multimodal fusion module.

late, the performance is degraded where a simple element-wise multiplication is
used as the fusion method (MDAM-MulFusion). Finally, the MDAM with self-
attention through the full video content performs the best among our variant
models. These results imply the validity of our hypotheses of the model that (1)
maximize the QA related information through the dual attention module and
(2) fuse the multimodal information at a high-level of abstraction.
MovieQA Challenge The MovieQA Challenge provides a separate evaluation
server for the test set so that participants can evaluate the performance of their
models using the server. The evaluation is limited to once for every 72 h.

Table 1 shows the performance comparison with the other models released on
the MovieQA Challenge leaderboard. Our MDAM (Lattn = 2, Lm = 1) achieves
41.41% and shows the performance gain of 2.38% compared to the runner-up
model, Layered Memory Network, which achieves 39.03%.

PororoQA. In Table 2, we present the experimental results of our MDAM for
the PororoQA dataset. The comparative models are the five MDAM variants
and the existing baseline methods (BoW V+Q, W2V V+Q, LSTM V+Q) which
do not use the descriptions and supporting fact labels like ours [12]. As a result,
MDAM achieves a state-of-the art performance (48.9%), marginally beating the
existing methods. Furthermore, we observe that the two hypotheses of MDAM
are valid in PororoQA. The self-attention module helps MDAM achieve better
performance (48.9% for MDAM vs. 47.3% for MDAM-NoSelfAttn), and multi-
modal fusion with high-level latent information by our module performs better
than early fusion baseline (46.1% for MDAM-EarlyFusion). All MDAM variants
use Lattn = 2 and Lm = 1.
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Table 1. Performance compari-
son with other models proposed
in the MovieQA Challenge leader-
board of the video QA section.

Method Test

LSTM+CNN 23.45

Simple MLP 24.09

LSTM+discriminative CNN 24.32

DEMN [12] 29.97

MuSM 34.74

RWMN [16] 36.25

Local Avg. pooling networks 38.16

Layered Memory Networks 39.03

MDAM (ours) 41.41

Table 2. Performance comparison
between other models proposed in
[12] and MDAM variants on the
test set of PororoQA.

Method Test

LSTM+CNN 23.45

Simple MLP 24.09

LSTM+discriminative CNN 24.32

DEMN [12] 29.97

MuSM 34.74

RWMN [16] 36.25

Local Avg. pooling networks38.16

Layered Memory Networks 39.03

MDAM (ours) 41.41

4.4 Qualitative Results

In this section, we visually analyze the inference mechanism of MDAM. Figure 6
shows the selected qualitative results of MDAM and MDAM without self-
attention (MDAM-NoSelfAttn) for MovieQA.

Figure 6(a)–(c) show the successful examples of MDAM. Given a question,
MDAM solves the QA task correctly by attending to frames and captions con-
taining answer-related information, which is performed by the attention by ques-
tion module. Note that the model attends to frames and captions separately. It
allows the model to focus on single modality one-by-one in the self-attention and
attention by question modules for scene frames and captions in parallel.

Figure 6(d) shows a challenging example of the MovieQA dataset. The given
video clip persists similar scenes with a long narrative by the character. These
inputs make our MDAM to be challenging to select keyframes and corresponding
captions which contain the information related to the given question, i.e.time
interval and the location of the watch.

5 Concluding Remarks

We proposed a video story QA architecture, MDAM. The fundamental idea of
MDAM is to provide the dual attention structure that captures a high-level
abstraction of the full video content by learning the latent variables of the video
input, i.e., frames and captions, then, late multimodal fusion is applied to get a
joint representation. We empirically demonstrated that our architectural choice
is valid by showing the state-of-the-art performance on MovieQA and PororQA
datasets. Exploring various alternative models in our ablation studies, we con-
jecture the following two points: (1) The position of multimodal fusion in our
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Fig. 6. Qualitative results for the MovieQA of MDAM with and without the self-
attention module (MDAM and MDAM-NoSelfAttn, respectively). The successful cases
are (a), (b), and (c), and the failure case is (d). Bold sentences are ground-truth answers.
Green check symbols indicate the predictions of MDAM. Red cross symbols indicate
the predictions of MDAM-NoSelfAttn. In each case, we show that which scene frames
and captions are attended by the model for a given question.

QA pipeline is important to increase the performance. We learned that the early
fusion models are easy to overfit, and the training loss fluctuates during a train-
ing phase due to many fusions occurred on time domain. On the other hand,
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the late fusion model were faster in convergence, leading to better performance
results. (2) For a given question, it is useful to attend to video content after
self-attention. Because questions and scene frames are different modalities, i.e.,
language and vision, attending to a subset of the frames using a question tends
to get a poor result if two hidden representations are not sufficiently aligned.
Our self-attention module relieved this problem by calculating latent variables
of frames and captions.

References

1. Agrawal, A., Lu, J., Antol, S., Mitchell, M., Zitnick, C.L., Batra, D., Parikh, D.:
Vqa: Visual question answering. In: ICCV (2015)

2. Baddeley, A.: The episodic buffer: a new component of working memory? Trends
Cogn. Sci. 4(11), 417–423 (2000)

3. Fukui, A., Park, D.H., Yang, D., Rohrbach, A., Darrell, T., Rohrbach, M.: Multi-
modal compact bilinear pooling for visual question answering and visual grounding.
In: EMNLP (2016)

4. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. Arxiv eprint arXiv:1705.03122 (2017)

5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS (2010)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

7. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. ArXiv
eprint arXiv:1207.0580 (2012)

8. Jabri, A., Joulin, A., van der Maaten, L.: Revisiting visual question answering
baselines. In: ECCV (2016)

9. Jang, Y.S., Song, Y., Yu, Y.J., Kim, Y.J., Kim, G.H.: Tgif-qa: Toward spatio-
temporal reasoning in visual question answering. In: CVPR (2017)

10. Kim, J.H., Lee, S.W., Kwak, D.H., Heo, M.O., Kim, J.H., Ha, J.W., Zhang, B.T.:
Multimodal residual learning for visual qa. In: NIPS (2016)

11. Kim, J.H., On, K.W., Lim, W.S., Kim, J.H., Ha, J.W., Zhang, B.T.: Hadamard
product for low-rank bilinear pooling. In: ICLR (2017)

12. Kim, K.M., Heo, M.O., Choi, S.H., Zhang, B.T.: Deep story video story qa by deep
embedded memory networks. In: IJCAI (2017)

13. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP
(2014)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
15. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention

for visual question answering. In: NIPS (2016)
16. Na, S.I., Lee, S.H., Kim, J.S., Kim, G.H.: A read-write memory network for movie

story understanding. In: ICCV (2017)
17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann

machines. In: ICML (2010)
18. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-

sentation. In: EMNLP (2014)
19. Reimers, N., Gurevych, I.: Optimal hyperparameters for deep lstm-networks for

sequence labeling tasks. In: EMNLP (2017)

http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1207.0580


Multimodal Dual Attention Memory for Video Story Question Answering 713

20. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.:
Movieqa: Understanding stories in movies through question-answering. In: CVPR
(2016)

21. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: ICCV (2015)

22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS (2017)

23. Xu, H., Saenko, K.: Ask, attend and answer: exploring question guided spatial
attention for visual question answering. In: ECCV (2016)

24. Zeng, K.H., Chen, T.H., Chuang, C.Y., Liao, Y.H., Niebles, J.C., Sun, M.: Lever-
aging video descriptions to learn video question answering. In: AAAI (2017)


	Multimodal Dual Attention Memory for Video Story Question Answering
	1 Introduction
	2 Related Works
	2.1 Video Story QA Datasets
	2.2 Video Story QA Models

	3 Multimodal Dual Attention Memory
	3.1 Preprocessing
	3.2 Self-attention
	3.3 Attention by Question
	3.4 Multimodal Fusion
	3.5 Answer Selection

	4 Experimental Results
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Quantitative Results
	4.4 Qualitative Results

	5 Concluding Remarks
	References




