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Abstract. Recent work has shown that deep neural networks are highly
sensitive to tiny perturbations of input images, giving rise to adversar-
ial examples. Though this property is usually considered a weakness of
learned models, we explore whether it can be beneficial. We find that
neural networks can learn to use invisible perturbations to encode a rich
amount of useful information. In fact, one can exploit this capability for
the task of data hiding. We jointly train encoder and decoder networks,
where given an input message and cover image, the encoder produces
a visually indistinguishable encoded image, from which the decoder can
recover the original message. We show that these encodings are compet-
itive with existing data hiding algorithms, and further that they can be
made robust to noise: our models learn to reconstruct hidden information
in an encoded image despite the presence of Gaussian blurring, pixel-
wise dropout, cropping, and JPEG compression. Even though JPEG is
non-differentiable, we show that a robust model can be trained using
differentiable approximations. Finally, we demonstrate that adversarial
training improves the visual quality of encoded images.
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1 Introduction

Sometimes there is more to an image than meets the eye. An image may appear
normal to a casual observer, but knowledgeable recipients can extract more infor-
mation. Two common settings exist for hiding information in images. In steganog-
raphy, the goal is secret communication: a sender (Alice) encodes a message in
an image such that the recipient (Bob) can decode the message, but an adver-
sary (Eve) cannot tell whether any given image contains a message or not; Eve’s
task of detecting encoded images is called steganalysis. In digital watermarking,
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the goal is to encode information robustly: Alice wishes to encode a fingerprint
in an image; Eve will then somehow distort the image (by cropping, blurring,
etc), and Bob should be able to detect the fingerprint in the distorted image.
Digital watermarking can be used to identify image ownership: if Alice is a pho-
tographer, then by embedding digital watermarks in her images she can prove
ownership of those images even if versions posted online are modified.

Fig. 1. Given a cover image and a binary message, the HiDDeN encoder produces
a visually indistinguishable encoded image that contains the message, which can be
recovered with high accuracy by the decoder.

Interestingly, neural networks are also capable of “detecting” information
from images that are not visible to human eyes. Recent research have showed that
neural networks are susceptible to adversarial examples: given an image and a
target class, the pixels of the image can be imperceptibly modified such that it is
confidently classified as the target class [1,2]. Moreover, the adversarial nature of
these generated images is preserved under a variety of image transformations [3].
While the existence of adversarial examples is usually seen as a disadvantage of
neural networks, it can be desirable for information hiding: if a network can
be fooled with small perturbations into making incorrect class predictions, it
should be possible to extract meaningful information from similar perturbations
(Fig. 1).

We introduce HiDDeN, the first end-to-end trainable framework for data
hiding which can be applied to both steganography and watermarking. HiD-
DeN uses three convolutional networks for data hiding. An encoder network
receives a cover image and a message (encoded as a bit string) and outputs
an encoded image; a decoder network receives the encoded image and attempts
to reconstruct the message. A third network, the adversary, predicts whether a
given image contains an encoded message; this provides an adversarial loss that
improves the quality of encoded images. In many real world scenarios, images
are distorted between a sender and recipient (e.g. during lossy compression). We
model this by inserting optional noise layers between the encoder and decoder,
which apply different image transformations and force the model to learn encod-
ings that can survive noisy transmission. We model the data hiding objective
by minimizing (1) the difference between the cover and encoded images, (2) the
difference between the input and decoded messages, and (3) the ability of an
adversary to detect encoded images.

We analyze the performance of our method by measuring capacity, the size
of the message we can hide; secrecy, the degree to which encoded images can
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be detected by steganalysis tools (steganalyzers); and robustness, how well our
encoded messages can survive image distortions of various forms. We show that
our methods outperform prior work in deep-learning-based steganography, and
that our methods can also produce robust blind watermarks. The networks
learn to reconstruct hidden information in an encoded image despite the pres-
ence of Gaussian blurring, pixel-wise dropout, cropping, and JPEG compression.
Though JPEG is not differentiable, we can reliably train networks that are robust
to its perturbations using a differentiable approximation at training time.

Classical data hiding methods typically use heuristics to decide how much
to modify each pixel. For example, some algorithms manipulate the least signif-
icant bits of some selected pixels [4]; others change mid-frequency components
in the frequency domain [5]. These heuristics are effective in the domains for
which they are designed, but they are fundamentally static. In contrast, HiD-
DeN can easily adapt to new requirements, since we directly optimize for the
objectives of interest. For watermarking, one can simply retrain the model to
gain robustness against a new type of noise instead of inventing a new algo-
rithm. End-to-end learning is also advantageous in steganography, where having
a diverse class of embedding functions (the same architecture, trained with dif-
ferent random initializations, produces very different embedding strategies) can
stymie an adversary’s ability to detect a hidden message.

2 Related Work

Adversarial examples. Adversarial examples were shown to disrupt classifica-
tion accuracy of various networks with minimal perturbation to the original
images [2]. They are typically computed by adding a small perturbation to each
pixel in the direction that maximizes one output neuron [1]. Adversarial exam-
ples generated for one network can transfer to another network [6], suggesting
that they come from a universal property of commonly used networks. Kurakin
et al. showed that adversarial examples are robust against image transforma-
tions; when an adversarial example is printed and photographed, the network
still misclassifies the photo [3]. Instead of injecting perturbations that lead to
misclassification, we consider the possibility of transmitting useful information
through adding the appropriate perturbations.

Steganography. A wide variety of steganography settings and methods have been
proposed in the literature; most relevant to our work are methods for blind
image steganography, where the message is encoded in an image and the decoder
does not have access to the original cover image. Least-Significant Bit (LSB)
methods modify the lowest-order bits of each image pixel depending on the bits
of the secret message; several examples of LSB schemes are described in [7,8].
By design, LSB methods produce image perturbations which are not visually
apparent. However, they can systematically alter the statistics of the image,
leading to reliable detection [9].

Many steganography algorithms differ only in how they define a par-
ticular distortion metric to minimize during encoding. Highly Undetectable
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Fig. 2. Model overview. The encoder E receives the secret message M and cover image
Ico as input and produces an encoded image Ien. The noise layer N distorts the encoded
image, producing a noised image Ino. The decoder produces a predicted message from
the noised image. The adversary is trained to detect if an image is encoded. The encoder
and decoder are jointly trained to minimize loss LI from difference between the cover
and encoded image, loss LM from difference between the input and predicted message
and loss LG from encoded image Ien being detected by the adversary.

Steganography (HUGO) [4] measures distortion by computing weights for local
pixel neighborhoods, resulting in lower distortion costs along edges and in
high-texture regions. WOW (Wavelet Obtained Weights) [10] penalizes distor-
tion to predictable regions of the image using a bank of directional filters. S-
UNIWARD [11] is similar to WOW but can be used for embedding in an arbi-
trary domain.

Watermarking. Watermarking is similar to steganography: both aim to encode
a secret message into an image. However, while the goal of steganography is
secret communication, watermarking is frequently used to prove image owner-
ship as a form of copyright protection. As such, watermarking methods prioritize
robustness over secrecy: messages should be recoverable even after the encoded
image is modified or distorted. Non-blind methods assumes access to the unmod-
ified cover image [12–14]; more relevant to us are blind methods [5] where the
decoder does not assume access to the cover image. Some watermarking meth-
ods encode information in the least significant bits of image pixels [7]; however
for more robust encoding many methods instead encode information in the fre-
quency domain [5,13–15]. Other methods combine frequency-domain encoding
with log-polar mapping [16] or template matching [14] to achieve robustness
against spatial domain transformations.

Data Hiding with Neural Networks. Neural networks have been used for both
steganography and watermarking [17]. Until recently, prior work has typically
used them for one stage of a larger pipeline, such as determining watermarking
strength per image region [18], or as part of the encoder [19] or the decoder [20].

In contrast, we model the entire data hiding pipeline with neural networks
and train them end-to-end. Different from [18], HiDDeN is a blind method: it
does not require the recipient to have access to the original image, which is more
useful than non-blind methods in many practical scenarios. [20] uses gradient
descent to do encoding, whereas HiDDeN hides information in a single forward
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pass. [21] is a recent end-to-end approach to steganography using adversarial
networks, with which we compare results in Sect. 4.1. [22] train networks to hide
an entire image within another image. In contrast to our work, neither of [21,22]
consider encoding robustness; their focus is on steganography whereas HiDDeN
can be used for watermarking as well.

Neural networks have also been applied to other forms of data hiding. Abadi
and Anderson [23] show that adversarial networks can be trained for cryptog-
raphy; Uchida et al. [24] embed watermarks into the weights of trained neural
networks; Fang et al. [25] use LSTMs to embed secret messages into text.

3 Method

Our goal is to develop a learnable, end-to-end model for image steganography and
watermarking that can be made robust to arbitrary types of image distortion.
To this end, our system comprises four main components: an encoder Eθ, a
parameterless noise layer N , a decoder Dφ and an adversarial discriminator
Aγ . θ, φ and γ are trainable parameters. The encoder Eθ receives a cover image
Ico of shape C × H × W and a binary secret message Min ∈ {0, 1}L of length
L and produces an encoded image (also called the stego image) Ien of the same
shape as Ico. The noise layer N receives Ico and Ien as input and distorts the
encoded image to produce a noised image Ino. The decoder D recovers a message
Mout from Ino. At the same time, given an image Ĩ ∈ {Ico, Ien}, i.e. either a cover
image or encoded image, the discriminator predicts A(Ĩ) ∈ [0, 1], the probability
that Ĩ is an encoded image.

Encoded images should look visually similar to cover images. We characterize
the “similarity” with image distortion loss, the l2 distance between Ico and Ien:
LI(Ico, Ien) = ‖Ico − Ien‖22/(CHW ), and adversarial loss, the ability of the
discriminator to detect an encoded image Ien: LG(Ien) = log(1 − A(Ien)) [26].
The discriminator incurs a classification loss from its predictions LA(Ico, Ien) =
log(1 − A(Ico)) + log(A(Ien)). The decoded message should be the same as the
encoded message. We impose a message distortion loss using the l2 distance
between the original and decoded messages LM (Min,Mout) = ‖Min−Mout‖22/L.
We perform stochastic gradient descent on θ, φ to minimize the following loss
over the distribution of input messages and images:

EIco,Min

[LM (Min,Mout) + λILI(Ico, Ien) + λGLG(Ien)
]

(1)

where λI and λG control the relative weights of the losses. At the same time, we
train discriminator Aγ to minimize the following loss over the same distribution:

EIco,Min
[LA(Ico, Ien)] . (2)

Network Architecture. A diagram for our system setup is shown in Fig. 2, and
details can be found in Appendix A. The encoder first applies convolutions to
input Ico to form some intermediate representation. Next, we aim to incorporate
the message input (of length L) in such a way that the encoder can easily learn
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to embed parts of it at any spatial location of the output. For this reason, we
replicate the message spatially, and concatenate this “message volume” to the
encoder’s intermediary representation. This ensures that each convolutional fil-
ter in the next layer has access to the entire message as it convolves across each
spatial location. After more convolutional layers, the encoder produces Ien, the
encoded image. The noise layer, given Ico, Ien, applies noise and produces Ino.
We do not require Ino to have the same dimension as Ien, so that we can model
dimension-altering noise like cropping. The decoder first applies several convo-
lutional layers to produce L feature channels in the intermediate representation.
It then applies global spatial average pooling to produce a vector L of the same
size of the message – the average pooling ensures that it can handle inputs of
different spatial dimensions. It then applies a single linear layer to produce the
predicted message. The adversary has a structure similar to the decoder, but
it outputs a binary classification instead.

Fig. 3. Illustration of non-identity noise layers. JPEG-Mask and JPEG-Drop are dif-
ferentiable approximations of the JPEG compression (see Fig. 4). Top: Encoded image
Ien. Middle: Noised image Ino. Bottom: Magnified difference |Ien− Ino|. Even under
heavy distortion, such as a Crop layer which retains only 3.5% of the original image,
our model still learns to recover the watermark with high accuracy (see Sect. 4).

As we shall see, by varying message length L, image size C,H,W , noise layer
N and weight factors λI and λG, the network setup described above can be
adapted well to both steganography and watermarking. The specific choices will
be discussed in their respective experiments.

Noise Layers. Our model should be able to hide images robustly against a variety
of image distortions; for this reason we consider six different types of noise layers
which apply different types of image distortion. Examples of all distortion types
are shown in Fig. 3.

The Identity layer is the simplest: it leaves Ien unchanged. The Dropout
and Cropout layers undo some of the changes made by the encoder, producing
the noisy image Ino by combining pixels from the cover image Ico and the encoded
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image Ien. Both types of noise keep a percentage p of pixels from Ien and use
the rest from Ico, but Dropout makes this choice independently per pixel while
Cropout keeps a random square crop from Ien. The Gaussian layer blurs the
encoded image Ien with a Gaussian kernel of width σ, and the Crop layer
produces a random square H ′ × W ′ crop of the encoded image, where the ratio
of image sizes H′×W ′

H×W is p ∈ (0, 1). The JPEG layer applies JPEG compression
to Ien with quality factor Q ∈ (0, 100). Note that all non-identity noise layers
have a scalar hyperparameter governing the intensity of the distortion: Dropout,
Cropout, and Crop keep a fraction p of the pixels from Ien, Gaussian has a kernel
width σ; and JPEG has a quality factor Q.

We experiment with an extensive family of distortions for the noise layer, N .
Dropout, Crop and Cropout mainly affect the spatial domain, while Gaussian
and JPEG act on the frequency domain. Granting the noise layer access to the
cover image makes it more challenging as well. For an LSB algorithm, a noise
layer that replaces each tampered pixel with a fixed value is analogous to a binary
erasure channel, whereas a noise layer that replaces encoded pixels with original
pixels acts as a binary symmetric channel. It is harder to be robust against the
latter since the decoder has no information about where the tampering happens.
Similarly, not only does the crop layer require the decoder to be input size
agnostic, it also provides no information about where the H ′ × W ′ crop came
from, further limiting the knowledge of the decoder.

Fig. 4. JPEG compresses an image by performing a discrete cosine transform (DCT)
to give an 8 × 8 grid of frequency components (left) which are then quantized, with
higher frequency components quantized more aggressively (middle left; bright red sig-
nifies stronger quantization). The DCT transform can be implemented as a single 8
× 8 stride 8 convolution layer with 64 filters fixed to the DCT basis, but due to the
quantization step, JPEG compression is not differentiable. We therefore train models
using two differentiable approximations: JPEG-Mask (middle right) zeros a fixed set
of high-frequency coefficients, and JPEG-Drop (right) zeros channels with higher drop
probabilities for high-frequency coefficients. Models trained against either approxima-
tion perform well against true JPEG compression at test time; see Fig. 5.

“Differentiating” the JPEG compression. Although the network is trained with
gradient descent, we do not need the test-time noise to be differentiable. We
successfully obtain robustness against non-differentiable JPEG compression by
training on differentiable approximations. JPEG compression divides the image
into 8 × 8 regions, computes a discrete cosine transformation (DCT) within
each region (essentially a change of basis in R

64), then quantizes the resulting
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frequency-domain coefficients to different coarseness. Thus, only perceptually
relevant information is preserved [27]. The quantization step is non-differentiable,
rendering JPEG compression unfit for gradient-based optimization.

Nevertheless, quantizing a value is information-theoretically equivalent to
limiting the amount of information that can be transmitted through that “chan-
nel”. To limit the amount of information being passed through specific frequency
domain channels, we created noise layers that simulate the JPEG compression.
These layers apply the DCT transformation using an 8 × 8 stride 8 convolution
layer with each filter corresponding to a basis vector in the DCT transformation.
The network activations thus represent DCT domain coefficients of the encoded
image. Masking/Dropout is then applied to the DCT coefficients to limit infor-
mation flow; higher frequency coefficients are more likely to be masked/dropped,
see Fig. 4. The noised image Ino is then produced using a transpose convolution
to implement the inverse DCT transform.

Fig. 5. Bit accuracy for models trained with JPEG-Mask (blue, zero-masking on DCT
coefficients) / JPEG-Drop (red, dropout on DCT coefficients). When trained against
these approximations (dashed lines), both become robust against actual JPEG com-
pression (solid lines, quality Q = 50).

We call the corresponding layers JPEG-Mask and JPEG-Drop. JPEG-
Mask applies a fixed masking that only keeps 25 low frequency DCT coefficients
in the Y channel and 9 in the U, V channels (following JPEG, which also pre-
serves more information in the Y channel). The other coefficients are set to zero.
JPEG-Drop applies a progressive dropout on the coefficients. The coarser the
quantization for a coefficient in actual JPEG compression, the more likely this
coefficient is zeroed in our simulation. Both methods successfully produce models
that are robust against actual JPEG compression, see Fig. 5.

Implementation details. All models are trained on 10,000 cover images from the
COCO [28] training set, resized to experiment-specific dimensions. Evaluation
is performed on a 1000 image test set unseen during training. Messages are
sampled with each bit drawn uniformly at random. For gradient descent, we use
Adam [29] with a learning rate of 10−3 and default hyperparameters. All models
are trained with batch size 12. Models are trained for 200 epochs, or 400 epochs
if being trained on multiple noise layers.
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4 Experiments

We evaluate our model on three axes: capacity, the number of message bits which
can be hidden per image bit; secrecy, the difficulty of detecting our encoded
images; and robustness, the degree to which our method can succeed in the face
of image distortions.
Metrics. We use a number of metrics to measure our performance along these
axes. We measure capacity primarily with bits per pixel (BPP), which is the
number of message bits hidden per pixel of the encoded image; this is simply
L/(HWC) using the notation of Sect. 3. We measure secrecy primarily with
detection rate; we train a modern steganalyzer [30] which attempts to separate
cover from stego images; its test-set accuracy is the detection rate. As a proxy to
secrecy, we can also measure the image distortion between the cover and stego
image using peak signal-to-noise ratio (PSNR); methods which distort the
cover image more are likely to be more detectable. We measure robustness using
bit accuracy, which is the number of identical bits between the input message
M and the predicted message M ′, as we subject the model to varying image
distortions between the encoder and decoder during testing.

Many of these metrics compete against each other. Models which have higher
capacity typically sacrifice secrecy, since hiding more information in images nat-
urally leads to larger image distortions; models that are very robust to noise
typically sacrifice capacity or secrecy, since the message must be encoded in
the image redundantly. In some sense, steganography and watermarking are at
two ends of a spectrum of problems prioritizing these different axes; steganogra-
phy stresses secrecy while watermarking emphasizes robustness. Since HiDDeN
encompasses a whole family of data hiding algorithms, we can flexibly train mod-
els emphasizing different axes by the varying message length L, using different
noise layers, and so on.

4.1 Steganography: Capacity and Secrecy

We train our model to encode binary messages of length L = 52 in grayscale
images of size 16×16, giving our trained model a capacity of 52/(16×16) ≈ 0.203
BPP. For larger images, we use a longer message to preserve encoding capacity.
Our model encodes an L-bit chunk of the message on each 16 × 16 patch of the
image. Steganography typically assumes noiseless transmission, so we set N to
be the identity layer. We first compare with traditional methods [4,10,11] in
Fig. 6 and then with a neural-network-based approach [21] in Fig. 7.

Image quality We compare with three recent steganography methods: HUGO [4],
WOW [10], and S-UNIWARD [11]. Each is configured with a capacity of 0.2
BPP to closely match our model. We test all methods on 512×512 cover images
from the BOSS dataset [31], which is a common testbed for steganography algo-
rithms. Since our model was trained on COCO, this showcases its generality
to new data. Fig. 6 shows example cover and stego images from our method
and from HUGO (other classical baselines give results indistinguishable from
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HUGO). Both HUGO and our method generate encoded images which are visu-
ally indistinguishable from the cover image.

Capacity. Our model closely matches the baselines on BPP (0.203 vs 0.200).
One disadvantage of neural networks in steganography is the possibility for the
decoder network to make mistakes. As shown in Fig. 6, our method reconstructs
the message accurately but not perfectly, having an error rate of < 10−5. One
can use error correcting codes if higher accuracy is desired.

Secrecy. We measure secrecy by training the steganalyzer ATS [30] to distinguish
between cover and stego images for all methods; results are shown in Fig. 6. Fol-
lowing the recommendation of the authors for best performance [30], we provide
ATS with small datasets for each algorithm: 250 cover and 250 stego images.

ATS generates an eponymous artificial training set from this unlabeled test
set by repeatedly applying the steganography algorithm to the data, then uses
this artificial training set to train a supervised classifier. Finally, the trained
classifier is evaluated on its ability to recognize stego images in the test set.

Fig. 6. Top: Capacity and secrecy of HiDDeN versus classical steganography methods.
With comparable capacity to baselines as measured by bits per pixel and bit accuracy,
our method is undetectable (50%, no better than chance) by ATS under the assumption
that an adversary has access to the algorithm but not the trained model weights.
Bottom: Example of 512×512 encoded images. (a) Cover, (b) encoded by our method,
(c) encoded by HUGO [4]. (d), (e), (f) are 32 × 32 crops of (a), (b), (c).

For our model we evaluate two threat scenarios. We first train one encoder-
decoder pair and evaluate ATS assuming it has access to the learned model
directly. In this setting (model weights known), ATS achieves a detection accu-
racy of 98%, showing the susceptibility of our model to statistical analysis when
the precise weights are known. In the second threat scenario, we consider the case
where the attacker knows HiDDeN is being used (and furthermore, knows the
precise architecture, hyperparameters and dataset) but does not have access to
the trained model itself (which is not exactly reproducible without the random
seed used to initialize the parameters). To test this scenario, we train five iden-
tical HiDDeN models with different seeds and provide these models to ATS for
building its artificial training set. Finally, we train a sixth model with a new ran-
dom initialization for evaluation. When we test ATS on this sixth model (Ours –
different model), it achieves a detection accuracy of 50%, no better than random
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guessing. In comparison, ATS achieves detection accuracies of 70% for HUGO
and 68% for WOW and S-UNIWARD. This result shows that image distortion
patterns produced by each trained model are unique, which makes our approach
undetectable by ATS without access to the trained model directly. This hints at
an advantage of learned steganography models: unlike static classical algorithms,
they can employ a diverse set of encoding strategies.

Fig. 7. Comparison of our encoding method against [21]. We encode twice as many
bits in images of the same size, while having smaller decoding error and better encoded
image quality.

Against other neural network based methods. Compared to [21] which uses a
fully connected network to generate encoded images, our method uses convo-
lutional networks, greatly improving encoded image quality. Figure 7 compares
our results with [21]; at double their bit rate we achieve lower error and generate
images much closer to the cover image.

4.2 Watermarking: Robustness

Digital watermarking prioritizes robustness over capacity and secrecy; it hides
only a small message in the image, but that information should remain even
after significant distortions are applied to the encoded image. By varying the
type of image distortion applied at training time, we show that our model can
learn robustness to a variety of different image distortions.

We train our model on YUV color images of size C ×H ×W = 3×128×128
with message length L = 30 and weight factors λI = 0.7 and λG = 0.001. A
model is trained on the identity noise layer as reference. Six models are trained
using different noise layers N at training time: Dropout (p = 0.3), Cropout
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Fig. 8. Image distortions for watermarking algorithms. Top: Mean PSNR between
cover and encoded images for Digimarc and our model trained with different noise
layers. Bottom: A cover image and encoded images from both Digimarc and our
model trained with Crop, Gaussian, and Combined noise layers. Bottom Right: An
encoded image from a model trained with combined noise but without an adversary.
Adversarial training significantly improves the visual quality of the encoded images.

(p = 0.3), Crop (p = 0.035), Gaussian (σ = 2.0), JPEG-mask and JPEG-
drop. We call these types of noise-resistant models specialized models as they
are trained to be robust against a particular kind of noise. We additionally train
a noise-resistant combined model by using a different noise layer for each mini-
batch during training. See the supplementary materials for details.
Baseline. To the best of our knowledge, there are no open source implemen-
tations of recent methods for digital watermarking. As a baseline we compare
to Digimarc [32], a closed source commercial package for digital watermarking.
Since Digimarc is closed source, there are certain limitations when comparing
HiDDeN against it, especially for comparing transmission accuracy. Detailed
analysis and comparison methodology are provided in the appendix.

Qualitative Results. Figure 8 shows qualitative examples of 128 × 128 images
encoded with each of our trained models, as well as a 128 × 128 image encoded
with Digimarc. For each image we report the PSNR between the cover image Ico

and the encoded image Ien. We see that encoded images from our models are
visually indistinguishable from the cover image, and that we can train a single
model (Combined) that is simultaneously robust to all types of noise without
sacrificing image quality.

Adversary. Figure 8 also compares generated images of two models, one trained
with the adversary and the other trained without the adversary. Both models are
trained on the combined noise layer and tuned individually. The model trained
with l2 loss alone has visible artifacts, as shown in the rightmost image of Fig. 8.
The model trained against an adversarial discriminator produces images with
no visible artifacts (Fig. 8, second image from the right).
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Robustness. The intensity of an image distortion can be controlled with a scalar:
keep percentage p for Dropout, Cropout, and Crop, kernel width σ for Gaussian,
and quality Q for JPEG compression. Figure 9 shows the bit accuracy of models
when they are tested on various noise layers. For each tested noise layer, we
evaluate the model trained with the identity noise layer, i.e. no noise (blue),
the model trained on the same noise layer (orange), and the model trained
on combined noise layers (green). Bit accuracies are measured on 1000 images
unseen during training. Figure 10 reports bit accuracy as a function of test time
distortion intensity.

The model trained without noise unsurprisingly performs poorly when tested
against different noise layers, and fails completely (50% bit accuracy, no better
than chance) when tested on Crop and JPEG. Since this model enjoyed loss-
less transmission between the encoder and decoder during training, it has no
incentive to learn robustness to any type of image distortion.

Fig. 9. Robustness of our models against different test time distortions. Each cluster
uses a different test time distortion. Identity (blue) is trained with no image distortion;
Specialized (orange) is trained on the same type of distortion used during testing;
Combined (green) is trained on all types of distortions.

Fig. 10. Bit accuracy under various distortions and intensities. Stars denote the noise
intensity used during training. The specialized JPEG model is trained on the differen-
tiable approximation JPEG-Mask, and the plot shows performance on actual JPEG.

However, the high bit accuracies of the Specialized models (orange bars) in
Fig. 9 demonstrate that models can learn robustness to many different types of
image distortion when these distortions are introduced into the training process.



HiDDeN: Hiding Data With Deep Networks 695

This remains true even when the distortion is non-differentiable: Models trained
without noise have 50% bit accuracy when tested against true JPEG compres-
sion, but this improves to 85% when trained with simulated JPEG noise.

Finally, we see that in most cases the Combined model, which is trained on
all types of noise, is competitive with specialized models despite its increased
generality. For example, it achieves 94% accuracy against Cropout, close to the
97% accuracy of the specialized model.

Comparison with Digimarc. Digimarc is closed source, and it only reports success
or failure for decoding a fixed-size watermark. It provides no information about
its bit error rate, which makes comparing it with HiDDeN difficult.

To ensure a fair comparison, we first estimate the capacity of Digimarc,
and then apply an error correcting code that matches HiDDeN’s bit rate with
Digimarc. This also allows us to converts bit accuracy to decode success rate
since a few errors can be corrected (see Appendix B for full methodology). From
this analysis, we consider ≥ 95% bit accuracy for our model to be comparable to
a successful Digimarc decoding, and ≤ 90% bit accuracy to be a failed decoding.

Fig. 11. Model performance under different distortions and intensities. We compare
the model trained with no noise (blue), models specialized to a particular distortion
(orange), and a Combined model trained on all distortion types (green). We also show
Digimarc’s decoding success rate for 256×256 images (purple). The two axes are scaled
to translate bit accuracy into full reconstruction rate. See Appendix B for detail.

We report the comparison in Fig. 11, with the y-axis clipped according to
our analysis. For spatial domain noise, our model exceeds the performance of
Digimarc at high noise intensities. Against Dropout (p = 0.1), our specialized
model has bit accuracy ≥95%, yet Digimarc fails completely. Against Crop (p =
0.1), both the specialized and combined models have bit accuracy ≥ 95%, but
Digimarc cannot reconstruct any of the ten watermarks tested. For frequency
domain noise, our model performs worse than Digimarc. This is likely due to
the fact that we baked no assumptions about frequency domain transformations
into the architecture, whereas watermarking tools commonly work directly in
the frequency domain.
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5 Conclusion

We have developed a framework for data hiding in images which is trained end-
to-end using neural networks. Compared to classical data hiding methods, ours
allows flexibly trading off between capacity, secrecy, and robustness to different
types of noise by varying parameters or noise layers at training-time. Compared
to deep learning methods for steganography, we demonstrate improved quan-
titative and qualitative performance. For robust watermarking, HiDDeN is to
our knowledge the first end-to-end method using neural networks. Ultimately,
end-to-end methods like HiDDeN have a fundamental advantage in robust data-
hiding: new distortions can be incorporated directly into the training procedure,
with no need to design new, specialized algorithms. In future work, we hope to
see improvements in message capacity, robustness to more diverse types of image
distortions – such as geometric transforms, contrast change, and other lossy com-
pression schemes – and procedures for data hiding in other input domains, such
as audio and video.

Acknowledgements. Our work is supported by an ONR MURI grant. We would
like to thank Ehsan Adeli, Rishi Bedi, Jim Fan, Kuan Fang, Adithya Ganesh, Agrim
Gupta, De-An Huang, Ranjay Krishna, Damian Mrowca, Ben Zhang and anonymous
reviewers for their feedback on our work.

References

1. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

2. Szegedy, C. et al.: Intriguing properties of neural networks. In: ICLR (2014)
3. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.

In: ICLR Workshop (2017)
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