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Abstract. We present a learning framework for recovering the 3D
shape, camera, and texture of an object from a single image. The shape is
represented as a deformable 3D mesh model of an object category where
a shape is parameterized by a learned mean shape and per-instance pre-
dicted deformation. Our approach allows leveraging an annotated image
collection for training, where the deformable model and the 3D predic-
tion mechanism are learned without relying on ground-truth 3D or multi-
view supervision. Our representation enables us to go beyond existing 3D
prediction approaches by incorporating texture inference as prediction of
an image in a canonical appearance space. Additionally, we show that
semantic keypoints can be easily associated with the predicted shapes.
We present qualitative and quantitative results of our approach on CUB
and PASCAL3D datasets and show that we can learn to predict diverse
shapes and textures across objects using only annotated image collec-
tions. The project website can be found at https://akanazawa.github.io/
cmr/.

1 Introduction

Consider the image of the bird in Fig. 1. Even though this flat two-dimensional
picture printed on a page may be the first time we are seeing this particular
bird, we can infer its rough 3D shape, understand the camera pose, and even
guess what it would look like from another view. We can do this because all the
previously seen birds have enabled us to develop a mental model of what birds
are like, and this knowledge helps us to recover the 3D structure of this novel
instance.

In this work, we present a computational model that can similarly learn to
infer a 3D representation given just a single image. As illustrated in Fig. 1,
the learning only relies on an annotated 2D image collection of a given object
category, comprising of foreground masks and semantic keypoin t labels. Our
training procedure, depicted in Fig. 2, forces a common prediction model to
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explain all the image evidences across many examples of an object category.
This allows us to learn a meaningful 3D structure despite only using a single-
view per training instance, without relying on any ground-truth 3D data for
learning.

Fig. 1. Given an annotated image collection of an object category, we learn a predictor
f that can map a novel image I to its 3D shape, camera pose, and texture.

At inference, given a single unannotated image of a novel instance, our
learned model allows us to infer the shape, camera pose, and texture of the
underlying object. We represent the shape as a 3D mesh in a canonical frame,
where the predicted camera transforms the mesh from this canonical space to
the image coordinates. The particular shape of each instance is instantiated
by deforming a learned category-specific mean shape with instance-specific pre-
dicted deformations. The use of this shared 3D space affords numerous advan-
tages as it implicitly enforces correspondences across 3D representations of dif-
ferent instances. As we detail in Sect. 2, this allows us to formulate the task
of inferring mesh texture of different objects as that of predicting pixel values
in a common texture representation. Furthermore, we can also easily associate
semantic keypoints with the predicted 3D shapes.

Our shape representation is an instantiation of deformable models, the his-
tory of which can be traced back to Thompson [29], who in turn was inspired
by the work of Dürer [6]. Thompson observed that shapes of objects of the same
category may be aligned through geometrical transformations. Cootes and Tay-
lor [5] operationalized this idea to learn a class-specific model of deformation for
2D images. Pioneering work of Blanz and Vetter [2] extended these ideas to 3D
shapes to model the space of faces. These techniques have since been applied to
model human bodies [1,19], hands [17,27], and more recently on quadruped ani-
mals [40]. Unfortunately, all of these approaches require a large collection of 3D
data to learn the model, preventing their application to categories where such
data collection is impractical. In contrast, our approach is able to learn using
only an annotated image collection.

Sharing our motivation for relaxing the requirement of 3D data to learn
morphable models, some related approaches have examined the use of similarly
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annotated image collections. Cashman and Fitzgibbon [3] use keypoint corre-
spondences and segmentation masks to learn a morphable model of dolphins
from images. Kar et al. [15] extend this approach to general rigid object cate-
gories. Both approaches follow a fitting-based inference procedure, which relies
on mask (and optionally keypoint) annotations at test-time and is computa-
tionally inefficient. We instead follow a prediction-based inference approach, and
learn a parametrized predictor which can directly infer the 3D structure from an
unannotated image. Moreover, unlike these approaches, we also address the task
of texture prediction which cannot be easily incorporated with these methods.

While deformable models have been a common representation for 3D infer-
ence, the recent advent of deep learning based prediction approaches has resulted
in a plethora of alternate representations being explored using varying forms
of supervision. Relying on ground-truth 3D supervision (using synthetic data),
some approaches have examined learning voxel [4,8,33,39], point cloud [7] or
octree [10,26] prediction. While some learning based methods do pursue mesh
prediction [14,18,24,35], they also rely on 3D supervision which is only avail-
able for restricted classes or in a synthetic setting. Reducing the supervision to
multi-view masks [9,21,30,34] or depth images [30] has been explored for voxel
prediction, but the requirement of multiple views per instance is still restrictive.
While these approaches show promising results, they rely on stronger supervision
(ground-truth 3D or multi-view) compared to our approach.

In the context of these previous approaches, the proposed approach differs
primarily in three aspects:

– Shape representation and inference method. We combine the benefits of the
classically used deformable mesh representations with those of a learning
based prediction mechanism. The use of a deformable mesh based repre-
sentation affords several advantages such as memory efficiency, surface-level
reasoning and correspondence association. Using a learned prediction model
allows efficient inference from a single unannotated image

– Learning from an image collection. Unlike recent CNN based 3D prediction
methods which require either ground-truth 3D or multi-view supervision, we
only rely on an annotated image collection, with only one available view per
training instance, to learn our prediction model.

– Ability to infer texture. There is little past work on predicting the 3D
shape and the texture of objects from a single image. Recent prediction-
based learning methods use representations that are not amenable to textures
(e.g. voxels). The classical deformable model fitting-based approaches cannot
easily incorporate texture for generic objects. An exception is texture infer-
ence on human faces [2,22,23,28], but these approaches require a large-set of
3D ground truth data with high quality texture maps. Our approach enables
us to pursue the task of texture inference from image collections alone, and
we address the related technical challenges regarding its incorporation in a
learning framework.
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2 Approach

We aim to learn a predictor fθ (parameterized as a CNN) that can infer the 3D
structure of the underlying object instance from a single image I. The prediction
fθ(I) is comprised of the 3D shape of the object in a canonical frame, the asso-
ciated texture, as well as the camera pose. The shape representation we pursue
in this work is of the form of a 3D mesh. This representation affords several
advantages over alternates like probabilistic volumetric grids e.g. amenability to
texturing, correspondence inference, surface level reasoning and interpretability.

The overview of the proposed framework is illustrated in Fig. 2. The input
image is passed through an encoder to a latent representation that is shared by
three modules that estimate the camera pose, shape deformation, and texture
parameters. The deformation is added to the learned category-level mean shape
to obtain the final predicted shape. The objective of the network is to minimize
the corresponding losses when the shape is rendered onto the image. We train a
separate model for each object category.

Fig. 2. Overview of the proposed framework. An image I is passed through
a convolutional encoder to a latent representation that is shared by modules that
estimate the camera pose, deformation and texture parameters. Deformation is an
offset to the learned mean shape, which when added yield instance specific shapes in a
canonical coordinate frame. We also learn correspondences between the mesh vertices
and the semantic keypoints. Texture is parameterized as an UV image, which we predict
through texture flow (see Sect. 2.3). The objective is to minimize the distance between
the rendered mask, keypoints and textured rendering with the corresponding ground
truth annotations. We do not require ground truth 3D shapes or multi-view cues for
training.

We first present the representations predicted by our model in Sect. 2.1,
and then describe the learning procedure in Sect. 2.2. We initially present our
framework for predicting shape and camera pose, and then describe how the
model is extended to predict the associated texture in Sect. 2.3.

2.1 Inferred 3D Representation

Given an image I of an instance, we predict fθ(I) ≡ (M,π), a mesh M and
camera pose π to capture the 3D structure of the underlying object. In addition



390 A. Kanazawa et al.

to these directly predicted aspects, we also learn the association between the
mesh vertices and the category-level semantic keypoints. We describe the details
of the inferred representations below.

Shape Parametrization. We represent the shape as a 3D mesh M ≡ (V, F ),
defined by vertices V ∈ R

|V |×3 and faces F . We assume a fixed and pre-
determined mesh connectivity, and use the faces F corresponding to a spher-
ical mesh. The vertex positions V are instantiated using (learned) instance-
independent mean vertex locations V̄ and instance-dependent predicted defor-
mations ΔV , which when added, yield instance vertex locations V = V̄ + ΔV .
Intuitively, the mean shape V̄ can be considered as a learnt bias term for the
predicted shape V .

Camera Projection. We model the camera with weak-perspective projection
and predict, from the input image I, the scale s ∈ R, translation t ∈ R

2, and
rotation (captured by quaternion q ∈ R

4). We use π(P ) to denote the projection
of a set of 3D points P onto the image coordinates via the weak-perspective
projection defined by π ≡ (s, t,q).

Associating Semantic Correspondences. As we represent the shape using
a category-specific mesh in the canonical frame, the regularities across instances
encourage semantically consistent vertex positions across instances, thereby
implicitly endowing semantics to these vertices. We can use this insight and learn
to explicitly associate semantic keypoints e.g., beak, legs etc. with the mesh via
a keypoint assignment matrix A ∈ R+

|K|×|V | s.t.
∑

v Ak,v = 1. Here, each row
Ak represents a probability distribution over the mesh vertices of corresponding
to keypoint k, and can be understood as approximating a one-hot vector of ver-
tex selection for each keypoint. As we describe later in our learning formulation,
we encourage each Ak to be a peaked distribution. Given the vertex positions
V, we can infer the location vk for the kth keypoint as vk =

∑
v Ak,vv. More

concisely, the keypoint locations induced by vertices V can be obtained as A ·V .
We initialize the keypoint assignment matrix A uniformly, but over the course of
training it learns to better associate semantic keypoints with appropriate mesh
vertices.

In summary, given an image I of an instance, we predict the correspond-
ing camera π and the shape deformation ΔV as (π,ΔV ) = f(I). In addition,
we also learn (across the dataset), instance-independent parameters {V̄ , A}. As
described above, these category-level (learned) parameters, in conjunction with
the instances-specific predictions, allow us to recover the mesh vertex locations
V and coordinates of semantic keypoints A · V .

2.2 Learning from an Image Collection

We present an approach to train fθ without relying on strong supervision in
the form of ground truth 3D shapes or multi-view images of an object instance.
Instead, we guide the learning from an image collection annotated with sparse
keypoints and segmentation masks. Such a setting is more natural and easily
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obtained, particularly for animate and deformable objects such as birds or ani-
mals. It is extremely difficult to obtain scans, or even multiple views of the
same instance for these classes, but relatively easier to acquire a single image for
numerous instances.

Given the annotated image collection, we train fθ by formulating an objective
function that consists of instance specific losses and priors. The instance-specific
energy terms ensure that the predicted 3D structure is consistent with the avail-
able evidence (masks and keypoints) and the priors encourage generic desired
properties e.g. smoothness. As we learn a common prediction model fθ across
many instances, the common structure across the category allows us to learn
meaningful 3D prediction despite only having a single-view per instance.

Training Data. We assume an annotated training set {(Ii, Si, xi)}N
i=1 for each

object category, where Ii is the image, Si is the instance segmentation, and
xi ∈ R

2×K is the set of K keypoint locations. As previously leveraged by [15,31],
applying structure-from-motion to the annotated keypoint locations additionally
allows us to obtain a rough estimate of the weak-perspective camera π̃i for each
training instance. This results in an augmented training set {(Ii, Si, xi, π̃i)}N

i=1,
which we use for training our predictor fθ.

Instance Specific Losses. We ensure that the predicted 3D structure matches
the available annotations. Using the semantic correspondences associated to the
mesh via the keypoint assignment matrix A, we formulate a keypoint reprojection
loss. This term encourages the predicted 3D keypoints to match the annotated
2D keypoints when projected onto the image:

Lreproj =
∑

i

||xi − π̃i(AVi)||2. (1)

Similarly, we enforce that the predicted 3D mesh, when rendered in the image
coordinates, is consistent with the annotated foreground mask: Lmask =

∑
i ||Si−

R(Vi, F, π̃i)||2. Here, R(V, F, π) denotes a rendering of the segmentation mask
image corresponding to the 3D mesh M = (V, F ) when rendered through camera
π. In all of our experiments, we use Neural Mesh Renderer [16] to provide a
differentiable implementation of R(·).

We also train the predicted camera pose to match the corresponding estimate
obtained via structure-from-motion using a regression loss Lcam =

∑
i ||π̃i −πi||2.

We found it advantageous to use the structure-from-motion camera π̃i, and not
the predicted camera πi, to define Lmask and Lreproj losses. This is because during
training, in particular the initial stages when the predictions are often incorrect,
an error in the predicted camera can lead to high errors despite accurate shape,
and possibly adversely affect learning.

Priors. In addition to the data-dependent losses which ensure that the pre-
dictions match the evidence, we leverage generic priors to encourage additional
properties. The prior terms that we use are:
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Smoothness. In the natural world, shapes tend to have a smooth surface and
we would like our recovered 3D shapes to behave similarly. An advantage of
using a mesh representation is that it naturally affords reasoning at the surface
level. In particular, enforcing smooth surface has been extensively studied by the
Computer Graphics community [20,25]. Following the literature, we formulate
surface smoothness as minimization of the mean curvature. On meshes, this is
captured by the norm of the graph Laplacian, and can be concisely written
as Lsmooth = ||LV ||2, where L is the discrete Laplace-Beltrami operator. We
construct L once using the connectivity of the mesh and this can be expressed
as a simple linear operator on vertex locations. See appendix for details.

Deformation Regularization. In keeping with a common practice across
deformable model approaches [2,3,15], we find it beneficial to regularize the
deformations as it discourages arbitrarily large deformations and helps learn
a meaningful mean shape. The corresponding energy term is expressed as
Ldef = ||ΔV ||2.
Keypoint Association. As discussed in Sect. 2.1, we encourage the keypoint
assignment matrix A to be a peaked distribution as it should intuitively cor-
respond to a one-hot vector. We therefore minimize the average entropy over all
keypoints: Lvert2kp = 1

|K|
∑

k

∑
v −Ak,v log Ak,v.

In summary, the overall objective for shape and camera is

L = Lreproj + Lmask + Lcam + Lsmooth + Ldef + Lvert2kp. (2)

Symmetry Constraints. Almost all common object categories, including the
ones we consider, exhibit reflectional symmetry. To exploit this structure, we
constrain the predicted shape and deformations to be mirror-symmetric. As our
mesh topology corresponds to that of a sphere, we identify symmetric vertex
pairs in the initial topology. Given these pairs, we only learn/predict parameters
for one vertex in each pair for the mean shape V̄ and deformations ΔV . See
appendix for details.

Initialization and Implementation Details. While our mesh topology
corresponds to a sphere, following previous fitting based deformable model
approaches [15], we observe that a better initialization of the mean vertex posi-
tions V̄ speeds up learning. We compute the convex hull of the mean keypoint
locations obtained during structure-from-motion and initialize the mean vertex
locations to lie on this convex hull – the procedure is described in more detail in
the appendix. As the different energy terms in Eq. (2) have naturally different
magnitudes, we weight them accordingly to normalize their contribution.
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2.3 Incorporating Texture Prediction

Fig. 3. Illustration of the UV map-
ping. We illustrate how a texture
image Iuv can induce a correspond-
ing texture on the predicted meshes.
A point on a sphere can be mapped
onto the image Iuv via using spheri-
cal coordinates. As our mean shape has
the same mesh geometry (vertex con-
nectivity) as a sphere we can transfer
this mapping onto the mean shape. The
different predicted shapes, in turn, are
simply deformations of the mean shape
and can use the same mapping.

In our formulation, all recovered shapes
share a common underlying 3D mesh
structure – each shape is a deformation
of the mean shape. We can leverage this
property to reduce texturing of a partic-
ular instance to predicting the texture of
the mean shape. Our mean shape is iso-
morphic to a sphere, whose texture can
be represented as an image Iuv, the val-
ues of which get mapped onto the surface
via a fixed UV mapping (akin to unrolling
a globe into a flat map) [13]. Therefore,
we formulate the task of texture predic-
tion as that of inferring the pixel values
of Iuv. This image can be thought of as a
canonical appearance space of the object
category. For example, a particular trian-
gle on the predicted shape always maps
to a particular region in Iuv, irrespective
of how it was deformed. This is illustrated
in Fig. 3. In this texture parameterization,
each pixel in the UV image has a consis-
tent semantic meaning, thereby making it easier for the prediction model to
leverage common patterns such as correlation between the bird back and the
body color.

We incorporate texture prediction module into our framework by setting up
a decoder that upconvolves the latent representation to the spatial dimension
of Iuv. While directly regressing the pixel values of Iuv is a feasible approach,
this often results in blurry images. Instead, we take inspiration from [38] and
formulate this task as that of predicting the appearance flow. Instead of regress-
ing the pixel values of Iuv, the texture module outputs where to copy the color
of the pixel from the original input image. This prediction mechanism, depicted
in Fig. 4, easily allows our predicted texture to retain the details present in the
input image. We refer to this output as ‘texture flow’ F ∈ R

Huv×Wuv×2, where
Huv,Wuv are the height and width of Iuv, and F(u, v) indicates the (x, y) coor-
dinates of the input image to sample the pixel value from. This allows us to
generate the UV image Iuv = G(I;F) by bilinear sampling G of the original
input image I according to the predicted flow F . This is illustrated in Fig. 4.

Now we formulate our texture loss, which encourages the rendered texture
image to match the foreground image:

Ltexture =
∑

i

dist(Si � Ii, Si � R(Vi, F, π̃i, I
uv)). (3)
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Fig. 4. Illustration of texture flow. We predict a texture flow F that is used to
bilinearly sample the input image I to generate the texture image Iuv. We can use
this predicted UV image Iuv to then texture the instance mesh via the UV mapping
procedure illustrated in Fig. 3.

R(Vi, F, π̃i, I
uv
i ) is the rendering of the 3D mesh with texture defined by Iuv.

We use the perceptual metric of Zhang et al. [37] as the distance metric.
The loss function above provides supervisory signals to regions of Iuv cor-

responding to the foreground portion of the image, but not to other regions of
Iuv corresponding to parts that are not directly visible in the image. While the
common patterns across the dataset e.g. similar colors for bird body and back
can still allow meaningful prediction, we find it helpful to add a further loss that
encourages the texture flow to select pixels only from the foreground region in
the image. This can be simply expressed by sampling the distance transform field
of the foreground mask DS (where for all points x in the foreground, DS(x) = 0)
according to F and summing the resulting image:

Ldt =
∑

i

∑

u,v

G(DSi
;Fi)(u, v). (4)

In contrast to inferring the full texture map, directly sampling the actual pixel
values that the predicted mesh projects onto creates holes and leaking of the
background texture at the boundaries. Similarly to the shape parametrization,
we also explicitly encode symmetry in our Iuv prediction, where symmetric faces
gets mapped on to the same UV coordinate in Iuv. Additionally, we only back-
propagate gradients from Ltexture to the predicted texture (and not the pre-
dicted shape) since bilinear sampling often results in high-frequency gradients
that destabilize shape learning. Our shape prediction is therefore learned only
using the objective in Eq. (2), and the losses Ltexture and Ldt can be viewed as
encouraging prediction of correct texture ‘on top’ of the learned shape.

3 Experiments

We demonstrate the ability of our presented approach to learn single-view infer-
ence of shape, texture and camera pose using only a category-level annotated
image collection. As a running example, we consider the ‘bird’ object category
as it represents a challenging scenario that has not been addressed via previous
approaches. We first present, in Sect. 3.1, our experimental setup, describing the
annotated image collection and CNN architecture used.
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As ground-truth 3D is not available for benchmarking, we present extensive
qualitative results in Sect. 3.2, demonstrating that we learn to predict meaningful
shapes and textures across birds. We also show we capture the shape deformation
space of the category and that the implicit correspondences in the deformable
model allow us to have applications like texture transfer across instances.

We also present some quantitative results to provide evidence for the accuracy
of our shape and camera estimates in Sect. 3.3. While there has been little
work for reconstructing categories like birds, some approaches have examined
the task of learning shape prediction using an annotated image collection for
some rigid classes. In Sect. 3.4 we present our method’s results on some additional
representative categories, and show that our method performs comparably, if not
better than the previously proposed alternates while having several additional
advantages e.g. learning semantic keypoints and texture prediction.

3.1 Experimental Setup

Dataset. We use the CUB-200-2011 dataset [32], which has 6000 training and
test images of 200 species of birds. Each image is annotated with the bounding
box, visibility indicator and locations of 14 semantic keypoints, and the ground
truth foreground mask. We filter out nearly 300 images where the visible number
of keypoints are less than or equal to 6, since these typically correspond to
truncated close shots. We divide the test set in half to create a validation set,
which we use for hyper-parameter tuning.

Network Architecture. A schematic of the various modules of our prediction
network is depicted in Fig. 2. The encoder consists of an ImageNet pretrained
ResNet-18 [12], followed by a convolutional layer that downsamples the spatial
and the channel dimensions by half. This is vectorized to form a 4096-D vector,
which is sent to two fully-connected layers to get to the shared latent space of size
200. The deformation and the camera prediction components are linear layers on
top of this latent space. The texture flow component consists of 5 upconvolution
layers where the final output is passed through a tanh function to keep the
flow in a normalized [−1, 1] space. We use the neural mesh renderer [16] so all
rendering procedures are differentiable. All images are cropped using the instance
bounding box and resized such that the maximum image dimension is 256. We
augment the training data on the fly by jittering the scale and translation of
the bounding box and with image mirroring. Our mesh geometry corresponds
to that of a perfectly symmetric sphere with 642 vertices and 1280 faces.

3.2 Qualitative Results

We visualize the results and application of our learned predictor using the
CUB dataset. We show various reconstructions corresponding to different input
images, visualize some of the deformation modes learned, and show that the
common deformable model parametrization allows us to transfer the texture of
one instance onto another.
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Fig. 5. Sample results. We show predictions of our approach on images from the
test set. For each input image on the left, we visualize (in order): the predicted 3D
shape and texture viewed from the predicted camera, and textured shape from three
novel viewpoints. See the appendix for additional randomly selected results and video
at https://akanazawa.github.io/cmr/.

https://akanazawa.github.io/cmr/
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Single-View 3D Reconstruction. We show sample reconstruction results on
images from the CUB test set in Fig. 5. We show the predicted shape and
texture from the inferred camera viewpoint, as well as from novel views. Please
see appendix for additional randomly selected samples and videos showing the
results from 360 views.

We observe that our learned model can accurately predict the shape, esti-
mate the camera and also infer meaningful texture from the corresponding input
image. Our predicted 3D shape captures the overall shape (fat or thin birds),
and even some finer details e.g. beaks or large deformations e.g. flying birds.
Additionally, our learned pose and texture prediction are accurate and realis-
tic across different instances. We observe that the error modes corresponds to
not predicting rare poses, and inability to incorporate asymmetric articulation.
However, we feel that these predictions learned using only an annotated image
collection are encouraging.

Fig. 6. Learned deformation
modes. We visualize the space of
learned shapes by depicting the
mean shape (centre) and three
common modes of deformation as
obtained by PCA on the predicted
deformations across the dataset.

Learned Shape Space. The presented app-
roach represents the shape of an instance via
a category-level learned mean shape and a
per-instance predicted deformation ΔV . To
gain insight into the common modes of defor-
mation captured via our predictor, obtained
the principal deformation modes by com-
puting PCA on the predicted deformations
across all instances in the training set.

We visualize in Fig. 6 our mean shape
deformed in directions corresponding three
common deformation modes. We note that
these plausibly correspond to some of the
natural factors of variation in the 3D struc-
ture across birds e.g. fat or thin birds, open-
ing of wings, deformation of tails and legs.

Texture Transfer. Recall that the textures of different instance in our formu-
lation are captured in a canonical appearance space in the form of a predicted
‘texture image’ Iuv. This parametrization allows us to easily modify the surface
appearance, and in particular transfer texture across instances.

We show some results in Fig. 7 where we sample pairs of instances, and
transfer the texture from one image onto the predicted shape of the other. We
can achieve this by simply using the predicted texture image corresponding to
the first when rendering the predicted 3D for the other. We note that even though
the two views might be different, since the underlying ‘texture image’ space is
consistent, the transferred texture is also semantically consistent e.g. the colors
corresponding to the one bird’s body are transferred onto the other bird’s body.



398 A. Kanazawa et al.

Fig. 7. Texture Transfer Results. Our representation allows us to easily transfer
the predicted texture across instances using the canonical appearance image (see text
for details). We visualize sample results of texture transfer across different pairs of
birds. For each pair, we show (left): the input image, (middle): the predicted textured
mesh from the predicted viewpoint, and (right): the predicted mesh textured using the
predicted texture of the other bird.

3.3 Quantitative Evaluation

We attempt to indirectly measure the quality of our recovered reconstructions
on the CUB dataset. As there is no ground-truth 3D available for benchmarking,
we instead evaluate the mask reprojection accuracy. For each test instance in the
CUB dataset, we obtain a mask prediction via rendering the predicted 3D shape
from the predicted camera viewpoint. We then compute the intersection over
union (IoU) of this predicted mask with the annotated ground-truth mask. Note
that to correctly predict the foreground mask, we need both, accurate shape and
accurate camera.

Our results are plotted in Fig. 8. We compare the accuracy our full shape
prediction (using learned mean shape V̄ and predicted deformation ΔV ) against
only using the learned mean shape to obtain the predicted mask. We observe
that the predicted deformations result in improvements, indicating that we are
able to capture the specifics of the shape of different instances. Additionally,
we also report the performance using the camera obtained via structure from
motion (which uses ground-truth annotated keypoints) instead of using the pre-
dicted camera. We note that comparable results in the two settings demonstrate
the accuracy of our learned camera estimation. Lastly, we can also measure our
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Fig. 8. Mask reprojection accuracy
evaluation on CUB. We plot the frac-
tion of test instances with IoU between the
predicted and ground-truth mask higher
than different thresholds (higher is better)
and compare the predictions using the full
model against only using the learned mean
shape. We report the reprojection accu-
racy using predicted cameras and cameras
obtained via structure-from-motion based
on keypoint annotation.

Table 1. Reconstruction evalu-
ation using PASCAL 3D+. We
report the mean intersection over union
(IoU) on PASCAL 3D+ to bench-
mark the obtained 3D reconstruc-
tions (higher is better). We compare
to previous deformable model fitting-
based [15] and volumetric prediction
[30] approaches that use similar image
collection supervision. Note that our
approach can additionally predict tex-
ture and semantics

Method Aeroplane Car

CSDM [15] 0.40 0.60

DRC [30] 0.42 0.67

Ours 0.46 0.64

keypoint reprojection accuracy using the percentage of correct keypoints (PCK)
metric [36]. We similarly observe that our full predicted shape performs (slightly)
better than only relying on the category-level mean shape – by obtaining a PCK
(at normalized distance threshold 0.1) of 0.81 compared to 0.80. The improve-
ment over the mean shape is less prominent in this scenario as most of the
semantic keypoints defined are on the torso and therefore typically undergo only
small deformations.

3.4 Evaluation on Other Object Classes

While our primary results focus on predicting the 3D shape and texture of birds
using the CUB dataset, we note that some previous approaches have examined
the task of shape inference/prediction using a similar annotated image collec-
tion as supervision. While these previous methods do not infer texture, we can
compare our shape predictions against those obtained by these techniques.

We compare to previous deformable model fitting-based [15] and volumet-
ric prediction [30] methods using the PASCAL 3D+ dataset and examine the
car and aeroplane categories. Both of these approaches can leverage the annota-
tion we have available i.e. segmentation masks and keypoints to learn 3D shape
inference (although [30] requires annotated cameras instead of keypoints). Sim-
ilar to [30], we use PASCAL VOC and Imagenet images with available keypoint
annotations from PASCAL3D+ to train our model, and use an off-the shelf seg-
mentation algorithm [11] to obtain foreground masks for the ImageNet subset.
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Fig. 9. Pascal 3D+ results. We show predictions of our approach on images from
the test set. For each input image on the left, we visualize (in order): the predicted
3D shape viewed from the predicted camera, the predicted shape with texture viewed
from the predicted camera, and the shape with texture viewed from a novel viewpoint.

We report the mean IoU evaluation on the test set in Table 1 and observe
that we perform comparably, if not better than these alternate methods. We
also note that our approach yields additional outputs e.g. texture, that these
methods do not. We visualize some predictions in Fig. 9. While our predicted
shapes are often reasonable, the textures have more errors due to shiny regions
(e.g. for cars) or smaller amount of training data (e.g. for aeroplanes).

4 Discussion

We have presented a framework for learning single-view prediction of a textured
3D mesh using an image collection as supervision. While our results represent
an encouraging step, we have by no means solved the problem in the general
case, and a number of interesting challenges and possible directions remain.
Our formulation addresses shape change and articulation via a similar shape
deformation mechanism, and it may be beneficial to extend our deformable shape
model to explicitly allow articulation. Additionally, while we presented a method
to synthesize texture via copying image pixels, a more sophisticated mechanism
that allows both, copying image content and synthesizing novel aspects might be
desirable. Finally, even though we can learn using only a single-view per training
instance, our approach may be equally applicable, and might yield perhaps even
better results, for the scenario where multiple views per training instance are
available. However, on the other end of the supervision spectrum, it would be
desirable to relax the need of annotation even further, and investigate learning
similar prediction models using unannotated image collections.
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10. Häne, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3d object recon-

struction. In: 3DV (2017)
11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.

In: ECCV (2016)
13. Hughes, J.F., Foley, J.D.: Computer graphics: principles and practice. Pearson

Education (2014)
14. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human

shape and pose. In: CVPR (2018)
15. Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction

from a single image. In: CVPR (2015)
16. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: CVPR (2018)
17. Khamis, S., Taylor, J., Shotton, J., Keskin, C., Izadi, S., Fitzgibbon, A.: Learning

an efficient model of hand shape variation from depth images. In: CVPR (2015)
18. Laine, S., Karras, T., Aila, T., Herva, A., Saito, S., Yu, R., Li, H., Lehtinen,

J.: Production-level facial performance capture using deep convolutional neural
networks. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2017)

19. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A
skinned multi-person linear model. ACM Trans. Graph. (Proceedings SIGGRAPH
Asia) (2015)

20. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates.
Exp. Math. (1993)

21. Rezende, D.J., Eslami, S.A., Mohamed, S., Battaglia, P., Jaderberg, M., Heess, N.:
Unsupervised learning of 3D structure from images. In: NIPS (2016)

22. Saito, S., Wei, L., Hu, L., Nagano, K., Li, H.: Photorealistic facial texture inference
using deep neural networks. In: CVPR (2017)

23. Sela, M., Richardson, E., Kimmel, R.: Unrestricted facial geometry reconstruction
using image-to-image translation. In: ICCV (2017)

24. Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: Surfnet: Generating 3d shape
surfaces using deep residual networks. In: CVPR (2017)

25. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Lapla-
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