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Abstract. Optical flow estimation in rainy scenes is challenging due to
degradation caused by rain streaks and rain accumulation, where the
latter refers to the poor visibility of remote scenes due to intense rain-
fall. To resolve the problem, we introduce a residue channel, a single
channel (gray) image that is free from rain, and its colored version, a
colored-residue image. We propose to utilize these two rain-free images
in computing optical flow. To deal with the loss of contrast and the
attendant sensitivity to noise, we decompose each of the input images
into a piecewise-smooth structure layer and a high-frequency fine-detail
texture layer. We combine the colored-residue images and structure lay-
ers in a unified objective function, so that the estimation of optical flow
can be more robust. Results on both synthetic and real images show
that our algorithm outperforms existing methods on different types of
rain sequences. To our knowledge, this is the first optical flow method
specifically dealing with rain. We also provide an optical flow dataset
consisting of both synthetic and real rain images.
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1 Introduction

Optical flow methods have been developed for many decades [7,16,22,32,35,37]
and achieved significant results in terms of accuracy and robustness[1,17,29,31,
39,42]. They are shown to generally work when applied to outdoor scenes in
clear daylight, but tend to be erroneous in bad weather. In particular, of all
the bad weather conditions, rain has the most marked detrimental impact on
performance [28]. To our knowledge, no methods have been proposed to handle
optical flow estimation in rainy scenes. Addressing this problem is important,
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First Frame EpicFlow [31] DCFlow [42] FlowNet2 [17] Ours

Fig. 1. Optical flow estimation from heavy rain images with a static background and
a few moving vehicles. Top: Purple and yellow colors indicate upward and downward
motions, respectively. Bottom: Focusing on the estimated flow of the downward mov-
ing vehicle. Our estimation is more robust to rain than those of existing methods.
Note, the rain streaks and rain accumulation can be observed by zooming in the input
images.

since more and more vision systems are deployed in outdoor scenes, and rain is an
inevitable natural phenomenon or even an everyday occurrence in some regions
of the world. In this paper, we develop an optical flow algorithm that can handle
heavy rain with apparent rain streaks and a fog-like rain accumulation effect.

The challenge of estimating optical flow in rainy scenes can be categorized
into two problems. One problem refers to rain streaks, which due to their
dynamic nature, appear in different locations from frame to frame, thus causing
violation to the brightness constancy constraint (BCC) and the gradient con-
stancy constraint (GCC). The other problem refers to rain-streak accumulation,
where rain streaks are accumulated along the line of sight in such a way that we
can no longer see the individual streaks (visually similar to fog). Images affected
by the rain accumulation generally suffer from low contrast and weakened back-
ground information. Under torrential downpour, the second problem is severe
enough to warrant a special mechanism to come to grips with the issue.

A direct solution is to apply a deraining method, either a video based (e.g., [3,
14]) or single-image based deraining method (e.g. [19,23,46]), before optical flow
computation. However, most of the video-based deraining methods are designed
only for rain streaks removal and assume static background, whereas the existing
single-image based deraining methods process each frame independently, and
therefore consistency across frames cannot be guaranteed. Moreover, most of the
deraining methods introduce artifacts, such as blur around rain streak regions,
high frequency texture loss, image color change, etc. These artifacts are also
inconsistent in their appearance throughout an image sequence, thus rendering
the BCC and GCC invalid.

To achieve our goal, there are several key ideas in our method. First, we
introduce a residue channel, a gray image that is free from both rain streaks and
rain accumulation. This rain free can be generated after ensuring that the rain-
streak and rain-accumulation terms in our model are achromatic (colorless). The
residue channel, however, can cause some color boundaries to disappear, making
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the optical flow computation deprived of this important information. To resolve
this, we then introduce a colored-residue image, which is the colored version of
the residue channel and thus is also free from rain streak and accumulation. Yet,
there is another problem with both the residue channel and the colored-residue
image, namely, when the background is achromatic or the rain accumulation is
considerably thick, then the affected regions become dark due to the subtraction
operation in the residue image formation, depriving the optical flow estimation of
any intensity variation information in the achromatic channel. Generally, images
of rainy scenes already suffer from low contrast; this is further compounded by
the residue operation such that the signal-to-noise ratio is further suppressed,
reaching the nadir in the aforementioned dark regions.

To handle the resultant noise sensitivity, our solution is to perform a
structure-texture decomposition on each of the input images and use the
extracted structure layers to provide a further regularizing influence on the opti-
cal flow estimation. The underlying rationales are twofold: (1) The structure-
texture decomposition acts as a denoiser, moving noise, rain streaks, and fine
textures in the scene to the texture layer. While the structure layer necessarily
loses out some fine texture information, it provides a stabilizing influence on
the detailed flow information coming from the colored-residue image. (2) For
the regions in the colored-residue image that are dark, the information coming
from the structure layer is all that we have; even though it is admittedly lack-
ing in details and might be somewhat inaccurate (since in dealing with rain,
the structure layer extraction does not make use of the underlying physics of
the rain formation process). Finally, by combining the colored-residue images
and structure layers in one objective function, we make sure that the structure-
texture variational denoising is done in a way consistent across images (critical
for optical flow estimation), and the decomposition can also benefit from the
redundancy coming from the multiple frames. As a result, we can compute the
flow from rain images robustly.

Particularly with respect to optical flow computation in rainy scenes, our
contributions are: (1) Introducing the residue channel and colored-residue image
that are both free from rain streaks and rain accumulation, (2) proposing an
objective function and its optimization mechanism that combine the colored-
residue images and piecewise-smooth structure layers, (3) providing a real rain
optical flow benchmark containing both synthesized motion (660 sequences) and
real motion (100 sequences) to the public. Note that, in this paper we do not
address raindrops attached to the camera lens. We assume that the camera is
well protected from raindrops (e.g. placing the camera under a shelter, or using
a special hardware like Spintec, which can deflect rain from the camera).

2 Related Work

Optical flow algorithms that are robust to noise and outliers have been studied
for a long time (e.g., [4,5,33,38]). While these techniques may be able to handle
a moderate amount of corruptions such as those brought about by a drizzle
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[21,26,40,44], they are unlikely to prevail against the heavy corruptions caused
by a torrential downpour. Compounding these issues is the loss of contrast caused
by rain accumulation, it causes both the BCC and GCC to be highly susceptible
to noise.

One of the popular practices in optical flow estimation is to perform
structure-texture decomposition. [34,36] and then use the texture layer for opti-
cal flow computation. However, for rainy scenes, rain streaks and significant noise
will appear in the texture layer and compromise the utility of the texture layer
for flow estimation. Our method relies more on the structure rather than the
texture layer. Yang et al. [45] propose a double-layer decomposition framework
for estimating optical flow of reflective surfaces. The method decomposes trans-
mission (foreground) layer and reflection (background) layer, and then computes
the optical flow of each layer, assuming both layers follow the sparse gradient
distribution of natural images. However, this algorithm cannot be applied to
rain images, since the assumption does not hold for rain streaks and accumu-
lation. Our proposed colored-residue image belongs to the class of color space
transformation methods such as [25] to render invariance against perturbation.
However, the well-known HSV and rφθ color space approaches do not result in
measures that are invariant under rain, and hence cannot be directly applied to
rain images.

It is beyond the scope of this paper to offer a comprehensive review of the
immense optical flow literature, but the emerging deep learning approach cer-
tainly deserves a mention. A few deep learning methods (e.g., [10,11,17,29]) are
proposed to estimate flow, but these methods are meant for optical flow esti-
mation under clear scenes. Moreover, these methods are heavily optimized over
a lot of training data with ground truths. Unfortunately, obtaining the optical
flow ground-truths for rainy scenes is considerably intractable. In contrast, our
method leverages on the physics of the image formation process. Theoretically,
our rain streak formation model and the residue channel idea are applicable to
snow and sleet too; our approach thus offers a much more parsimonious solution
to a range of problems posed by different weather phenomena.

3 Residue Channel

3.1 Rain Streak Image Formation

The appearance of rain streaks is the result of raindrop movement during the
camera exposure[12]. If we assume the exposure time is T and the elapsed time
while a raindrop is passing through a pixel x is τ , the intensity captured by the
CCD sensor can be described as a linear combination of the raindrop’s time-
average radiance Ērs and the background radiance Ebg:

E(x) = τĒrs(x) + (T − τ)Ebg(x), (1)

where Ērs = 1
τ

τ∫

0

Ersdt, 0 � τ � T . Ers is the radiance of the raindrop at a

particular time. The value of Ers is determined by the raindrop’s specular and
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internal reflections, in addition to the refracted light, where their proportions
depends on the direction of the light rays relative to the raindrop, the camera
viewing direction, and the shape of the raindrop [15].

Most cameras have spectral sensitivities (a.k.a. camera RGB filters) to pro-
duce coloured images. Considering this, we express the colored-image intensity
of a rain-streak image as:

Ĩ(x) = τ

∫

Ω

Ērs(x, λ)qc(λ)dλ + (T − τ)
∫

Ω

Ebg(x, λ)qc(λ)dλ, (2)

where Ĩ = (Ĩr, Ĩg, Ĩb)T is the color vector representing the colored intensity, λ is
the light wavelength, qc is the camera-spectral-sensitivity distribution function,
with index c indicates the RGB color channel. Ω is the range of wavelengths
that can be captured by the camera sensitivities. As shown in the appendix, we
can express the model as:

Ĩ(x) = τρrs(x)Lσ + (T − τ)Bπ, (3)

where L = (Lr, Lg, Lb)T is the color vector of the light brightness, and B =
(Br, Bg, Bb)T is the color vector of the background reflection. L = Lr + Lb + Lg

and B = Br + Bb + Bg. We define σ = L/L and π = B/B, the chromacities
of L and B, respectively. ρrs is composed of refraction, specular reflection, and
internal reflection coefficients of a raindrop [13]. We assume that ρrs is inde-
pendent from wavelength, implying a raindrop is achromatic (colorless). In the
model (Eq. (3)), the first term is the rain-streak term, and the second term is
the background term.

3.2 Residue Channel Computation

In our method, to generate the residue channel that is free from rain streaks, we
need to cancel the light chromaticity, σ, in the rain streak term in Eq. (3). For
this, we employ any existing color constancy algorithm (e.g. [9]) to estimate σ,
and then apply the following normalization step to the input image:

I(x) =
Ĩ(x)
σ

= Irs(x)i + Ibg(x), (4)

where i = (1, 1, 1)T , Irs = τρrsL, and Ibg = (T − τ)B/σ. The vector division is
done element wise. Note, when we normalize the image, we do not only cancel
the light chromaticity, but also the color effect of the spectral sensitivities.

Therefore, based on the last equation, given a rain image I, we define our
residue-channel as:

Ires(x) = IM (x) − Im(x), (5)

where IM (x) = max{Ir(x), Ig(x), Ib(x)}, and Im(x) = min{Ir(x), Ig(x), Ib(x)}.
We call Ires the residue channel of image I, and it is free from rain streaks.
Figure 2 shows some examples of the residue channel. The reason why residue
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channel can be free from rain streaks is because the rain-streak term in Eq. (4)
is achromatic, whose values are cancelled when applying Eq. (5).

To generate the residue channel, we theoretically need to apply color con-
stancy so that the rain-streak term can be achromatic. However, in our experi-
ments, we also noticed that even without applying color constancy, the residue
channel can still work. This is because in most cases, the appearance of rain
streaks is already achromatic, which is due to the dominant gray atmospheric
light generated by a cloudy sky (see the discussion in the supplementary mate-
rial).

Fig. 2. Top: Images captured in rain scenes with rain streaks and rain accumulation.
Middle: Residue channels of the corresponding rain images. Bottom: The colored
residue images of the corresponding rain images. The rain streaks are significantly
reduced in the residue channel and colored-residue images, though some regions become
dark due to achromatic background and rain accumulation. Note, we increase the
intensity of the dark regions for visualization purpose.

3.3 Colored Residue Image

Since the residue channel is a single channel map, it has no color information.
To obtain a colored residue image, we need to transform the original rain image
into the YCbCr domain:

Cb = 128 − (37.945/256)Ir − (74.494/256)Ig + (112.439/256)Ib, (6)
Cr = 128 − (112.439/256)Ir − (94.154/256)Ig − (18.285/256)Ib.

In Cb and Cr, the achromatic value of the rain-streak term is cancelled out,
since the sum of the coefficients in the definition equals to zero, and thus the
two are independent from rain streaks. For Y channel, however, we do not use it
in our computation, since it is still affected by rain streaks. Instead, we replace
it using the residue channel (from Eq. 5), which is free from rain streaks. Having
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obtained the values of all image intensities in the IresCbCr domain, we tranform
them back to the RGB domain, in order to obtain the colored residue image as
shown in Fig. 2.

One drawback of both the residue channel and colored-residue image is that
when the background is achromatic (i.e., white, gray or black), the generated
background becomes dark. This is because the background term in Eq. (4)
becomes achromatic, instead of a colored vector; and thus, it is cancelled out
along with the rain-streak term.

3.4 Residue Image and Rain Accumulation

Rain images typically have severe rain accumulation particularly in the heavy
rain. For each pixel, the intensity contributed by the rain is the accumulation of
all the raindrops along the line of sight from the camera to the background object.
Considering that rain accumulation is so dense that each individual streaks can-
not be observed, we thus model the rain accumulation appearance similar to
that of fog:

E(x) = (1 − αt(x)) L + αt(x)Ebg(x), (7)

where αt(x) is the transmission, whose value depends on the rain droplet’s atten-
uation factor and the distance between the camera and the background along
the line of sight. This model has been successfully used in a few rain removal
methods (e.g. [19,46]).

Similar to the discussion in Sect. 3.1, by taking into consideration the camera
spectral sensitivities, the colored image intensity of the rain accumulation and
background can be expressed as: Ĩ(x) = (1 − αt(x))L+αt(x)B(x). Moreover, if
we incorporate the rain streak model into the rain accumulation and background,
then we can express all the terms into one equation:

Ĩ(x) = τρrs(x)L + (T − τ) [(1 − αt(x))L + αt(x)B(x)] . (8)

By employing a color constancy method (i.e., [9]), we can estimate the light
chromaticity, σ, and use it to cancel the light chromaticity in the image:

I(x) = Irs(x)i + Ira(x)i + I′
bg(x), (9)

where Ira = (T − τ)(1 − αt)L. I′
bg = αt(T − τ)B/σ.

Therefore, in this all-inclusive model, Eq. (9), we have three terms: the rain-
streak term (the first term), rain accumulation term (the second term), and the
background term (the third term). When we see an individual streak in the input
image, it is modelled by the rain streak term; however, for those rain streaks that
are accumulated such that individual streaks are not distinguishable, then they
are modelled by the second term.

If we apply the residue channel (Eq. (5)) or the colored-residue image to our
rain model of Eq. (9), both rain streaks and rain accumulation will be removed
from the images, since the rain-streak and rain-accumulation terms are both
achromatic. This implies, our residue channel and colored-residue image are also
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free from rain accumulation. However, it comes with a price. First, for achromatic
background regions, the residue channel becomes dark, since all the three terms
in Eq. (9) are achromatic. Second, when rain accumulation is considerably thick,
the background term is significantly suppressed, and as a result, the residue
channel and image also become relatively dark, depending on the thickness of
the rain accumulation. Nevertheless, in this paper, our goal is not to generate
visually pleasing rain-free images, but to create an optical flow algorithm that is
robust to rain. Thus, despite the presence of these dark regions, we shall see that
residue channel and colored-residue image are useful tools to achieve our goal.
In the subsequent section, we will discuss how to utilize the residue channel and
colored-residue image to estimate optical flow robustly.

4 Decomposition Framework

In the classic variational framework, the optical flow objective function is
expressed as:

L1(u) =
∑

x

{ΦD[I1(x) − I2(x + u)] + λsΦS(∇u(x))}, (10)

where I1, I2 are the gray versions of I1, I2, respectively. u is the flow vector
with λs as a regularization parameter and ΦD and ΦS are the data and spatial
penalty functions. However, as we have discussed, these I1 and I2 are affected
by rain, and thus the BCC and GCC do not hold. The simplest idea to compute
optical flow would be to use the colored-residue images as input to any modern
optical flow algorithm. Unfortunately, while the colored-residue image is free
from rain streaks and rain accumulation, it suffers from low contrast and the
dark region effect. Hence, in our objective function, we incorporate both the
colored-residue image and the input image. Our idea is that when encountering
dark regions in the residue channel, we turn to the input image for computing
the flow; otherwise we use the colored-residue image. Based on this, we change
our objective function:

L2(u) =
∑

x

{(1 − w(x))ΦD[I1(x) − I2(x + u)]

+ w(x)ΦD[R1(x) − R2(x + u)]
+ λsΦS(∇u)},

(11)

where R1, R2 are the gray versions of the two colored-residue images of the two
input rain frames, respectively.

Employing the input images in the objective function, however, adds some
complexity. Since, besides affected by rain, raw rain images in fact have a fair
amount of noise, which is not surprising since they are usually taken under
dim conditions. Those who are well-versed with the art of optical flow estima-
tion will know that this situation of low contrast and substantial noise is a
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sure recipe for trouble. To address the problem, our idea is to employ the struc-
ture/texture image decomposition [43] to the input images and use the structure
layer extracted to provide a coarse and complementary source of flow informa-
tion. While the flow information from the structure layer may be lacking in
details (since the detailed textures are discarded), it is less influenced by noise.
It also serves to fill in the missing information in the dark regions of the colored-
residue image. Formally, the observed rain image I can be modeled as a linear
combination of the piecewise-smooth structure layer J and the fine-detail texture
layer K, namely: I = J+K, where the piecewise-smooth structure layer describes
the principal regions of the image and the texture layer contains the fine-detailed
background textures, rain streaks, and any other possible noises. The decompo-
sition can be done by: min

J
‖ I − J ‖2 +λ ‖ ∇J ‖0, where ∇ = (∂x, ∂y)T , and

λ is the weighting factor. We use the L0-norm, since, being a discrete counting
metric, it can deliver sharper edges and has better ability to preserve large gra-
dients [43]. Putting all the above ideas together, we have the following unified
objective function:

LF (u, J1, J2) =
∑

x

{λd{(1 − w(x))ΦD[J1(x) − J2(x + u)]

+ w(x)ΦD[R1(x) − R2(x + u)]} + λsΦS(∇u(x))

+ α(||I1(x) − J1(x)||2 + ||I2(x) − J2(x)||2)
+ β(||∇J1(x)||0 + ||∇J2(x)||0)},

(12)

where J1, J2 are the gray versions of the structure images of the two frames
respectively.

Parameter w is the tunable weighting factor that mediates the relative con-
tribution of the structure layer and the colored-residue image for flow computa-
tion (first and second lines of Eq. (12) respectively). It weighs more on using
the colored-residue image when the residual channel is not dark. We define
w(x) = γIres(x), where γ is a scaling factor such that there is always some
contribution from the structure images. The structure-texture decomposition
(third and fourth lines of Eq. (12)) is carried out jointly with the optical flow
estimation, so that the denoising can be done in a consistent way across both
frames, and that the decomposition can benefit from the redundancy of multiple
frames. λs is the smoothness parameter for the flow u. β is the parameter con-
trolling the gradient threshold. The higher the β , the fewer boundaries in the
piecewise-smooth background layer. ΦD and ΦS are the ‘Charbonnier’ penalty
function for the data term and smoothness term.1

1 Regarding the colored-residue images in our objective function, one may wonder the
purpose of generating it, if in the end we use the gray version R1, R2 of it. The
reason is that when two objects have different colors, there are some cases where
their residue channel values are identical, and thus when the objects are adjacent to
each other, their color boundaries disappear, and as a result optical flow is deprived
of this important information. However, if we use the gray version of the colored-
residue images, we can retain the boundary information. Fig. 3 shows an example
of this.
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(a) Color Image (b) Residue Channel (c) Colored-Residue Image (d) Gray-Scale Image of (c)

Fig. 3. (a) A color palette and spectrum. (b) The residue channel of (a). (Single
channel map) (c) The colored-residue image of (a). (d) The gray scaled version of
colored-residue image (c)

Algorithm 1
1: Input: Image sequence I1, I2, parameters λs, α, β, convergence criteria ε
2: Initialization: Assign J

(0)
1 ← I1, J

(0)
2 ← I2, and initial flow u0 ← J

(0)
1 , J

(0)
2 ,

R1, R2

3: repeat (Start from i=0)

4: Compute J
(i+1)
1 ← {J

(i)
2 , I1,u

(i)}, J
(i+1)
2 ← {J

(i)
1 , I2,u

(i)} (Subtask 1)

5: Estimate Flow {u(i+1) ← J
(i+1)
1 , J

(i+1)
2 , R1, R2}. (Subtask 2)

6: until ||ui+1 − ui|| < ε
7: Output: Estimated flow field u(M)

5 Optimization

First, we generate the residue channel maps (R1, R2) from the input image and
then initialize J1 = I1, J2 = I2, and u by solving Eq. (13) following the method
of [7]. To optimize our objective function, we alternatingly solve the following
subtasks until convergence:
Subtask 1: Layer Separation. Given the current optical flow u, we compute
the piecewise-smooth background layer J1, and J2 separately:

J∗
1 = arg min

J1

∑

x

{λdΦD[J1(x) − J2(x + u)] + α|I1(x) − J1(x)|2 + β|∇J1(x)|0}

J∗
2 = arg min

J2

∑

x

{λdΦD[J1(x) − J2(x + u)] + α|I2(x) − J2(x)|2 + β|∇J2(x)|0}

The objective functions are not convex due to the L0-norm terms, unlike the
standard structure-texture decomposition. To resolve this problem, we adopt
the alternating optimization strategy from [43], by introducing two auxiliary
variables to decouple the unsmooth gradient term and the smooth quadratic
terms.
Subtask 2: Optical Flow Computation. Given current piecewise-smooth
background layers (J1, J2), we estimate the optical flow vector u following the
method of [7]:

u∗ = arg min
u

∑

x

{λd((1 − w(x))ΦD[J1(x) − J2(x + u)]

+ w(x)ΦD[R1(x) − R2(x + u)]) + λsΦS(∇u(x))}
(13)
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Although there is no guarantee for convergence to this non-convex problem,
with initialization as proposed above, this algorithm performs well in practice. In
our experiments, we run our algorithm on hundreds of different rain scenes and
it showed good convergence. A video of is attached in supplementary material
to demonstrate the stability, robustness and the convergence of the proposed
method.

6 Experiments

Ablation Study. To study how the colored-residue image and structure layer
complement each other, we conduct the following ablation experiments using a
dataset [27] rendered with rain. We compare the performance of our algorithm
with a few baseline methods.

First, we evaluate the performance of the colored-residue image alone by sub-
jecting it to increasingly dense rain streaks and increasing levels of rain accumu-
lation along with the additive white Gaussian noise (Fig. 4 the top two rows).
The optical flow results are shown on the top row of Fig. 4a, b. As can be seen,
while the colored-residue image is effective in dealing with rain streaks, it is
negatively affected by the low contrast brought by the rain accumulation. This
is where the structure layer (or the decomposition) comes in. Second, we eval-
uate the performance of the structure layer alone similarly by subjecting it to
increasingly dense rain streaks and increasing levels of rain accumulation. From
the result in the top row of Fig. 4c., the structure alone does not achieve good

Fig. 4. Ablation study. Top two rows: Input images and the performance graph of
the proposed method on the driving dataset rendered with (a) rain streaks alone, (b)
rain accumulation alone, (c) combining rain streaks and rain accumulation. Bottom
row: Input and optical flow qualitative results using the colored-residue image alone
(ours-residue), structure layer alone (ours-decomp), and combined (ours).
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performance, since rain streaks in the original input can have rather strong gra-
dients and remain in the structure layer. However, when combined the colored-
residue image and structure layer, the performance improves, showing a graceful
degradation of performance as rain increases (also in Fig. 4c). More results of
our ablation study including on real images are available in the supplementary
material. The bottom row of Fig. 4 shows the qualitative results of using the
colored-residue only, the structure layer only, and our combination.

Fig. 5. Top: Two examples from the Flying Vehicles with Rain (FVR-660). From left
to right are the generated image pair, and the color coded flow field ground truth.
Bottom: An example of NUS-100 dataset. From left to right are the input image pair,
the annotated labels for objects with motion, the horizontal component of the flow,
and the flow ground truth.

Evaluation Datasets. To obtain optical flow ground-truths for real images is
considerably difficult, however it is even more difficult for rain scenes. Baker
et al. [2] obtain ground-truth data of only a couple of real image pairs using
a controlled experiment setup, which does not work under outdoor rain. Using
a LIDAR system to obtain flow ground truths is also problematic, since layers
of densely accumulated raindrops will absorb and reflect laser rays, which can
lead to missing data points and wrong measurements in the echo-backed results.
Hence, in this paper, for quantitative evaluations, we use a few different strate-
gies. First, we generate synthetic rain by following the rain model dGarg:2006 on
Middlebury [2], Sintel[8] and KITTI [24] optical flow datasets. Second, we com-
bine real rain images with synthesized object motions, creating a new hybrid
dataset named FVR-660, which the ground-truths are known. There are in total
660 sequences in this dataset. The top row of Fig. 5 shows some examples. Third,
we introduce our NUS-100 dataset containing 100 sequences of real rain and real
motion, whose ground truth is obtained by human annotation. An example is
shown in the bottom row of Fig. 5. The details of FVR-660 and NUS-100 dataset
generation are included in the supplementary material.2

2 FVR-600 and NUS-100 datasets are available at : https://liruoteng.github.io/
RobustOpticalFlowProject

https://liruoteng.github.io/RobustOpticalFlowProject
https://liruoteng.github.io/RobustOpticalFlowProject
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Fig. 6. Method comparisons on Middlebury, MPI Sintel, and KITTI datasets, which
are all rendered with rain. The first column “R” and “D” represent synthesized rain
sequences and the same sequences after [46]’s deraining method. (Best zoomed in
on screen).

Synthetic Rain Results. Using our synthetic data, we compare our algorithm
with a few conventional methods, i.e. Classic+NL [33], LDOF [6], and SP-MBP
[18], EpicFlow [30], as well as recent deep learning methods such as FlowNet2
[17], DCFlow [41] and FlowNet [11], specifically the FlowNetS variant. For a
fair comparison, we utilize the recent deraining method [46] as a preprocessing
step for these methods. The quantitative results are shown in columns 1 to 3 of
Table 1. The qualitative results of these comparisons are shown in Fig. 6. In the
figure, the original synthesized rain image is denoted with ’R’, and the image
produced by the deraining operation is denoted with ’D’. FlowNet2 [17] and
FlowNetS [11] are not originally trained using rain images, and thus may not
perform well under rain conditions. Hence, we render the Flying Chair dataset
[11] with synthetic rain streaks using the same rain streak model as the test
dataset. We then fine-tune FlowNetS and FlowNet2 end-to-end on this dataset
and pick the best performed model for evaluation. The fine-tuned models are
denoted as FlowNetS-rain and FlowNet2-rain respectively.

Real Rain Results. To verify the effectiveness of our algorithm, we perform
a sanity check on the estimated flow for static real-rain image pairs as shown
in Fig. 7. Since this is a static scene under heavy rain, the true optical flow for
the background should be zero everywhere. From the figure (the top row), one
can see that the baseline methods produce erroneous flow due to the motion
of the rain. In comparison, the result of our algorithm shows a significantly
cleaner result. The average magnitude of our flow field is 0.000195 pixel, which
is essentially zero flow. Moreover, the plots in the bottom row also show that
during the iteration process, the optical flow estimation improves. This means
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I1 I2 EpicFlow DCFlow FlowNet2 FlowNet2-rain

J1 J2 Ours-iter1 Ours-iter2 Ours-iter3 Ours-iter15

Fig. 7. Static Scene Analysis. I1,I2 are captured rainy image pair of a static scene.
J1, J2 are the corresponding piecewise-smooth layers of I1, I2 respectively. Flow map
produced by competing algorithms are shown in top row. Flow map produced by our
method at different optimization stages are shown in bottom row.

that the structure layer does provide complementary information to the colored-
residue image.

We also compare the baseline methods with our algorithm on the FVR-660
dataset for quantitative evaluation (column 5 of Table 1) and qualitative eval-
uation (Fig. 8). For this evaluation, the deraining preprocessing [46] is applied
to the existing methods. As one can see from Fig. 8, the results of the baseline
methods contain obvious erroneous flow due to the presence of rain streaks. The
state-of-the-art deraining method does not generalize well on different rain types,
hence rain streaks are not removed clearly and some deraining artifacts may also
be introduced. Finally, we compare our algorithm with baseline methods on the
manually annotated real rainy sequences in the NUS-100 dataset. The quantita-
tive result is included in column 6 of Table 1 and qualitative results are shown
in Fig. 9.

Fig. 8. Method comparison on Flying Vehicle with Rain (FVR-660) dataset. (Best
viewed on screen).
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Fig. 9. Method comparison on real rainy scenes with different severity level. The last
column is annotated ground truth using [20]. The black region in Ground Truth indi-
cates invalid region, which is not counted in flow evaluation. (Best zoomed in on
screen).

7 Conclusion

We have introduced a robust algorithm for optical flow in rainy scenes. To our
knowledge, it is the first time an optical flow algorithm is specifically designed to
deal with rain. Through this work, we make a few contributions. We introduced
the residue channel and colored-residue image that are both free from rain streaks
and rain accumulation. We proposed an integrated framework to deal with rain
that combine the residue channel, colored-residue image, and piecewise-smooth
structure layer extraction. We provide a rain optical flow benchmark containing
both synthesized motion and real motion to the public.
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