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Abstract. Autonomous driving models should ideally be evaluated by
deploying them on a fleet of physical vehicles in the real world. Unfortu-
nately, this approach is not practical for the vast majority of researchers.
An attractive alternative is to evaluate models offline, on a pre-collected
validation dataset with ground truth annotation. In this paper, we inves-
tigate the relation between various online and offline metrics for evalua-
tion of autonomous driving models. We find that offline prediction error
is not necessarily correlated with driving quality, and two models with
identical prediction error can differ dramatically in their driving perfor-
mance. We show that the correlation of offline evaluation with driving
quality can be significantly improved by selecting an appropriate valida-
tion dataset and suitable offline metrics.

Keywords: Autonomous driving · Deep learning

1 Introduction

Camera-based autonomous driving can be viewed as a computer vision problem.
It requires analyzing the input video stream and estimating certain high-level
quantities, such as the desired future trajectory of the vehicle or the raw control
signal to be executed. Standard methodology in computer vision is to evaluate an
algorithm by collecting a dataset with ground-truth annotation and evaluating
the results produced by the algorithm against this ground truth (Fig. 1(a)).
However, driving, in contrast with most computer vision tasks, is inherently
active. That is, it involves interaction with the world and other agents. The end
goal is to drive well: safely, comfortably, and in accordance with traffic rules.
An ultimate evaluation would involve deploying a fleet of vehicles in the real
world and executing the model on these (Fig. 1(b)). The logistical difficulties
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Fig. 1. Two approaches to evaluation of a sensorimotor control model. Top: offline
(passive) evaluation on a fixed dataset with ground-truth annotation. Bottom: online
(active) evaluation with an environment in the loop.

associated with such an evaluation lead to the question: Is it possible to evaluate
a driving model without actually letting it drive, but rather following the offline
dataset-centric methodology?

One successful approach to evaluation of driving systems is via decomposi-
tion. It stems from the modular approach to driving where separate subsystems
deal with subproblems, such as environment perception, mapping, and vehicle
control. The perception stack provides high-level understanding of the scene in
terms of semantics, 3D layout, and motion. These lead to standard computer
vision tasks, such as object detection, semantic segmentation, depth estimation,
3D reconstruction, or optical flow estimation, which can be evaluated offline on
benchmark datasets [5,10,19]. This approach has been extremely fruitful, but it
only applies to modular driving systems.

Recent deep learning approaches [1,27] aim to replace modular pipelines by
end-to-end learning from images to control commands. The decomposed evalu-
ation does not apply to models of this type. End-to-end methods are commonly
evaluated by collecting a large dataset of expert driving [27] and measuring the
average prediction error of the model on the dataset. This offline evaluation is
convenient and is consistent with standard practice in computer vision, but how
much information does it provide about the actual driving performance of the
models?

In this paper, we empirically investigate the relation between (offline) predic-
tion accuracy and (online) driving quality. We train a diverse set of models for
urban driving in realistic simulation [6] and correlate their driving performance
with various metrics of offline prediction accuracy. By doing so, we aim to find
offline evaluation procedures that can be executed on a static dataset, but at
the same time correlate well with driving quality. We empirically discover best
practices both in terms of selection of a validation dataset and the design of an
error metric. Additionally, we investigate the performance of several models on
the real-world Berkeley DeepDrive Video (BDDV) urban driving dataset [27].
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Our key finding is that offline prediction accuracy and actual driving qual-
ity are surprisingly weakly correlated. This correlation is especially low when
prediction is evaluated on data collected by a single forward-facing camera on
expert driving trajectories – the setup used in most existing works. A network
with very low prediction error can be catastrophically bad at actual driving.
Conversely, a model with relatively high prediction error may drive well.

We found two general approaches to increasing this poor correlation between
prediction and driving. The first is to use more suitable validation data. We
found that prediction error measured in lateral cameras (sometimes mounted to
collect additional images for imitation learning) better correlates with driving
performance than prediction in the forward-facing camera alone. The second
approach is to design offline metrics that depart from simple mean squared error
(MSE). We propose offline metrics that correlate with driving performance more
than 60% better than MSE.

2 Related Work

Vision-based autonomous driving tasks have traditionally been evaluated on ded-
icated annotated real-world datasets. For instance, KITTI [10] is a comprehen-
sive benchmarking suite with annotations for stereo depth estimation, odometry,
optical flow estimation, object detection, semantic segmentation, instance seg-
mentation, 3D bounding box prediction, etc. The Cityscapes dataset [5] provides
annotations for semantic and instance segmentation. The BDDV dataset [27]
includes semantic segmentation annotation. For some tasks, ground truth data
acquisition is challenging or nearly impossible in the physical world (for instance,
for optical flow estimation). This motivates the use of simulated data for train-
ing and evaluating vision models, as in the SYNTHIA [22], Virtual KITTI [9],
and GTA5 datasets [20], and the VIPER benchmark [19]. These datasets and
benchmarks are valuable for assessing the performance of different components
of a vision pipeline, but they do not allow evaluation of a full driving system.

Recently, increased interest in end-to-end learning for driving has led to
the emergence of datasets and benchmarks for the task of direct control sig-
nal prediction from observations (typically images). To collect such a dataset, a
vehicle is equipped with one or several cameras and additional sensors record-
ing the coordinates, velocity, sometimes the control signal being executed, etc.
The Udacity dataset [25] contains recordings of lane following in highway and
urban scenarios. The CommaAI dataset [23] includes 7 h of highway driving.
The Oxford RobotCar Dataset [16] includes over 1000 km of driving recoded
under varying weather, lighting, and traffic conditions. The BDDV dataset [27]
is the largest publicly available urban driving dataset to date, with 10,000 h of
driving recorded from forward-facing cameras together with smartphone sensor
data such as GPS, IMU, gyroscope, and magnetometer readings. These datasets
provide useful training data for end-to-end driving systems. However, due to
their static nature (passive pre-recorded data rather than a living environment),
they do not support evaluation of the actual driving performance of the learned
models.
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Online evaluation of driving models is technically challenging. In the physi-
cal world, tests are typically restricted to controlled simple environments [4,13]
and qualitative results [1,18]. Large-scale real-world evaluations are impracti-
cal for the vast majority of researchers. One alternative is simulation. Due of
its logistical feasibility, simulation have been commonly employed for driving
research, especially in the context of machine learning. The TORCS simula-
tor [26] focuses on racing, and has been applied to evaluating road following [3].
Rich active environments provided by computer games have been used for train-
ing and evaluation of driving models [7]; however, the available information and
the controllability of the environment are typically limited in commercial games.
The recent CARLA driving simulator [6] allows evaluating driving policies in liv-
ing towns, populated with vehicles and pedestrians, under different weather and
illumination conditions. In this work we use CARLA to perform an extensive
study of offline performance metrics for driving.

Although the analysis we perform is applicable to any vision-based driving
pipeline (including ones that comprise separate perception [2,12,21,24,28] and
control modules [17]), in this paper we focus on end-to-end trained models. This
line of work dates back to the ALVINN model of Pomerleau [18], capable of road
following in simple environments. More recently, LeCun et al. [15] demonstrated
collision avoidance with an end-to-end trained deep network. Chen et al. [3]
learn road following in the TORCS simulator, by introducing an intermediate
representation of “affordances” rather than going directly from pixels to actions.
Bojarski et al. [1] train deep convolutional networks for lane following on a large
real-world dataset and deploy the system on a physical vehicle. Fernando et al. [8]
use neural memory networks combining visual inputs and steering wheel trajec-
tories to perform long-term planning, and use the CommaAI dataset to validate
the method. Hubschneider et al. [11] incorporate turning signals as additional
inputs to their DriveNet. Codevilla et al. [4] propose conditional imitation learn-
ing, which allows imitation learning to scale to complex environments such as
urban driving by conditioning action prediction on high-level navigation com-
mands. The growing interest in end-to-end learning for driving motivates our
investigation of the associated evaluation metrics.

3 Methodology

We aim to analyze the relation between offline prediction performance and online
driving quality. To this end, we train models using conditional imitation learn-
ing [4] in a simulated urban environment [6]. We then evaluate the driving qual-
ity on goal-directed navigation and correlate the results with multiple offline
prediction-based metrics. We now describe the methods used to train and eval-
uate the models.

3.1 Conditional Imitation Learning

For training the models we use conditional imitation learning – a variant of
imitation learning that allows providing high-level commands to a model. When
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coupled with a high-level topological planner, the method can scale to complex
navigation tasks such as driving in an urban environment. We briefly review the
approach here and refer the reader to Codevilla et al. [4] for further details.

We start by collecting a training dataset of tuples {〈oi, ci,ai〉}, each including
an observation oi, a command ci, and an action ai. The observation oi is an
image recorded by a camera mounted on a vehicle. The command ci is a high-
level navigation instruction, such as “turn left at the next intersection”. We use
four commands – continue, straight, left, and right – encoded as one-hot
vectors. Finally, ai is a vector representing the action executed by the driver.
It can be raw control signal – steering angle, throttle, and brake – or a more
abstract action representation, such as a waypoint representing the intended
trajectory of the vehicle. We focus on predicting the steering angle in this work.

Given the dataset, we train a convolutional network F with learnable param-
eters θ to perform command-conditional action prediction, by minimizing the
average prediction loss:

θ∗ = arg minθ

∑

i

�(F (oi, ci,θ), ai), (1)

where � is a per-sample loss. We experiment with several architectures of the
network F , all based on the branched model of Codevilla et al. [4]. Training
techniques and network architectures are reviewed in more detail in Sect. 3.2.
Further details of training are provided in the supplement.

3.2 Training

Data Collection. We collect a training dataset by executing an automated nav-
igation expert in the simulated environment. The expert makes use of privileged
information about the environment, including the exact map of the environment
and the exact positions of the ego-car, all other vehicles, and pedestrians. The
expert keeps a constant speed of 35 km/h when driving straight and reduces the
speed when making turns. We record the images from three cameras: a forward-
facing one and two lateral cameras facing 30 degrees left and right. In 10% of
the data we inject noise in the driving policy to generate examples of recovery
from perturbations. In total we record 80 h of driving data.

Action Representation. The most straightforward approach to end-to-end
learning for driving is to output the raw control command, such as the steering
angle, directly [1,4]. We use this representation in most of our experiments. The
action is then a vector a ∈ R

3, consisting of the steering angle, the throttle value,
and the brake value. To simplify the analysis and preserve compatibility with
prior work [1,27], we only predict the steering angle with a deep network. We
use throttle and brake values provided by the expert policy described above.

Loss Function. In most of our experiments we follow standard practice [1,4]
and use mean squared error (MSE) as a per-sample loss:

�(F (oi, ci,θ), ai) = ‖F (oi, ci,θ) − ai‖2 . (2)
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We have also experimented with the L1 loss. In most experiments we balance
the data during training. We do this by dividing the data into 8 bins based on
the ground-truth steering angle and sampling an equal number of datapoints
from each bin in every mini-batch. As a result, the loss being optimized is not
the average MSE over the dataset, but its weighted version with higher weight
given to large steering angles.

Regularization. Even when evaluating in the environment used for collecting
the training data, a driving policy needs to generalize to previously unseen views
of this environment. Generalization is therefore crucial for a successful driving
policy. We use dropout and data augmentation as regularization measures when
training the networks.

Dropout ratio is 0.2 in convolutional layers and 0.5 in fully-connected layers.
For each image to be presented to the network, we apply a random subset of
a set of transformations with randomly sampled magnitudes. Transformations
include contrast change, brightness, and tone, as well as the addition of Gaussian
blur, Gaussian noise, salt-and-pepper noise, and region dropout (masking out a
random set of rectangles in the image, each rectangle taking roughly 1% of image
area). In order to ensure good convergence, we found it helpful to gradually
increase the data augmentation magnitude in proportion to the training step.
Further details are provided in the supplement.

Model Architecture. We experiment with a feedforward convolutional net-
work, which takes as input the current observation as well as an additional vec-
tor of measurements (in our experiments the only measurement is the current
speed of the vehicle). This network implements a purely reactive driving policy,
since by construction it cannot make use of temporal context. We experiment
with three variants of this model. The architecture used by Codevilla et al. [4],
with 8 convolutional layers, is denoted as “standard”. We also experiment with
a deeper architecture with 12 convolutional layers and a shallower architecture
with 4 convolutional layers.

3.3 Performance Metrics

Offline Error Metrics. Assume we are given a validation set V of tuples
〈oi, ci,ai, vi〉, indexed by i ∈ V . Each tuple includes an observation, an input
command, a ground-truth action vector, and the speed of the vehicle. We assume
the validation set consists of one or more temporally ordered driving sequences.
(For simplicity in what follows we assume it is a single sequence, but generaliza-
tion to multiple sequences is trivial.) Denote the action predicted by the model
by âi = F (oi, ci,θ). In our experiments, ai and âi will be scalars, representing
the steering angle. Speed is also a scalar (in m/s).

Table 1 lists offline metrics we evaluate in this paper. The first two metrics are
standard: mean squared error (which is typically the training loss) and absolute
error. Absolute error gives relatively less weight to large mistakes than MSE.

The higher the speed of the car, the larger the impact a control mistake can
have. To quantify this intuition, we evaluate speed-weighted absolute error. This
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Table 1. Offline metrics used in the evaluation. δ is the Kronecker delta function, θ is
the Heaviside step function, Q is a quantization function (see text for details), |V | is
the number of samples in the validation dataset.

Metric name Parameters Metric definition

Squared error – 1
|V |

∑

i∈V

‖ai − âi‖2

Absolute error – 1
|V |

∑

i∈V

‖ai − âi‖1

Speed-weighted absolute error – 1
|V |

∑

i∈V

‖ai − âi‖1 vi

Cumulative speed-weighted
absolute error

T 1
|V |

∑

i∈V

∥
∥
∥
∥

T∑

t=0

(ai+t − âi+t)vi+t

∥
∥
∥
∥
1

Quantized classification error σ 1
|V |

∑

i∈V

(1 − δ (Q(ai, σ), Q(âi, σ)))

Thresholded relative error α 1
|V |

∑

i∈V

θ (‖âi − ai‖ − α ‖ai‖)

metric approximately measures how quickly the vehicle is diverging from the
ground-truth trajectory, that is, the projection of the velocity vector onto the
direction orthogonal to the heading direction.

We derive the next metric by accumulating speed-weighted errors over time.
The intuition is that the average prediction error may not be characteristic of the
driving quality, since it does not take into account the temporal correlations in
the errors. Temporally uncorrelated noise may lead to slight oscillations around
the expert trajectory, but can still result in successful driving. In contrast, a
consistent bias in one direction for a prolonged period of time inevitably leads
to a crash. We therefore accumulate the speed-weighted difference between the
ground-truth action and the prediction over T time steps. This measure is a
rough approximation of the divergence of the vehicle from the desired trajectory
over T time steps.

Another intuition is that small noise may be irrelevant for the driving per-
formance, and what matters is getting the general direction right. Similar to
Xu et al. [27], we quantize the predicted actions and evaluate the classifica-
tion error. For quantization, we explicitly make use of the fact that the actions
are scalars (although a similar strategy can be applied to higher-dimensional
actions). Given a threshold value σ, the quantization function Q(x, σ) returns
−1 if x < −σ, 0 if −σ ≤ x < σ, and 1 if x ≥ σ. For steering angle, these values
correspond to going left, going straight, and going right. Given the quantized
predictions and the ground truth, we compute the classification error.

Finally, the last metric is based on quantization and relative errors. Instead
of quantizing with a fixed threshold as in the previous metric, here the threshold
is adaptive, proportional to the ground truth steering signal. The idea is that
for large action values, small discrepancies with the ground truth are not as
important as for small action values. Therefore, we count the fraction of samples
for which ‖âi − ai‖ ≥ α ‖ai‖.
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Online Performance Metrics. We measure the driving quality using three
metrics. The first one is the success rate, or simply the fraction of successfully
completed navigation trials. The second is the average fraction of distance trav-
eled towards the goal per episode (this value can be negative is the agent moves
away form the goal). The third metric measures the average number of kilo-
meters traveled between two infractions. (Examples of infractions are collisions,
driving on the sidewalk, or driving on the opposite lane.)

4 Experiments

We perform an extensive study of the relation between online and offline perfor-
mance of driving models. Since conducting such experiments in the real world
would be impractical, the bulk of the experiments are performed in the CARLA
simulator [6]. We start by training a diverse set of driving models with varying
architecture, training data, regularization, and other parameters. We then corre-
late online driving quality metrics with offline prediction-based metrics, aiming
to find offline metrics that are most predictive of online driving performance.
Finally, we perform an additional analysis on the real-world BDDV dataset.
Supplementary materials can be found on the project page: https://sites.google.
com/view/evaluatedrivingmodels.

4.1 Experimental Setup

Simulation. We use the CARLA simulator to evaluate the performance of driv-
ing models in an urban environment. We follow the testing protocol of Codevilla
et al. [4] and Dosovitskiy et al. [6]. We evaluate goal-directed navigation with
dynamic obstacles. One evaluation includes 25 goal-directed navigation trials.

CARLA provides two towns (Town 1 and Town 2) and configurable weather
and lighting conditions. We make use of this capability to evaluate generalization
of driving methods. We use Town 1 in 4 weathers (Clear Noon, Heavy Rain Noon,
Clear Sunset and Clear After Rain) for training data collection, and we use two
test conditions: Town 1 in clear noon weather and Town 2 in Soft Rain Sunset
weather. The first condition is present in the training data; yet, note that the
specific images observed when evaluating the policies have almost certainly not
been seen during training. Therefore even this condition requires generalization.
The other condition – Town 2 and soft rain sunset weather – is completely new
and requires strong generalization.

For validation we use 2 h of driving data with action noise and 2 h of data
without action noise, in each of the conditions. With three cameras and a frame
rate of 10 frames per second, one hour of data amounts to 108, 000 validation
images.

Real-World Data. For real-world tests we use the validation set of the BDDV
dataset [27], containing 1816 dashboard camera videos. We computed the offline
metrics over the entire dataset using the pre-trained models and the data filtering
procedures provided by Xu et al. [27].

https://sites.google.com/view/evaluatedrivingmodels
https://sites.google.com/view/evaluatedrivingmodels
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Network Training and Evaluation. All models were trained using the Adam
optimizer [14] with minibatches of 120 samples and an initial learning rate of
10−4. We reduce the learning rate by a factor of 2 every 50K iterations. All
models were trained up to 500 K iterations. In order to track the evolution of
models during the course of training, for each model we perform both online and
offline evaluation after the following numbers of training mini-batches: 2 K, 4 K,
8 K, 16 K, 32 K, 64 K, 100 K, 200 K, 300 K, 400 K, and 500 K.

4.2 Evaluated Models

We train a total of 45 models. The parameters we vary can be broadly separated
into three categories: properties of the training data, of the model architecture,
and of the training procedure. We vary the amount and the distribution of
the training data. The amount varies between 0.2 h and 80 h of driving. The
distribution is one of the following four: all data collected from three cameras
and with noise added to the control, only data from the central camera, only
data without noise, and data from the central camera without noise. The model
architecture variations amount to varying the depth between 4 and 12 layers. The
variations in the training process are the use of data balancing, the loss function,
and the regularization applied (dropout and the level of data augmentation).
A complete list of parameters varied during the evaluation is provided in the
supplement.

4.3 Correlation Between Offline and Online Metrics

We start by studying the correlation between online and offline performance
metrics on the whole set of evaluated models. We represent the results by scatter
plots and correlation coefficients. To generate a scatter plot, we select two metrics
and plot each evaluated model as a circle, with the coordinates of the center of
the circle equal to the values of these two metrics, and the radius of the circle
proportional to the training iteration the model was evaluated at. To quantify
the correlations, we use the standard sample Pearson correlation coefficient,
computed over all points in the plot. In the figures below, we plot results in
generalization conditions (Town 2, unseen weather). We focus our analysis on
the well-performing models, by discarding the 50% worst models according to
the offline metric. Results in training conditions, as well as scatter plots with all
models, are shown in the supplement.

The Effect of Validation Data. We first plot the (offline) average steering
MSE versus the (online) success rate in goal-directed navigation, for different
offline validation datasets. We vary the number of cameras used for validation
(just a forward-facing camera or three cameras including two lateral ones) and
the presence of action noise in the validation set. This experiment is inspired by
the fact that the 3-camera setup and the addition of noise have been advocated
for training end-to-end driving models [1,4,6,27].
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The results are shown in Fig. 2. The most striking observation is that
the correlation between offline prediction and online performance is weak. For
the basic setup – central camera and no action noise – the absolute value of
the correlation coefficient is only 0.39. The addition of action noise improves the
correlation to 0.54. Evaluating on data from three cameras brings the correlation
up to 0.77. This shows that a successful policy must not only predict the actions
of an expert on the expert’s trajectories, but also for observations away from the
expert’s trajectories. Proper validation data should therefore include examples
of recovery from perturbations.

Offline Metrics. Offline validation data from three cameras or with action noise
may not always be available. Therefore, we now aim to find offline metrics that
are predictive of driving quality even when evaluated in the basic setup with a
single forward-facing camera and no action noise.

Figure 3 shows scatter plots of offline metrics described in Sect. 3.3, versus the
navigation success rate. MSE is the least correlated with the driving success rate:
the absolute value of the correlation coefficient is only 0.39. Absolute steering
error is more strongly correlated, at 0.61. Surprisingly, weighting the error by
speed or accumulating the error over multiple subsequent steps does not improve
the correlation. Finally, quantized classification error and thresholded relative
error are also more strongly correlated, with the absolute value of the correlation
coefficient equal to 0.65 and 0.64, respectively.

Online Metrics. So far we have looked at the relation between offline metrics
and a single online metric – success rate. Is success rate fully representative
of actual driving quality? Here we compare the success rate with two other
online metrics: average fraction of distance traveled towards the goal and average
number of kilometers traveled between two infractions.

Fig. 2. Scatter plots of goal-directed navigation success rate vs. steering MSE when
evaluated on data from different distributions. We evaluate the models in the general-
ization condition (Town 2) and we plot the 50% best-performing models according to
the offline metric. Sizes of the circles denote the training iterations at which the mod-
els were evaluated. We additionally show the sample Pearson correlation coefficient for
each plot. Note how the error on the basic dataset (single camera, no action noise) is
the least informative of the driving performance.
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Fig. 3. Scatter plots of goal-directed navigation success rate vs. different offline metrics.
We evaluate the models in the generalization condition (Town 2) and we plot the
50% best-performing models according to the offline metric. Note how correlation is
generally weak, especially for mean squred error (MSE).

Figure 4 shows pairwise scatter plots of these three online metrics. Success
rate and average completion are strongly correlated, with a correlation coefficient
of 0.8. The number of kilometers traveled between two infractions is similarly
correlated with the success rate (0.77), but much less correlated with the average
completion (0.44). We conclude that online metrics are not perfectly correlated
and it is therefore advisable to measure several online metrics when evaluating
driving models. Success rate is well correlated with the other two metrics, which
justifies its use as the main online metric in our analysis.

Case Study. We have seen that even the best-correlated offline and online met-
rics have a correlation coefficient of only 0.65. Aiming to understand the reason
for this remaining discrepancy, here we take a closer look at two models which
achieve similar prediction accuracy, but drastically different driving quality. The
first model was trained with the MSE loss and forward-facing camera only. The
second model used the L1 loss and three cameras. We refer to these models as
Model 1 and Model 2, respectively.

Figure 5 (top left) shows the ground truth steering signal over time (blue),
as well as the predictions of the models (red and green, respectively). There is
no obvious qualitative difference in the predictions of the models: both often
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Fig. 4. Scatter plots of online driving quality metrics versus each other. The metrics
are: success rate, average fraction of distance to the goal covered (average completion),
and average distance (in km) driven between two infractions. Success rate is strongly
correlated with the other two metrics, which justifies its use as the main online metric
in our analysis.

deviate from the ground truth. One difference is a large error in the steering
signal predicted by Model 1 in a turn, as shown in Fig. 5 (top right). Such a
short-term discrepancy can lead to a crash, and it is difficult to detect based
on average prediction error. The advanced offline metrics evaluated above are
designed to be better at capturing such mistakes.

Figure 5 (bottom) shows several trajectories driven by both models. Model
1 is able to drive straight for some period of time, but eventually crashes in
every single trial, typically because of wrong timing or direction of a turn. In
contrast, Model 2 drives well and successfully completes most trials. This exam-
ple illustrates the difficulty of using offline metrics for predicting online driving
behavior.

4.4 Real-World Data

Evaluation of real-world urban driving is logistically complicated, therefore we
restrict the experiments on real-world data to an offline evaluation. We use the
BDDV dataset and the trained models provided by [27]. The models are trained
to perform 4-way classification (accelerate, brake, left, right), and we measure
their classification accuracy. We evaluate on the validation set of BDDV.

The offline metrics we presented above are designed for continuous values
and cannot be directly applied to classification-based models. Yet, some of them
can be adapted to this discrete setting. Table 2 shows the average accuracy, as
well as several additional metrics. First, we provide a breakdown of classification
accuracy by subsets of the data corresponding to different ground truth labels.
The prediction error in the turns is most informative, yielding the largest sep-
aration between the best and the worst models. Second, we try weighting the
errors with the ground-truth speed. We measure the resulting metric for the
full validation dataset, as well as for turns only. These metrics reduce the gap
between the feedforward and the LSTM models.
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4.5 Detailed Evaluation of Models

Scatter plots presented in the previous sections indicate general tendencies, but
not the performance of specific models. Here we provide a more detailed evalua-
tion of several driving models, with a focus on several parameters: the amount of
training data, its distribution, the regularization being used, the network archi-
tecture, and the loss function. We evaluate two offline metrics – MSE and the

Steering angle prediction vs Time Zoom-in of one turn

Driving trajectories of Model 1 Driving trajectories of Model 2

Fig. 5. Detailed evaluation of two driving models with similar offline prediction quality,
but very different driving behavior. Top left: Ground-truth steering signal (blue) and
predictions of two models (red and green) over time. Top right: a zoomed fragment
of the steering time series, showing a large mistake made by Model 1 (red). Bottom:
Several trajectories driven by the models in Town 1. Same scenarios indicated with the
same color in both plots. Note how the driving performance of the models is dramati-
cally different: Model 1 crashes in every trial, while Model 2 can drive successfully.

Table 2. Detailed accuracy evaluations on the BDDV dataset. We report the 4-way
classification accuracy (in %) for various data subsets and varying speed.

Model Average accuracy Weighted with speed

All data Straight Stop Turns All data Turns

Feedforward 78.0 90.0 72.0 32.4 80.7 27.7

CNN + LSTM 81.8 90.2 78.1 49.3 83.0 43.2

FCN + LSTM 83.3 90.4 80.7 50.7 83.6 44.4
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Table 3. Detailed evaluation of models in CARLA. “TRE” stands for thresholded
relative error, “Success rate” for the driving success rate. For MSE and TRE lower is
better, for the success rate higher is better. We mark with bold the best result in each
section. We highlight in green the cases where the best model according to an offline
metric is also the best at driving, separately for each section and each town. Both MSE
and TRE are not necessarily correlated with driving performance, but generally TRE
is more predictive of driving quality, correctly identifying 10 best-driving models out
of 12, compared to 6 out of 12 for MSE.

Parameter Value MSE TRE @ 0.1 Success rate

Town 1 Town 2 Town 1 Town 2 Town 1 Town 2

Amount of

training data

0.2 h 0.0086 0.0481 0.970 0.985 0.44 0.00

1 h 0.0025 0.0217 0.945 0.972 0.44 0.04

5 h 0.0005 0.0093 0.928 0.961 0.60 0.08

25 h 0.0007 0.0166 0.926 0.958 0.76 0.04

Type of training

data

1 cam., no noise 0.0007 0.0066 0.922 0.947 0.84 0.04

1 cam., noise 0.0009 0.0077 0.926 0.946 0.80 0.20

3 cam., no noise 0.0004 0.0086 0.928 0.953 0.84 0.08

3 cam., noise 0.0007 0.0166 0.926 0.958 0.76 0.04

Data balancing No balancing 0.0012 0.0065 0.907 0.924 0.88 0.36

With balancing 0.0011 0.0066 0.891 0.930 0.92 0.56

Regularization None 0.0014 0.0092 0.911 0.953 0.92 0.08

Mild dropout 0.0010 0.0074 0.921 0.953 0.84 0.20

High dropout 0.0007 0.0166 0.926 0.958 0.76 0.04

High drop., data aug. 0.0013 0.0051 0.919 0.931 0.88 0.36

Network

architecture

Shallow 0.0005 0.0111 0.936 0.963 0.68 0.12

Standard 0.0007 0.0166 0.926 0.958 0.76 0.04

Deep 0.0011 0.0072 0.928 0.949 0.76 0.24

Loss function L2 0.0010 0.0074 0.921 0.953 0.84 0.20

L1 0.0012 0.0061 0.891 0.944 0.96 0.52

thresholded relative error (TRE) – as well as the goal-directed navigation success
rate. For TRE we use the parameter α = 0.1.

The results are shown in Table 3. In each section of the table all parameters
are fixed, except for the parameter of interest. (Parameters may vary between
sections.) Driving performance is sensitive to all the variations. Larger amount
of training data generally leads to better driving. Training with one or three
cameras has a surprisingly minor effect. Data balancing helps in both towns.
Regularization helps generalization to the previously unseen town and weather.
Deeper networks generally perform better. Finally, the L1 loss leads to better
driving than the usual MSE loss. This last result is in agreement with Fig. 3,
which shows that absolute error is better correlated with the driving quality
than MSE.

Next, for each of the 6 parameters and each of the 2 towns we check if the best
model chosen based on the offline metrics is also the best in terms of the driving
quality. This simulates a realistic parameter tuning scenario a practitioner might
face. We find that TRE is more predictive of the driving performance than MSE,
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correctly identifying the best-driving model in 10 cases out of 12, compared to
6 out of 12 for MSE. This demonstrates that TRE, although far from being
perfectly correlated with the online driving quality, is much more indicative of
well-driving models than MSE.

5 Conclusion

We investigated the performance of offline versus online evaluation metrics for
autonomous driving. We have shown that the MSE prediction error of expert
actions is not a good metric for evaluating the performance of autonomous driv-
ing systems, since it is very weakly correlated with actual driving quality. We
explore two avenues for improving the offline metrics: modifying the validation
data and modifying the metrics themselves. Both paths lead to improved corre-
lation with driving quality.

Our work takes a step towards understanding the evaluation of driving mod-
els, but it has several limitations that can be addressed in future work. First,
the evaluation is almost entirely based on simulated data. We believe that the
general conclusion about weak correlation of online and offline metrics is likely
to transfer to the real world; however, it is not clear if the details of our cor-
relation analysis will hold in the real world. Performing a similar study with
physical vehicles operating in rich real-world environments would therefore be
very valuable. Second, we focus on the correlation coefficient as the measure of
relation between two quantities. Correlation coefficient estimates the connection
between two variables to some degree, but a finer-grained analysis may be needed
provide a more complete understanding of the dependencies between online and
offline metrics. Third, even the best offline metric we found is far from being
perfectly correlated with actual driving quality. Designing offline performance
metrics that are more strongly correlated with driving performance remains an
important challenge.
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