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Abstract. Eye gaze estimation has been increasingly demanded by
recent intelligent systems to accomplish a range of interaction-related
tasks, by using simple eye images as input. However, learning the highly
complex regression between eye images and gaze directions is nontriv-
ial, and thus the problem is yet to be solved efficiently. In this paper,
we propose the Asymmetric Regression-Evaluation Network (ARE-Net),
and try to improve the gaze estimation performance to its full extent. At
the core of our method is the notion of “two eye asymmetry” observed
during gaze estimation for the left and right eyes. Inspired by this, we
design the multi-stream ARE-Net; one asymmetric regression network
(AR-Net) predicts 3D gaze directions for both eyes with a novel asym-
metric strategy, and the evaluation network (E-Net) adaptively adjusts
the strategy by evaluating the two eyes in terms of their performance dur-
ing optimization. By training the whole network, our method achieves
promising results and surpasses the state-of-the-art methods on multiple
public datasets.
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1 Introduction

The eyes and their movements carry important information that conveys human
visual attention, purpose, intention, feeling and so on. Therefore, the ability
to automatically track human eye gaze has been increasingly demanded by
many recent intelligent systems, with direct applications ranging from human-
computer interaction [1,2], saliency detection [3] to video surveillance [4].
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As surveyed in [5], gaze estimation methods can be divided into two cat-
egories: model-based and appearance-based. Model-based methods are usually
designed to extract small eye features, e.g., infrared reflection points on the
corneal surface, to compute the gaze direction. However, they share common
limitations such as (1) requirement on specific hardware for illumination and
capture, (2) high failure rate when used in the uncontrolled environment, and
(3) limited working distance (typically within 60 cm).

Different with model-based methods, appearance-based methods do not rely
on small eye feature extraction under special illumination. Instead, they can work
with just a single ordinary camera to capture the eye appearance, then learn a
mapping function to predict the gaze direction from the eye appearance directly.
Whereas this greatly enlarges the applicability, the challenge part is that human
eye appearance can be heavily affected by various factors, such as the head pose,
the illumination, and the individual difference, making the mapping function
difficult to learn. In recent years, the Convolutional Neural Network (CNN) has
shown to be able to learn very complex functions given sufficient training data.
Consequently, the CNN-based methods have been reported to outperform the
conventional methods [6].

The goal of this work is to further exploit the power of CNNs and improve
the performance of appearance-based gaze estimation to a higher level. At the
core of our method is the notion of asymmetric regression for the left and the
right eyes. It is based on our key observation that (1) the gaze directions of
two eyes should be consistent physically, however, (2) even if we apply the same
regression method, the gaze estimation performance on two eyes can be very
different. Such “two eye asymmetry” implys a new gaze regression strategy that
no longer treats both eyes equally but tends to rely on the“high quality eye” to
train a more efficient and robust regression model.

In order to do so, we consider the following technical issues, i.e., how to
design a network that processes both eyes simultaneously and asymmetrically,
and how to control the asymmetry to optimize the network by using the high
quality data. Our idea is to guide the asymmetric gaze regression by eval-
uating the performance of the regression strategy w.r.t.different eyes.
In particular, by analyzing the “two eye asymmetry” (Sect. 3), we propose the
asymmetric regression network (AR-Net) to predict 3D gaze directions of two
eyes (Sect. 4.2), and the evaluation networks (E-Net) to adaptively evaluate and
adjust the regression strategy (Sect. 4.3). By integrating the AR-Net and the E-
Net (Sect. 4.4), the proposed Asymmetric Regression-Evaluation Network (ARE-
Net) learns to maximize the overall performance for the gaze estimator.

Our method makes the following assumptions. First, as commonly assumed
by previous methods along this direction [6,7], the user head pose can be
obtained by using existing head trackers [8]. Second, the user should roughly
fixate on the same targets with both eyes, which is usually the case in practice.
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With these assumptions, our method is capable of estimating gaze directions of
the two eyes from their images.

In summary, the contributions of this work are threefold:

– We propose the multi-stream AR-Net for asymmetric two-eye regression. We
also propose the E-Net to evaluate and help adjust the regression.

– We observe the “two eye asymmetry”, based on which we propose the mech-
anism of evaluation-guided asymmetric regression. This leads to asymmetric
gaze estimation for two eyes which is new.

– Based on the proposed mechanism and networks, we design the final ARE-Net
and it shows promising performance in gaze estimation for both eyes.

2 Related Work

There have been an increasing number of recent researches proposed for the task
of remote human gaze estimation, which can be roughly divided into two major
categories: model-based and appearance-based [5,9].

The Model-Based Methods estimate gaze directions using certain geomet-
ric eye models [10]. They typically extract and use near infrared (IR) corneal
reflections [10–12], pupil center [13,14] and iris contours [15,16] from eye images
as the input features to fit the corresponding models [17]. Whereas this type
of methods can predict gaze directions with a good accuracy, the extraction
of eye features may require hardware that may be composed of infrared lights,
stereo/high-definition cameras and RBG-D cameras [15,16]. These devices may
not be available when using many common devices, and they usually have limited
working distances. As a result, the model-based methods are more suitable for
being used in the controlled environments, e.g., in the laboratory, rather than
in outdoor scenes or with large user-camera distances, e.g., for advertisement
analysis [18].

The Appearance-Based Methods have relatively lower demand compared
with the model-based methods. They typically need a single camera to capture
the user eye images [19]. Certain non-geometric image features are produced
from the eye images, and then used to learn a gaze mapping function that maps
eye images to gaze directions. Up to now, various mapping functions have been
explored, such as neural networks [20,21], local linear interpolation [19], adaptive
linear regression [22], Gaussian process regression [23], and dimension reduc-
tion [24,25]. Some other methods use additional information such as saliency
maps [22,26] to guide the learning process. These methods all aim at reducing
the number of required training samples while maintaining the regression accu-
racy. However, since the gaze mapping is highly non-linear, the problem still
remains challenging to date.

The CNNs-Based Methods have already shown their ability to handle com-
plex regression tasks, and thus they have outperformed traditional appearance-
based methods. Some recent works introduce large appearance-based gaze
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datasets [27] and propose effective CNN-based gaze estimators [6,28]. More
recently, Krafka et al . implement the CNN-based gaze tracker in the mobile
devices [29]. Zhang et al . take into consideration the full face as input to
the CNNs [30]. Deng et al . propose a CNN-based method with geometry con-
straints [7]. In general, these methods can achieve better performance than tra-
ditional ones. Note that they all treat the left and the right eyes indifferently,
while in this paper we try to make further improvement by introducing and
utilizing the two eye asymmetry.

Besides the eye images, recent appearance-based methods may also take the
face images as input. The face image can be used to compute the head pose [6,31]
or input to the CNN for gaze regression [29,30]. In our method, we only assume
available head poses that can be obtained by using any existing head tracker,
and we do not require high resolution face images as input for gaze estimation.

3 Two Eye Asymmetry in Gaze Regression

Before getting into the technical details, we first review the problem of 3D gaze
direction estimation, and introduce the “two eye asymmetry” that inspires our
method.

3.1 3D Gaze Estimation via Regression

Any human gaze direction can be denoted by a 3D unit vector g, which represents
the eyeball orientation in the 3D space. Meanwhile, the eyeball orientation also
determines the eye appearance in the eye image, e.g., the location of the iris
contour and the shape of the eyelids. Therefore, there is a strong relation between
the eye gaze direction and the eye appearance in the image. As a result, the
problem of estimating the 3D gaze direction g ∈ R

3 from a given eye image
I ∈ R

H×W can be formulated as a regression problem g = f(I).
The regression is usually highly non-linear because the eye appearance is

complex. Besides, there are other factors that will affect I, and the head motion
is a major one. In order to handle head motion, it is necessary to also consider
the head pose h ∈ R

3 in the regression, which results in

g = f(I,h), (1)

where f is the regression function.
In the literature, various regression models have been used, such as the Neural

Network [20], the Gaussian Process regression model [32], and the Adaptive
Linear Regression model [22]. However, the problem is still challenging. In recent
years, with the fast development of the deep neural networks, solving such a
highly complex regression problem is becoming possible with the existence of
large training dataset, while designing an efficient network architecture is the
most important work to do.
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3.2 Two Eye Asymmetry

Existing gaze regression methods handles the two eyes indifferently. However, in
practice, we observe the two eye asymmetry regarding the regression accuracy.

Observation. At any moment, we cannot expect the same accuracy for
two eyes, and either eye has a chance to be more accurate.

The above “two eye asymmetry” can be due to various factors, e.g., head
pose, image quality and individuality. It’s a hint that the two eyes’ images may
have different ‘qualities’ in gaze estimation. Therefore, when training a gaze
regression model, it is better to identify and rely on the high quality eye image
from the input to train a more efficient and robust model.

4 Asymmetric Regression-Evaluation Network

Inspired by the “two eye asymmetry”, in this section, we deliver the Asym-
metric Regression-Evaluation Network (ARE-Net) for appearance-based gaze
estimation of two eyes.

4.1 Network Overview

The proposed networks use two eye images {I(i)
l }, {I(i)

r } and the head pose vec-
tor {h(i)} as input, to learn a regression that predicts the ground truth {g(i)

l } and
{g(i)

r }, where {g(i)
l } and {g(i)

r } are 3D gaze directions and i is the sample index.
For this purpose, we first introduce the Asymmetric Regression Network (AR-
Net), and then propose the Evaluation Network (E-Net) to guide the regression.
The overall structure is shown in Fig. 1.

Fig. 1. Overview of the proposed Asymmetric Regression-Evaluation Network (ARE-
Net). It consists of two major sub-networks, namely, the AR-Net and the E-Net. The
AR-Net performs asymmetric regression for the two eyes, while the E-Net predicts and
adjust the asymmetry to improve the gaze estimation accuracy.

Asymmetric Regression Network (AR-Net). It is a four-stream convolu-
tional network and it performs 3D gaze direction regression for both the left and
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the right eyes (detailed in Sect. 4.2). Most importantly, it is designed to be able
to optimize the two eyes in an asymmetric way.

Evaluation Network (E-Net). It is a two stream convolutional network that
learns to predict the current asymmetry state, i.e., which eye the AR-Net tends
to optimize at that time, and accordingly it adjusts the degree of asymmetry
(detailed in Sect. 4.3).

Network training. During training, parameters of both the AR-Net and the
E-Net are updated simultaneously. The loss functions and other details will be
given in the corresponding sections.

Testing stage. During test, the output of the AR-Net are the 3D gaze directions
of both eyes.

4.2 Asymmetric Regression Network (AR-Net)

The AR-Net processes two eye images in a joint and asymmetric way, and esti-
mates their 3D gaze directions.

Architecture. The AR-Net is a four-stream convolutional neural network, using
the “base-CNN” as the basic component followed by some fully connected layers,
as shown in Fig. 2(a). Follow the idea that both the separate features and joint
feature of the two eyes should be extracted and utilized, we design the first two
streams to extract a 500D deep features from each eye independently, and the
last two streams to produce a joint 500D feature in the end.

Note that the head pose is also an important factor to affect gaze directions,
and thus we input the head pose vector (3D for each eye) before the final regres-
sion. The final 1506D feature vector is produced by concatenating all the outputs
from the previous networks, as shown in Fig. 2(a).

The Base-CNN. The so called “base-CNN” is the basic component of the
proposed AR-Net and also the following E-Net. It consists of six convolutional
layers, three max-pooling layers, and a fully connected layer in the end. The
structure of the base-CNN is shown in Fig. 2(c). The size of each layer in the
base-CNN is set to be similar to that of AlexNet [33].

The input to the base-CNN can be any gray-scale eye image with a fixed
resolution of 36 × 60. For the convolutional layers, the learnable filters size is
3 × 3. The output channel number is 64 for the first and second layer, 128 for
the third and fourth layer, and 256 for the fifth and sixth layer.

Loss Function. We measure the angular error of the currently predicted 3D
gaze directions for the two eyes by

el = arccos
(

gl · f(I l)
‖gl‖‖f(I l)‖

)
, (2)

and

er = arccos
(

gr · f(Ir)
‖gr‖‖f(Ir)‖

)
, (3)
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Fig. 2. Architecture of the proposed networks. (a) The AR-Net is a four-stream network
to produce features from both the eye images. A linear regression is used to estimate
the 3D gaze directions of the two eyes. (b) The E-Net is a two-stream network for two
eye evaluation. The output is a two-dimensional probability vector. (c) The base-CNN
is the basic component to build up the AR-Net and the E-Net. It uses an eye image as
input. The output is a 1000D feature after six convolutional layers.

where f(·) indicates the gaze regression. Then, we compute the weighted average
of the two eye errors

e = λl · el + λr · er (4)

to represent the loss in terms of gaze prediction accuracy of both eyes.

Asymmetric Loss. The weights λl and λr determine whether the accuracy
of the left or the right eye should be considered more important. In the case
that λl �= λr, the loss function becomes asymmetric. According to the “two eye
asymmetry” discussed in Sect. 3.2, if one of the two eyes is more likely to achieve
a smaller error, we should enlarge its weight in optimizing the network. Following
this idea, we propose to set the weights according to the following:

{
λl/λr = 1/el

1/er
,

λl + λr = 1,
(5)

whose solution is

λl =
1/el

1/el + 1/er
, λr =

1/er
1/el + 1/er

. (6)

By substituting the λl and λr in Eq. (4), the final asymmetric loss becomes

LAR = 2 · el · er
el + er

, (7)

which encourages to rely on the high quality eye in training.
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4.3 Evaluation Network (E-Net)

As introduced above, the AR-Net can rely on the high quality eye image for
asymmetric learning. In order to provide more evidence on which eye it should
be, we design the E-Net to learn to predict the choice of the AR-Net, and also
guide its asymmetric strategy during optimization.

Architecture. The E-Net is a two-stream network with the left and the right
eye images as input. Each of the two stream is a base-CNN followed by two
fully connected layers. The output 500D features are then concatenated to be a
1000D feature, as shown in Fig. 2(b).

Finally, the 1000D feature is sent to the Softmax regressor to output a 2D
vector [pl, pr]T, where pl is the probability that the AR-Net chooses to rely on
the left eye, and pr for the right eye.

During training, the ground truth for p is set to be 1 if el < er from the
AR-Net, otherwise p is set to be 0. In other words, the evaluation network is
trained to predict the probability of the left/right eye image being more efficient
in gaze estimation.

Loss Function: In order to train the E-Net to predict the AR-Net’s choice, we
set its loss function as below:

LE = −{η · arccos(f(I l) · f(Ir)) · log(pl)+
(1 − η) · arccos(f(I l) · f(Ir)) · log(pr)},

(8)

where η = 1 if el ≤ er, and η = 0 if el > er. Besides, arccos(f(I l) · f(Ir))
computes the angular difference of the two eye gaze directions estimated by the
AR-Net, which measures the inconsistency of gl and gr.

This loss function can be intuitively understood as follows: if the left eye has
smaller error in the AR-Net, i.e., el < er, the E-Net should choose to maximize
pl to learn this fact in order to adjust the regression strategy of the AR-Net,
especially in the case when gl and gr are inconsistent. In this way, the E-Net is
trained to predict the high quality eye that can help optimize the AR-Net.

Modifying the Loss Function of AR-Net. An important task of the E-Net
is to adjust the asymmetry of the AR-Net, with the aim to improve the gaze
estimation accuracy, as explained before. In order to do so, by integrating the
E-Net, the loss function of the AR-Net in Eq. (7) can be modified as

L∗
AR = ω · LAR + (1 − ω) · β · (

el + er
2

), (9)

where ω balances the weight between asymmetric learning (the first term) and
symmetric learning (the second term). β scales the weight of symmetric learning,
and was set to 0.1 in our experiments. In particular, given the output (pl, pr) of
the E-Net, we compute

ω =
1 + (2η − 1) · pl + (1 − 2η) · pr

2
. (10)
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Again, η = 1 if el ≤ er, and η = 0 if el > er. Here we omit the derivation of ω,
while it is easy to see that ω = 1 when both the AR-Net and E-Net have a strong
agreement on the high quality eye, meaning that a heavily asymmetric learning
strategy can be recommanded; ω = 0 when they completely disagree, meaning
that it is better to just use a symmetric learning strategy as a compromise. In
practice, ω is a decimal number between 0 and 1.

4.4 Guiding Gaze Regression by Evaluation

Following the explanations above, we summarize again how the AR-Net and the
E-Net are integrated together (Fig. 1), and how the E-Net can guide the AR-Net.

– AR-Net: takes both eye images as input; loss function modified by the E-
Net’s output (pl, pr) to adjust the asymmetry adaptively (Eq. (9)).

– E-Net: takes both eye images as input; loss function modified by the AR-
Net’s output (f(I l), f(Ir)) and the errors (el, er) to predict the high quality
eye image for optimization (Eq. (8)).

– ARE-Net: as shown in Fig. 1, the AR-Net and the E-Net are integrated
and trained together. The final gaze estimation results are the output
(f(I l), f(Ir)) from the AR-Net.

5 Experimental Evaluation

In this section, we evaluate the proposed Asymmetric Regression-Evaluation
Network by conducting multiple experiments.

5.1 Dataset

The proposed is a typical appearance-based gaze estimation method. Therefore,
we use the following datasets in our experiments as previous methods do. Nec-
essary modification have been done as described.

Modified MPIIGaze Dataset: the MPIIGaze dataset [6] is composed of
213659 images of 15 participants, which contains a large variety of different
illuminations, eye appearances and head poses. It is among the largest datasets
for appearance-based gaze estimation and thus is commonly used. All the images
and data in the MPIIGaze dataset have already been normalized to eliminate
the effect due to face misalignment.

The MPIIGaze dataset provides a standard subset for evaluation, which con-
tains 1500 left eye images and 1500 right eye images independently selected
from each participants. However, our method requires paired eye images cap-
tured at the same time. Therefore, we modify the evaluation set by finding out
the missing image of every left-right eye image pair from the original dataset.
This doubles the image number in the evaluation set. In our experiments, we
use such a modified dataset instead of the original MPIIGaze dataset.
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Besides, we also conduct experiments to compare with methods using full
face images as input. As a result, we use the same full face subset from the
MPIIGaze dataset as described in [30].

UT Multiview Dataset [34]: it contains dense gaze data of 50 participants.
Both the left and right eye images are provided directly for use. The data nor-
malization is done as for the MPIIGaze dataset.

EyeDiap Dataset [27]: it contains a set of video clips of 16 participants with
free head motion under various lighting conditions. We randomly select 100
frames from each video clip, resulting in 18200 frames in total. Both eyes can be
obtained from each video frame. Note that we need to apply normalization for
all the eye images and data in the same way as the MPIIGaze dataset.

5.2 Baseline Methods

For comparison, we use the following methods as baselines. Results of the base-
line methods are obtained from our implementation or the published paper.

– Single Eye [6]: One of the typical appearance-based gaze estimation method
based on deep neural networks. The input is the image of a single eye. We
use the original Caffe codes provided by the authors of [6] to obtain all the
results in our experiments. Note that another method [28] also uses the same
network for gaze estimation and thus we regard [6,28] to be the same baseline.

– RF: One of the most commonly used regression method. It is shown to be
effective for a variety of applications. Similar to [34], multiple RF regressors
are trained for each head pose cluster.

– iTracker [29]: A multi-streams method that takes the full face image, two
individual eye images, and a face grid as input. The performance of iTracker
has already been reported in [30] on the MPIIGaze dataset and thus we use
the reported numbers.

– Full Face [30]: A deep neuroal network-based method that takes the full
face image as input with a spatial weighting strategy. Its performance has
also been tested and reported on the same MPIIGaze dataset.

5.3 Within Dataset Evaluation

We first conduct experiments with training data and test data from the same
dataset. In particular, we use the modified MPIIGaze dataset as described in
Sect. 5.1 since it contains both eye images and the full face images of a large
amount. Note that because the training data and test data are from the same
dataset, we use the leave-one-person-out strategy to ensure that the experiments
are done in a fully person-independent manner.

Eye image-Based Methods. We first consider the scenario where only eye
images are used as the input. The accuracy is measured by the average gaze
error of all the test samples including both the left and right images. The results
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Fig. 3. Experimental results of the within-dataset evaluation and comparison.

of all the methods are obtained by running the corresponding codes on our
modified MPIIGaze dataset with the same protocol. The comparison is shown
in Fig. 3(a). The proposed method clearly achieves the best accuracy. As for the
AR-Net, the average error is 5.6◦, which is more than 11% improved compared
to the Single Eye method, and also 30% improved compared to the RF method.
This is benefited from both our new network architecture and loss fuction design.
In addition, by introducing the E-Net, the final ARE-Net further improves the
accuracy by a large margin. This demonstrates the effectiveness of the proposed
E-Net as well as the idea of evaluation-guided regression. The final accuracy of
5.0◦ achieves the state-of-the-art for eye image-based gaze estimation.

Full Face Image-Based Methods. Recent methods such as [30] propose to
use the full face image as input. Although our method only requires eye images
as input, we still make a comparison with them. As for the dataset, we use the
face image dataset introduced previously, and extract the two eye images as
our input. Note that following [30], the gaze origin is defined at the face center
for both the iTracker and Full Face methods. Therefore, in order to make a fair
comparison, we also convert our estimated two eye gaze vectors to have the same
origin geometrically, and then take their average as the final output.

As shown in Fig. 3(b), the Full Face method achieves the lowest error, while
the proposed AR-Net and ARE-Net also show good performance which is com-
parable with the iTracker. Note the fact that our method is the only one that
does not need full face image as input, its performance is quite satisfactory con-
sidering the save of computational cost (face image resolution 448 × 448 v.s. eye
image resolution 36 × 60).

5.4 Cross-Dataset Evaluation

We then present our evaluation results in a cross-dataset setting. For the training
dataset, we choose the UT Multiview dataset since it covers the largest variation
of gaze directions and head poses. Consequently, we use data from the other two
datasets, namely the MPIIGaze and EyeDiap datasets, as test data. As for the
test data from the Eyediap dataset, we extract 100 images from each video clip,
resulting in 18200 face images for test.
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Fig. 4. Experimental results of the cross-dataset evaluation. The proposed methods
outperform the Single Eye method on the EyeDiap and MPIIGaze datasets.

We first compare our method with the Single Eye method, which is a typical
CNN-based method. As shown in Fig. 4, the proposed ARE-Net outperforms
the Single Eye method on both the MPIIGaze and the EyeDiap datasets. In
particular, compared with the Single Eye method, the performance improvement
is 13.5% on the EyeDiap dataset, and 25.4% on the MPIIGaze dataset. This
demonstrates the superior of the proposed ARE-Net. Note that our basic AR-
Net also achieves a better accuracy than the Single Eye method. This shows the
effectiveness of the proposed four-stream network with both eyes as input.

5.5 Evaluation on Each Individual

Previous experiments show the advantage of the proposed method in terms of
the average performance. In this section, we further analyse its performance for
each subject. As shown in Table 1, results for all the 15 subjects in the MPI-
IGaze dataset are illustrated, with a comparison to the Single Eye method. The
proposed ARE-Net and AR-Net outperform the Single Eye method for almost
every subject (with only one exception), and the ARE-Net is also consistently
better than the AR-Net. This validates our key idea and confirms the robustness
of the proposed methods.

Table 1. Comparison of the Single Eye, AR and ARE methods regarding their accuracy
on each subject.

Method Subject Avg.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Single Eye 4.9 7.1 5.8 6.5 5.9 6.4 5.6 7.6 6.6 7.7 6.0 6.0 6.1 6.9 5.5 6.3

AR-Net 4.0 4.4 5.9 6.8 3.7 6.1 4.3 5.8 6.0 7.1 6.5 5.5 5.6 6.8 6.2 5.7

ARE-Net 3.8 3.4 5.1 5.0 3.2 6.2 3.9 5.6 5.5 5.7 6.7 5.1 4.0 5.7 6.3 5.0
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5.6 Analysis on E-Net

The proposed E-Net is the key component of our method and thus it is important
to know how it benefits the method. To this end, we make further analysis based
on the initial results obtained in Sect. 5.3. According to the comparisons shown
in Table 2, we have the following conclusions:

– Regarding the overall gaze error, the existence of the E-Net improves the
accuracy greatly in all cases compared to other methods.

– The E-Net can still select the relatively better eye to some extent from the
already very ballanced output of the ARE-Net, while those other strategies
cannot make more efficient selection.

– With the E-net, the difference between the better/worse eyes reduces greatly
(to only 0.4◦). Therefore, the major advantage of the E-Net is that it can
optimize both the left and the right eyes simultaneously and effectively.

– Even if compared with other methods with correctly selected better eyes, the
ARE-Net still achieves the best result without selection.

Table 2. Analysis on average gaze errors of: (left to right) average error of two eyes/E-
Net’s selection/the better eye/the worse eye/difference between the better and worse
eyes/the eye near the camera/the more frontal eye.

Methods Two eyes E-Net select Better eye Worse eye Δ Near Frontal

RF 8.0 – 6.7 9.4 2.7 8.1 8.1

Single Eye 6.3 – 5.0 7.6 2.6 6.2 6.4

AR-Net 5.7 – 5.3 6.0 0.7 5.6 5.7

ARE-Net 5.0 4.9 4.8 5.2 0.4 5.0 5.0

5.7 Additional Anaysis

Additional analyses and discussions on the proposed method are presented in
this section.

Convergency. Figure 5 shows the convergency analysis of the proposed ARE-
Net tested on the MPIIGaze dataset. During iteration, the estimation error tends
to decrease guadually, and achieves the minimum after around 100 epochs. In
general, during our experiments, the proposed network is shown to be able to
converge quickly and robustly.

Case Study. We show some representative cases that explain why the proposed
method is superior to the previous one, as shown in Fig. 6. In these cases, using
only a single eye image, e.g., as the Single Eye method, may perform well for one
eye but badly for the other eye, and the bad one will affect the final accuracy
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Fig. 5. Validation on the convergency of the ARE-Net.

greatly. On the other hand, the ARE-Net performs asymmetric optimization and
helps improve both the better eye and the worse eye via the designed evaluation
and feedback strategy. Therefore, the output gaze errors tend to be small for both
eyes and this results in a much better overall accuracy. This is also demonstrated
in Table 2.

Fig. 6. Comparison of two eyes’ gaze errors. The Single Eye method (left plot of each
case) usually produces large errors in one eye while the proposed ARE-Net (right plot
of each case) reduces gaze errors for both eyes.

Only One Eye Image as Input. Our method requires both the left and the
right eye images as input. In the case that only one of the eye images is available,
we can still test our network as follows.

Without loss of generality, assume we only have a left eye image. In order to
run our method, we need to feed the network with something as the substitute
for the right eye. In our experiment, we use (1) 0 matrix, i.e., a black image, (2)
a copy of the left eye, (3) a randomly selected right eye image from a different
person in the dataset, and (4) a fixed right eye image (typical shape, frontal
gaze) from a different person in the dataset.

We test the trained models in Sect. 5.3 in the same leave-one-person-out
manner. The average results of all the 15 subjects on the modified MPIIGaze
dataset are shown in Table 3. It is interesting that if we use a black image or a
copy of the input image to serve as the other eye image, the estimation errors are
quite good (∼6◦). This confirms that our network is quite robust even if there
is a very low quality eye image.
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Table 3. Gaze estimation errors using only one eye image as input to the ARE-Net.

Input image Substitute for the missing eye image

0 matrix Copy input Random eye Fixed eye

Left eye 6.3◦ (left) 6.1◦(left) 8.5◦(left) 10.7◦(left)

Right eye 6.2◦ (right) 6.1◦(right) 7.9◦(right) 9.3◦(right)

6 Conclusion and Discussion

We present a deep learning-based method for remote gaze estimation. This prob-
lem is challenging because learning the highly complex regression between eye
images and gaze directions is nontrivial. In this paper, we propose the Asym-
metric Regression-Evaluation Network (ARE-Net), and try to improve the gaze
estimation performance to its full extent. At the core of our method is the notion
of “two eye asymmetry”, which can be observed on the performance of the left
and the right eyes during gaze estimation. Accordingly, we design the multi-
stream ARE-Net. It contains one asymmetric regression network (AR-Net) to
predict 3D gaze directions for both eyes with an asymmetric strategy, and one
evaluation networks (E-Net) to adaptively adjust the strategy by evaluating the
two eyes in terms of their quality in optimization. By training the whole network,
our method achieves good performances on public datasets.

There are still future works to do along this line. First, we consider extending
our current framework to also exploit the full face information. Second, since our
current base-CNN is simple, it is possible to further enhance its performance if
we use more advanced network structures.
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