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Abstract. Recently, models based on deep neural networks have dom-
inated the fields of scene text detection and recognition. In this paper,
we investigate the problem of scene text spotting, which aims at simul-
taneous text detection and recognition in natural images. An end-to-end
trainable neural network model for scene text spotting is proposed. The
proposed model, named as Mask TextSpotter, is inspired by the newly
published work Mask R-CNN. Different from previous methods that also
accomplish text spotting with end-to-end trainable deep neural networks,
Mask TextSpotter takes advantage of simple and smooth end-to-end
learning procedure, in which precise text detection and recognition are
acquired via semantic segmentation. Moreover, it is superior to previ-
ous methods in handling text instances of irregular shapes, for example,
curved text. Experiments on ICDAR2013, ICDAR2015 and Total-Text
demonstrate that the proposed method achieves state-of-the-art results
in both scene text detection and end-to-end text recognition tasks.
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1 Introduction

In recent years, scene text detection and recognition have attracted growing
research interests from the computer vision community, especially after the
revival of neural networks and growth of image datasets. Scene text detection and
recognition provide an automatic, rapid approach to access the textual informa-
tion embodied in natural scenes, benefiting a variety of real-world applications,
such as geo-location [58], instant translation, and assistance for the blind.
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Scene text spotting, which aims at concurrently localizing and recog-
nizing text from natural scenes, have been previously studied in numerous
works [21,49]. However, in most works, except [3,27], text detection and subse-
quent recognition are handled separately. Text regions are first hunted from the
original image by a trained detector and then fed into a recognition module. This
procedure seems simple and natural, but might lead to sub-optimal performances
for both detection and recognition, since these two tasks are highly correlated
and complementary. On one hand, the quality of detections larges determines
the accuracy of recognition; on the other hand, the results of recognition can
provide feedback to help reject false positives in the phase of detection.

Recently, two methods [3,27] that devise end-to-end trainable frameworks for
scene text spotting have been proposed. Benefiting from the complementarity
between detection and recognition, these unified models significantly outperform
previous competitors. However, there are two major drawbacks in [3,27]. First,
both of them can not be completely trained in an end-to-end manner. [27] applied
a curriculum learning paradigm [1] in the training period, where the sub-network
for text recognition is locked at the early iterations and the training data for
each period is carefully selected. Busta et al. [3] at first pre-train the networks
for detection and recognition separately and then jointly train them until con-
vergence. There are mainly two reasons that stop [3,27] from training the models
in a smooth, end-to-end fashion. One is that the text recognition part requires
accurate locations for training while the locations in the early iterations are usu-
ally inaccurate. The other is that the adopted LSTM [17] or CTC loss [11] are
difficult to optimize than general CNNs. The second limitation of [3,27] lies in
that these methods only focus on reading horizontal or oriented text. However,
the shapes of text instances in real-world scenarios may vary significantly, from
horizontal or oriented, to curved forms.

Fig. 1. [llustrations of different text spotting methods. The left presents horizontal text
spotting methods [27,30]; The middle indicates oriented text spotting methods [3]; The
right is our proposed method. Green bounding box: detection result; Red text in green
background: recognition result. (Color figure online)

In this paper, we propose a text spotter named as Mask TextSpotter, which
can detect and recognize text instances of arbitrary shapes. Here, arbitrary
shapes mean various forms text instances in real world. Inspired by Mask R-
CNN [13], which can generate shape masks of objects, we detect text by segment
the instance text regions. Thus our detector is able to detect text of arbitrary
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shapes. Besides, different from the previous sequence-based recognition methods
[26,44,45] which are designed for 1-D sequence, we recognize text via semantic
segmentation in 2-D space, to solve the issues in reading irregular text instances.
Another advantage is that it does not require accurate locations for recognition.
Therefore, the detection task and recognition task can be completely trained
end-to-end, and benefited from feature sharing and joint optimization.

We validate the effectiveness of our model on the datasets that include hor-
izontal, oriented and curved text. The results demonstrate the advantages of
the proposed algorithm in both text detection and end-to-end text recognition
tasks. Specially, on ICDAR2015, evaluated at a single scale, our method achieves
an F-Measure of 0.86 on the detection task and outperforms the previous top
performers by 13.2%-25.3% on the end-to-end recognition task.

The main contributions of this paper are four-fold. (1) We propose an end-
to-end trainable model for text spotting, which enjoys a simple, smooth train-
ing scheme. (2) The proposed method can detect and recognize text of various
shapes, including horizontal, oriented, and curved text. (3) In contrast to previ-
ous methods, precise text detection and recognition in our method are accom-
plished via semantic segmentation. (4) Our method achieves state-of-the-art per-
formances in both text detection and text spotting on various benchmarks.

2 Related Work

2.1 Scene Text Detection

In scene text recognition systems, text detection plays an important role [59]. A
large number of methods have been proposed to detect scene text [7,15,16,19,
21,23,30,31,34-37,43,47,48,50,52,54,54-57]. In [21], Jaderberg et al. use Edge
Boxes [60] to generate proposals and refine candidate boxes by regression. Zhang
et al. [54] detect scene text by exploiting the symmetry property of text. Adapted
from Faster R-CNN [40] and SSD [33] with well-designed modifications, [30,56]
are proposed to detect horizontal words.

Multi-oriented scene text detection has become a hot topic recently. Yao et
al. [52] and Zhang et al. [55] detect multi-oriented scene text by semantic seg-
mentation. Tian et al. [48] and Shi et al. [43] propose methods which first detect
text segments and then link them into text instances by spatial relationship or
link predictions. Zhou et al. [57] and He et al. [16] regress text boxes directly
from dense segmentation maps. Lyu et al. [35] propose to detect and group the
corner points of the text to generate text boxes. Rotation-sensitive regression
for oriented scene text detection is proposed by Liao et al. [31].

Compared to the popularity of horizontal or multi-oriented scene text detec-
tion, there are few works focusing on text instances of arbitrary shapes. Recently,
detection of text with arbitrary shapes has gradually drawn the attention of
researchers due to the application requirements in the real-life scenario. In [41],
Risnumawan et al. propose a system for arbitrary text detection based on text
symmetry properties. In [4], a dataset which focuses on curve orientation text
detection is proposed. Different from most of the above-mentioned methods, we
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propose to detect scene text by instance segmentation which can detect text
with arbitrary shapes.

2.2 Scene Text Recognition

Scene text recognition [46,53] aims at decoding the detected or cropped image
regions into character sequences. The previous scene text recognition approaches
can be roughly split into three branches: character-based methods, word-based
methods, and sequence-based methods. The character-based recognition meth-
ods [2,22] mostly first localize individual characters and then recognize and group
them into words. In [20], Jaderberg et al. propose a word-based method which
treats text recognition as a common English words (90k) classification problem.
Sequence-based methods solve text recognition as a sequence labeling problem.
In [44], Shi et al. use CNN and RNN to model image features and output the
recognized sequences with CTC [11]. In [26,45], Lee et al. and Shi et al. recognize
scene text via attention based sequence-to-sequence model.

The proposed text recognition component in our framework can be classified
as a character-based method. However, in contrast to previous character-based
approaches, we use an FCN [42] to localize and classify characters simultaneously.
Besides, compared with sequence-based methods which are designed for a 1-D
sequence, our method is more suitable to handle irregular text (multi-oriented
text, curved text et al.).

2.3 Scene Text Spotting

Most of the previous text spotting methods [12,21,29,30] split the spotting pro-
cess into two stages. They first use a scene text detector [21,29,30] to localize
text instances and then use a text recognizer [20,44] to obtain the recognized
text. In [3,27], Li et al. and Busta et al. propose end-to-end methods to localize
and recognize text in a unified network, but require relatively complex training
procedures. Compared with these methods, our proposed text spotter can not
only be trained end-to-end completely, but also has the ability to detect and
recognize arbitrary-shape (horizontal, oriented, and curved) scene text.

2.4 General Object Detection and Semantic Segmentation

With the rise of deep learning, general object detection and semantic segmenta-
tion have achieved great development. A large number of object detection and
segmentation methods [5,6,8,9,13,28,32,33,39,40,42] have been proposed. Ben-
efited from those methods, scene text detection and recognition have achieved
obvious progress in the past few years. Our method is also inspired by those
methods. Specifically, our method is adapted from a general object instance seg-
mentation model Mask R-CNN [13]. However, there are key differences between
the mask branch of our method and that in Mask R-CNN. Our mask branch
can not only segment text regions but also predict character probability maps,
which means that our method can be used to recognize the instance sequence
inside character maps rather than predicting an object mask only.
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Fig. 2. Illustration of the architecture of the our method.

3 Methodology

The proposed method is an end-to-end trainable text spotter, which can handle
various shapes of text. It consists of an instance-segmentation based text detector
and a character-segmentation based text recognizer.

3.1 Framework

The overall architecture of our proposed method is presented in Fig.2. Func-
tionally, the framework consists of four components: a feature pyramid network
(FPN) [32] as backbone, a region proposal network (RPN) [40] for generating
text proposals, a Fast R-CNN [40] for bounding boxes regression, a mask branch
for text instance segmentation and character segmentation. In the training phase,
a lot of text proposals are first generated by RPN, and then the Rol features of
the proposals are fed into the Fast R-CNN branch and the mask branch to gen-
erate the accurate text candidate boxes, the text instance segmentation maps,
and the character segmentation maps.

Backbone. Text in nature images are various in sizes. In order to build high-level
semantic feature maps at all scales, we apply a feature pyramid structure [32]
backbone with ResNet [14] of depth 50. FPN uses a top-down architecture to
fuse the feature of different resolutions from a single-scale input, which improves
accuracy with marginal cost.

RPN. RPN is used to generate text proposals for the subsequent Fast R-
CNN and mask branch. Following [32], we assign anchors on different stages
depending on the anchor size. Specifically, the area of the anchors are set to
{322642,1282, 2562, 5122} pixels on five stages { P, Ps, Py, Ps, Ps} respectively.
Different aspect ratios {0.5, 1,2} are also adopted in each stages as in [40]. In this
way, the RPN can handle text of various sizes and aspect ratios. Rol Align [13] is
adapted to extract the region features of the proposals. Compared to Rol Pool-
ing [8], Rol Align preserves more accurate location information, which is quite
beneficial to the segmentation task in the mask branch. Note that no special
design for text is adopted, such as the special aspect ratios or orientations of
anchors for text, as in previous works [15,30,34].

Fast R-CNN. The Fast R-CNN branch includes a classification task and a
regression task. The main function of this branch is to provide more accurate
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bounding boxes for detection. The inputs of Fast R-CNN are in 7 x 7 resolution,
which are generated by Rol Align from the proposals produced by RPN.

Mask Branch. There are two tasks in the mask branch, including a global
text instance segmentation task and a character segmentation task. As shown
in Fig. 3, giving an input Rol, whose size is fixed to 16 * 64, through four convo-
lutional layers and a de-convolutional layer, the mask branch predicts 38 maps
(with 32128 size), including a global text instance map, 36 character maps, and
a background map of characters. The global text instance map can give accu-
rate localization of a text region, regardless of the shape of the text instance.
The character maps are maps of 36 characters, including 26 letters and 10 Ara-
bic numerals. The background map of characters, which excludes the character
regions, is also needed for post-processing.

Global word map

Rol
> - > N N A Character maps

16%64%256  16%64%256  16%64%256  16%64*256 3241284256
- - Background map

32+128

Fig. 3. Hlustration of the mask branch. Subsequently, there are four convolutional
layers, one de-convolutional layer, and a final convolutional layer which predicts maps
of 38 channels (1 for global text instance map; 36 for character maps; 1 for background
map of characters).

3.2 Label Generation

For a training sample with the input image I and the corresponding ground
truth, we generate targets for RPN, Fast R-CNN and mask branch. Generally,
the ground truth contains P = {p1,pa...pm} and C = {c1 = (cc1,cly),ca =
(cea,cla),y ..y cn = (cen,cly)}, where p; is a polygon which represents the local-
ization of a text region, cc; and cl; are the category and location of a character
respectively. Note that, in our method C is not necessary for all training samples.

We first transform the polygons into horizontal rectangles which cover the
polygons with minimal areas. And then we generate targets for RPN and Fast
R-CNN following [8,32,40]. There are two types of target maps to be generated
for the mask branch with the ground truth P, C' (may not exist) as well as the
proposals yielded by RPN: a global map for text instance segmentation and a
character map for character semantic segmentation. Given a positive proposal
r, we first use the matching mechanism of [8,32,40] to obtain the best matched
horizontal rectangle. The corresponding polygon as well as characters (if any)
can be obtained further. Next, the matched polygon and character boxes are
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Fig. 4. (a) Label generation of mask branch. Left: the blue box is a proposal yielded
by RPN, the red polygon and yellow boxes are ground truth polygon and character
boxes, the green box is the horizontal rectangle which covers the polygon with minimal
area. Right: the global map (top) and the character map (bottom). (b) Overview of the
pixel voting algorithm. Left: the predicted character maps; right: for each connected
regions, we calculate the scores for each character by averaging the probability values
in the corresponding region. (Color figure online)

shifted and resized to align the proposal and the target map of H x W as the
following formulas:

B, = (By, — min(ry)) x W/(maz(ry) — min(ry)) (1)

B, = (By, — min(ry)) x H/(maz(r,) — min(ry)) (2)

where (B, By) and (By,,By,) are the updated and original vertexes of the
polygon and all character boxes; (15, r,) are the vertexes of the proposal .

After that, the target global map can be generated by just drawing the
normalized polygon on a zero-initialized mask and filling the polygon region
with the value 1. The character map generation is visualized in Fig. 4a. We first
shrink all character bounding boxes by fixing their center point and shortening
the sides to the fourth of the original sides. Then, the values of the pixels in the
shrunk character bounding boxes are set to their corresponding category indices
and those outside the shrunk character bounding boxes are set to 0. If there are
no character bounding boxes annotations, all values are set to —1.

3.3 Optimization

As discussed in Sect. 3.1, our model includes multiple tasks. We naturally define
a multi-task loss function:

L= Lrpn + a1 Lrenn + a2Lmaska (3)

where L;p, and Lycp, are the loss functions of RPN and Fast R-CNN, which
are identical as these in [8,40]. The mask loss L,.sr consists of a global text
instance segmentation loss Lgiopq; and a character segmentation loss Lepqr:

Lpask = Lglobal + 6Lchara (4)

where Lgopq; is an average binary cross-entropy loss and Lcpq,r is a weighted
spatial soft-max loss. In this work, the a1, ao, 3, are empirically set to 1.0.
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Text Instance Segmentation Loss. The output of the text instance segmen-
tation task is a single map. Let IV be the number of pixels in the global map, y,,
be the pixel label (y,, € 0,1), and x,, be the output pixel, we define the Lgopas
as follows:

N
1
global N Z Yn X log )) + (1 - yn) X log(l - S(:Cn))] (5)
where S(z) is a sigmoid function.

Character Segmentation Loss. The output of the character segmentation
consists of 37 maps, which correspond to 37 classes (36 classes of characters and
the background class). Let T be the number of classes, N be the number of
pixels in each map. The output maps X can be viewed as an N x T matrix. In
this way, the weighted spatial soft-max loss can be defined as follows:

N T-1 Xt

e
L(‘har - 7N Z W Z Yn thg W% (6)
n=1 t=0 k=0
where Y is the corresponding ground truth of X. The weight W is used to
balance the loss value of the positives (character classes) and the background
class. Let the number of the background pixels be N,.,, and the background
class index be 0, the weights can be calculated as:

egs

if )/i,o = 1)

1
W; = .
Nyeg/(N — Npeg) otherwise

(7)

Note that in inference, a sigmoid function and a soft-max function are applied
to generate the global map and the character segmentation maps respectively.

3.4 Inference

Different from the training process where the input Rols of mask branch come
from RPN, in the inference phase, we use the outputs of Fast R-CNN as proposals
to generate the predicted global maps and character maps, since the Fast R-CNN
outputs are more accurate.

Specially, the processes of inference are as follows: first, inputting a test
image, we obtain the outputs of Fast R-CNN as [40] and filter out the redundant
candidate boxes by NMS; and then, the kept proposals are fed into the mask
branch to generate the global maps and the character maps; finally the predicted
polygons can be obtained directly by calculating the contours of text regions on
global maps, the character sequences can be generated by our proposed pizel
voting algorithm on character maps.

Pixel Voting. We decode the predicted character maps into character sequences
by our proposed pixel voting algorithm. We first binarize the background map,
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where the values are from 0 to 255, with a threshold of 192. Then we obtain
all character regions according to connected regions in the binarized map. We
calculate the mean values of each region for all character maps. The values can
be seen as the character classes probability of the region. The character class
with the largest mean value will be assigned to the region. After that, we group
all the characters from left to right according to the writing habit of English.

Weighted Edit Distance. Edit distance can be used to find the best-matched
word of a predicted sequence with a given lexicon. However, there may be mul-
tiple words matched with the minimal edit distance at the same time, and the
algorithm can not decide which one is the best. The main reason for the above-
mentioned issue is that all operations (delete, insert, replace) in the original edit
distance algorithm have the same costs, which does not make sense actually.

i'lrdelete: abcd —> abc cost:1 delete: abcd —> abc cost: p!

| insert: abd -> abed  cost:1 | | insert: abd -> abcd  cost: (b +pi)/2
replace: abc —> ab cost:1 replace: abc -> ab cost: max(1-p)"/ py’,0)
T (a) edit distance T (b) weighted edit distance /

Fig. 5. Illustration of the edit distance and our proposed weighted edit distance. The
red characters are the characters will be deleted, inserted and replaced. Green char-
acters mean the candidate characters. p§,, 4., is the character probability, index is the
character index and c is the current character. (Color figure online)

Inspired by [51], we propose a weighted edit distance algorithm. As shown
in Fig. 5, different from edit distance, which assign the same cost for different
operations, the costs of our proposed weighted edit distance depend on the char-
acter probability pS, ;... which yielded by the pixel voting. Mathematically, the
weighted edit distance between two strings a and b, whose length are |a| and ||
respectively, can be described as Dg 3(|al, |b]), where

max(i, 7) if min(Z,j) =0,
D (l ]) _ Da,b(i - 17.7) + Cd
@b min ¢ D, (3,5 — 1) + C; otherwise.

Da,b(i — l,j — 1) + OT X l(a,ﬁébj)
(8)
where 1(q,p,) is the indicator function equal to 0 when a; = b; and equal to 1
otherwise; D, (4, ) is the distance between the first ¢ characters of a and the
first j characters of b; Cy, C;, and C, are the deletion, insert, and replace cost
respectively. In contrast, these costs are set to 1 in the standard edit distance.

4 Experiments

To validate the effectiveness of the proposed method, we conduct experiments
and compare with other state-of-the-art methods on three public datasets: a
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horizontal text set ICDAR2013 [25], an oriented text set ICDAR2015 [24] and a
curved text set Total-Text [4].

4.1 Datasets

SynthText. is a synthetic dataset proposed by [12], including about 800000
images. Most of the text instances in this dataset are multi-oriented and anno-
tated with word and character-level rotated bounding boxes, as well as text
sequences.

ICDAR2013. is a dataset proposed in Challenge 2 of the ICDAR 2013 Robust
Reading Competition [25] which focuses on the horizontal text detection and
recognition in natural images. There are 229 images in the training set and 233
images in the test set. Besides, the bounding box and the transcription are also
provided for each word-level and character-level text instance.

ICDAR2015. is proposed in Challenge 4 of the ICDAR, 2015 Robust Reading
Competition [24]. Compared to ICDAR2013 which focuses on “focused text”
in particular scenario, ICDAR2015 is more concerned with the incidental scene
text detection and recognition. It contains 1000 training samples and 500 test
images. All training images are annotated with word-level quadrangles as well as
corresponding transcriptions. Note that, only localization annotations of words
are used in our training stage.

Total-Text. is a comprehensive scene text dataset proposed by [4]. Except for
the horizontal text and oriented text, Total-Text also consists of a lot of curved
text. Total-Text contains 1255 training images and 300 test images. All images
are annotated with polygons and transcriptions in word-level. Note that, we only
use the localization annotations in the training phase.

4.2 Implementation Details

Training. Different from previous text spotting methods which use two inde-
pendent models [22,30] (the detector and the recognizer) or alternating training
strategy [27], all subnets of our model can be trained synchronously and end-to-
end. The whole training process contains two stages: pre-trained on SynthText
and fine-tuned on the real-world data.

In the pre-training stage, we set the mini-batch to 8, and all the shorter edge
of the input images are resized to 800 pixels while keeping the aspect ratio of
the images. The batch sizes of RPN and Fast R-CNN are set to 256 and 512 per
image with a 1 : 3 sample ratio of positives to negatives. The batch size of the
mask branch is 16. In the fine-tuning stage, data augmentation and multi-scale
training technology are applied due to the lack of real samples. Specifically, for
data augmentation, we randomly rotate the input pictures in a certain angle
range of [—15°,15°]. Some other augmentation tricks, such as modifying the
hue, brightness, contrast randomly, are also used following [33]. For multi-scale
training, the shorter sides of the input images are randomly resized to three
scales (600, 800, 1000). Besides, following [27], extra 1162 images for character
detection from [56] are also used as training samples. The mini-batch of images
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is kept to 8, and in each mini-batch, the sample ratio of different datasets is set
to 4:1:1:1:1 for SynthText, ICDAR2013, ICDAR2015, Total-Text and the extra
images respectively. The batch sizes of RPN and Fast R-CNN are kept as the
pre-training stage, and that of the mask branch is set to 64 when fine-tuning.

We optimize our model using SGD with a weight decay of 0.0001 and momen-
tum of 0.9. In the pre-training stage, we train our model for 170k iterations, with
an initial learning rate of 0.005. Then the learning rate is decayed to a tenth
at the 120k iteration. In the fine-tuning stage, the initial learning rate is set
to 0.001, and then be decreased to 0.0001 at the 40k iteration. The fine-tuning
process is terminated at the 80k iteration.

Inference. In the inference stage, the scales of the input images depend on
different datasets. After NMS, 1000 proposals are fed into Fast R-CNN. False
alarms and redundant candidate boxes are filtered out by Fast R-CNN and NMS
respectively. The kept candidate boxes are input to the mask branch to generate
the global text instance maps and the character maps. Finally, the text instance
bounding boxes and sequences are generated from the predicted maps.

We implement our method in Caffe2 and conduct all experiments on a regular
workstation with Nvidia Titan Xp GPUs. The model is trained in parallel and
evaluated on a single GPU.

4.3 Horizontal Text

We evaluate our model on ICDAR2013 dataset to verify its effectiveness in
detecting and recognizing horizontal text. We resize the shorter sides of all input
images to 1000 and evaluate the results on-line.

The results of our model are listed and compared with other state-of-the-
art methods in Tables1 and 3. As shown, our method achieves state-of-the-art
results among detection, word spotting and end-to-end recognition. Specifically,
for detection, though evaluated at a single scale, our method outperforms some
previous methods which are evaluated at multi-scale setting [16,18] (F-Measure:
91.7% wv.s. 90.3%); for word spotting, our method is comparable to the previ-
ous best method; for end-to-end recognition, despite amazing results have been
achieved by [27,30], our method is still beyond them by 1.1%-1.9%.

4.4 Oriented Text

We verify the superiority of our method in detecting and recognizing oriented
text by conducting experiments on ICDAR2015. We input the images with three
different scales: the original scale (720 x 1280) and two larger scales where shorter
sides of the input images are 1000 and 1600 due to a lot of small text instance in
ICDAR2015. We evaluate our method on-line and compare it with other meth-
ods in Tables 2 and 3. Our method outperforms the previous methods by a large
margin both in detection and recognition. For detection, when evaluated at the
original scale, our method achieves the F-Measure of 84%, higher than the cur-
rent best one [16] by 3.0%, which evaluated at multiple scales. When evaluated at
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a larger scale, a more impressive result can be achieved (F-Measure: 86.0%), out-
performing the competitors by at least 5.0%. Besides, our method also achieves
remarkable results on word spotting and end-to-end recognition. Compared with
the state of the art, the performance of our method has significant improvements
by 13.2%-25.3%, for all evaluation situations.

Table 1. Results on ICDAR2013. “S”, “W” and “G” mean recognition with strong,

weak and generic lexicon respectively.

Method Word spotting End-to-End FPS
S w |G S w |G

Jaderberg et al. [21] 90.5 |- 76 864 |- - -
FCRNall+multi-filt [12] |- - 84.7 | - - - -
Textboxes [30] 93.9 {92.0 [85.9 91.6 |89.7 |83.9 |-
Deep text spotter [3] 92 |89 81 |89 |8 |77 |9

Li et al. [27] 94.2 /92,4 88.2/91.1 [ 89.8 [84.6 |1.1
Ours 92.5 192.0 |88.2/92.2|91.1|86.5/4.8

Table 2. Results on ICDAR2015. “S”,
weak and generic lexicon respectively.

“W?” and “G” mean recognition with strong,

Method Word Spotting | End-to-End FPS
S W |G S w |G

Baseline OpenCV3.0 + Tesseract [24] | 14.7 | 12.6 | 8.4 |13.8 |12.0 | 8.0 |-
TextSpotter [38] 37.0 |21.0 |16.0 |35.0 | 20.0 |16.0 |1
Stradvision [24] 45.9 |- - 43.7 |- - -
TextProposals + DictNet [10,20] 56.0 | 52.3 149.7 | 53.3 |49.6 [47.2 | 0.2
HUST_MCLAB [43,44] 706 - - 679 - |- |-
Deep text spotter [3] 58.0 1 53.0 | 51.0 | 54.0 | 51.0 |47.0 |9.0
Ours (720) 71.6 |63.9 |51.6 |71.3 |62.5 50.0 6.9
Ours (1000) 777 | 71.3 |58.6 | 77.3 |69.9 60.3 4.8
Ours (1600) 79.3|74.5/64.2|79.3|73.0 62.4 2.6

4.5 Curved Text

Detecting and recognizing arbitrary text (e.g. curved text) is a huge superiority
of our method beyond other methods. We conduct experiments on Total-Text
to verify the robustness of our method in detecting and recognizing curved text.
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Fig. 6. Visualization results of ICDAR 2013 (the left), ICDAR 2015 (the middle) and
Total-Text (the right).

Table 3. The detection results on ICDAR2013 and ICDAR2015. For ICDAR2013, all
methods are evaluated under the “DetEval” evaluation protocol. The short sides of the
input image in “Ours (det only)” and “Ours” are set to 1000.

Method ICDAR2013 FPS ICDAR2015 FPS
Precision | Recall | F-Measure Precision | Recall | F-Measure

Zhang et al. [55] | 88.0 78.0 |83.0 0.5 |71.0 43.0 |54.0 0.5
Yao et al. [52] 88.9 80.2 84.3 1.6 |72.3 58.7 |64.8 1.6
CTPN [48] 93.0 83.0 |88.0 7.1 | 74.0 52.0 |61.0 -
Seglink [43] 87.7 83.0 |85.3 20.6 | 73.1 76.8 75.0 -
EAST [57] - - - - 83.3 78.3 |80.7 -
SSTD [15] 89.0 86.0 |88.0 7.7 180.0 73.0 77.0 7.7
Wordsup [18] 93.3 87.5 90.3 2 79.3 77.0 78.2 2
He et al. [16] 92.0 81.0 |86.0 1.1 |82.0 80.0 |81.0 1.1
Ours (det only) | 94.1 88.1 91.0 46 |85.8 81.2 |834 4.8
Ours 95.0 88.6 |91.7 4.6 |91.6 81.0 |86.0 4.8

Fig. 7. Qualitative comparisons on Total-Text without lexicon. Top: results of
TextBoxes [30]; Bottom: results of ours.
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Similarly, we input the test images with the short edges resized to 1000. The
evaluation protocol of detection is provided by [4]. The evaluation protocol of
end-to-end recognition follows ICDAR 2015 while changing the representation
of polygons from four vertexes to an arbitrary number of vertexes in order to
handle the polygons of arbitrary shapes.

Table 4. Results on Total-Text. “None” means recognition without any lexicon. “Full”
lexicon contains all words in test set.

Method Detection End-to-End
Precision | Recall | F-Measure | None | Full
Ch'ng et al. [4] | 40.0 33.0 [36.0 - -
Liao et al. [30] |62.1 45.5 | 52.5 36.3 | 48.9
Ours 69.0 55.0 | 61.3 52.9 | 71.8

To compare with other methods, we also trained a model [30] using the code
in [30]' with the same training data. As shown in Fig.7, our method has a
large superiority on both detection and recognition for curved text. The results
in Table4 show that our method exceeds [30] by 8.8 points in detection and at
least 16.6% in end-to-end recognition. The significant improvements of detection
mainly come from the more accurate localization outputs which encircle the text
regions with polygons rather than the horizontal rectangles. Besides, our method
is more suitable to handle sequences in 2-D space (such as curves), while the
sequence recognition network used in [3,27,30] are designed for 1-D sequences.

4.6 Speed

Compared to previous methods, our proposed method exhibits a good speed-
accuracy trade-off. It can run at 6.9 FPS with the input scale of 720 x 1280.
Although a bit slower than the fastest method [3], it exceeds [3] by a large
margin in accuracy. Moreover, the speed of ours is about 4.4 times of [27] which
is the current state-of-the-art on ICDAR2013.

4.7 Ablation Experiments

Some ablation experiments, including “With or without character maps”, “With
or without character annotation”, and “With or without weighted edit distance”,
are discussed in the Supplementary.

! https://github.com/MhLiao/TextBoxes.
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5 Conclusion

In this paper, we propose a text spotter, which detects and recognizes scene
text in a unified network and can be trained end-to-end completely. Comparing
with previous methods, our proposed network is very easy to train and has the
ability to detect and recognize irregular text (e.g. curved text). The impressive
performances on all the datasets which includes horizontal text, oriented text
and curved text, demonstrate the effectiveness and robustness of our method for
text detection and end-to-end text recognition.
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