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Abstract. In this paper, we propose a novel deep learning based video
saliency prediction method, named DeepVS. Specifically, we establish
a large-scale eye-tracking database of videos (LEDOV), which includes
32 subjects’ fixations on 538 videos. We find from LEDOV that human
attention is more likely to be attracted by objects, particularly the mov-
ing objects or the moving parts of objects. Hence, an object-to-motion
convolutional neural network (OM-CNN) is developed to predict the
intra-frame saliency for DeepVS, which is composed of the objectness and
motion subnets. In OM-CNN, cross-net mask and hierarchical feature
normalization are proposed to combine the spatial features of the object-
ness subnet and the temporal features of the motion subnet. We further
find from our database that there exists a temporal correlation of human
attention with a smooth saliency transition across video frames. We thus
propose saliency-structured convolutional long short-term memory (SS-
ConvLSTM) network, using the extracted features from OM-CNN as
the input. Consequently, the inter-frame saliency maps of a video can
be generated, which consider both structured output with center-bias
and cross-frame transitions of human attention maps. Finally, the exper-
imental results show that DeepVS advances the state-of-the-art in video
saliency prediction.
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1 Introduction

The foveation mechanism in the human visual system (HVS) indicates that only
a small fovea region captures most visual attention at high resolution, while other
peripheral regions receive little attention at low resolution. To predict human
attention, saliency prediction has been widely studied in recent years, with mul-
tiple applications [5,21,22,38] in object recognition, object segmentation, action
recognition, image caption, and image/video compression, among others. In this
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paper, we focus on predicting video saliency at the pixel level, which models
attention on each video frame.

The traditional video saliency prediction methods mainly focus on the fea-
ture integration theory [16,19,20,26], in which some spatial and temporal fea-
tures were developed for video saliency prediction. Differing from the integra-
tion theory, the deep learning (DL) based methods [13,18,28,29,32] have been
recently proposed to learn human attention in an end-to-end manner, signif-
icantly improving the accuracy of image saliency prediction. However, only a
few works have managed to apply DL in video saliency prediction [1,2,23,27].
Specifically, Cagdas et al. [1] applied a two-stream CNN structure taking both
RGB frames and motion maps as the inputs for video saliency prediction.
Bazzani et al. [2] leveraged a deep convolutional 3D (C3D) network to learn
the representations of human attention on 16 consecutive frames, and then a
long short-term memory (LSTM) network connected to a mixture density net-
work was learned to generate saliency maps in a Gaussian mixture distribution.

For training the DL networks, we establish a large-scale eye-tracking database
of videos (LEDOV) that contains the free-view fixation data of 32 subjects view-
ing 538 diverse-content videos. We validate that 32 subjects are enough through
consistency analysis among subjects, when establishing our LEDOV database.
The previous databases [24,33] do not investigate the sufficient number of sub-
jects in the eye-tracking experiments. For example, although Hollywood [24] con-
tains 1857 videos, it only has 19 subjects and does not show whether the subjects
are sufficient. More importantly, Hollywood focuses on task-driven attention,
rather than free-view saliency prediction.

Fig. 1. Attention heat maps of some frames selected from two videos. The heat maps
show that: (1) the regions with object can draw a majority of human attention, (2) the
moving objects or the moving parts of objects attract more human attention, and (3)
a dynamic pixel-wise transition of human attention occurs across video frames.

In this paper, we propose a new DL based video saliency prediction (DeepVS)
method. We find from Fig. 1 that people tend to be attracted by the moving
objects or the moving parts of objects, and this finding is also verified in the
analysis of our LEDOV database. However, all above DL based methods do
not explore the motion of objects in predicting video saliency. In DeepVS, a
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novel object-to-motion convolutional neural network (OM-CNN) is constructed
to learn the features of object motion, in which the cross-net mask and hierarchi-
cal feature normalization (FN) are proposed to combine the subnets of objectness
and motion. As such, the moving objects at different scales can be located as
salient regions.

Both Fig. 1 and the analysis of our database show that the saliency maps
are smoothly transited across video frames. Accordingly, a saliency-structured
convolutional long short-term memory (SS-ConvLSTM) network is developed to
predict the pixel-wise transition of video saliency across frames, with the out-
put features of OM-CNN as the input. The traditional LSTM networks for video
saliency prediction [2,23] assume that human attention follows the Gaussian mix-
ture distribution, since these LSTM networks cannot generate structured output.
In contrast, our SS-ConvLSTM network is capable of retaining spatial informa-
tion of attention distribution with structured output through the convolutional
connections. Furthermore, since the center-bias (CB) exists in the saliency maps
as shown in Fig. 1, a CB dropout is proposed in the SS-ConvLSTM network. As
such, the structured output of saliency considers the CB prior. Consequently,
the dense saliency prediction of each video frame can be obtained in DeepVS in
an end-to-end manner. The experimental results show that our DeepVS method
advances the state-of-the-art of video saliency prediction in our database and
other 2 eye-tracking databases. Both the DeepVS code and the LEDOV database
are available online.

2 Related Work

Feature Integration Methods. Most early saliency prediction methods
[16,20,26,34] relied on the feature integration theory, which is composed of two
main steps: feature extraction and feature fusion. In the image saliency prediction
task, many effective spatial features were extracted to predict human attention
with either a top-down [17] or bottom-up [4] strategy. Compared to image, video
saliency prediction is more challenging because temporal features also play an
important role in drawing human attention. To achieve this, a countable amount
of motion-based features [11,42] were designed as additional temporal informa-
tion for video saliency prediction. Besides, some methods [16,40] focused on
calculating a variety of temporal differences across video frames, which are effec-
tive in video saliency prediction. Taking advantage of sophisticated video coding
standards, the methods of [7,37] explored the spatio-temporal features in com-
pressed domain for predicting video saliency. In addition to feature extraction,
many works have focused on the fusion strategy to generate video saliency maps.
Specifically, a set of probability models [15,31,40] were constructed to integrate
different kinds of features in predicting video saliency. Moreover, other machine
learning algorithms, such as support vector machine and neutral network, were
also applied to linearly [26] or non-linearly [20] combine the saliency-related fea-
tures. Other advanced methods [9,19,41] applied phase spectrum analysis in the
fusion model to bridge the gap between features and video saliency. For instance,
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Guo et al. [9] exploited phase spectrum of quaternion Fourier transform (PQFT)
on four feature channels to predict video saliency.

DL Based Methods. Most recently, DL has been successfully incorporated
to automatically learn spatial features for predicting the saliency of images [13,
18,28,29,32]. However, only a few works have managed to apply DL in video
saliency prediction [1–3,23,27,33,35]. In these works, the dynamic characteristics
were explored in two ways: adding temporal information to CNN structures
[1,3,27,35] or developing a dynamic structure with LSTM [2,23]. For adding
temporal information, a four-layer CNN in [3] and a two-stream CNN in [1] were
trained with both RGB frames and motion maps as the inputs. Similarly, in [35],
the pair of consecutive frames concatenated with a static saliency map (generated
by the static CNN) are fed into the dynamic CNN for video saliency prediction,
allowing the CNN to generalize more temporal features. In our work, the OM-
CNN structure of DeepVS includes the subnets of objectness and motion, since
human attention is more likely to be attracted by the moving objects or the
moving parts of objects. For developing the dynamic structure, Bazzani et al.
[2] and Liu et al. [23] applied LSTM networks to predict video saliency maps,
relying on both short- and long-term memory of attention distribution. However,
the fully connected layers in LSTM limit the dimensions of both the input and
output; thus, it is unable to obtain the end-to-end saliency map and the strong
prior knowledge needs to be assumed for the distribution of saliency in [2,23].
In our work, DeepVS explores SS-ConvLSTM to directly predict saliency maps
in an end-to-end manner. This allows learning the more complex distribution of
human attention, rather than a pre-assumed distribution of saliency.

Fig. 2. Category tree of videos in LEDOV according to the content. The numbers of
categories/sub-categories are shown in the brackets. Besides, the number of videos for
each category/sub-category is also shown in the brackets.

3 LEDOV Database

For training the DNN models of DeepVS, we establish the LEDOV database.
Some details of establishing LEDOV database are as follows.
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Stimuli. In order to make the content of LEDOV diverse, we constructed a
hierarchical tree of key words for video categories as shown in Fig. 2. There were
three main categories, i.e., animal, human and man-made object. Note that the
natural scene videos were not included, as they are scarce in comparison with
other categories. The category of animal had 51 sub-categories. Similarly, the
category of man-made objects was composed of 27 sub-categories. The category
of human had the sub-categories of daily action, sports, social activity and art
performance. These sub-categories of human were further classified as can be
seen in Fig. 2. Consequently, we obtained 158 sub-categories in total, and then
collected 538 videos belonging to these 158 sub-categories from YouTube. The
number of videos for each category/sub-category can be found in Fig. 2. Some
examples of the collected videos are provided in the supplementary material. It
is worth mentioning that LEDOV contains the videos with a total of 179,336
frames and 6,431 seconds, and that all videos are at least 720p resolution and
24 Hz frame rate.

Procedure. For monitoring the binocular eye movements, a Tobii TX300 eye
tracker [14] was used in our experiment. During the experiment, the distance
between subjects and the monitor was fixed at 65 cm. Before viewing videos,
each subject was required to perform a 9-point calibration for the eye tracker.
Afterwards, the subjects were asked to free-view videos displayed at a random
order. Meanwhile, the fixations of the subjects were recorded by the eye tracker.

Subjects. A new scheme was introduced for determining the sufficient number
of participants. We stopped recruiting subjects for eye-tracking experiments once
recorded fixations converged. Specifically, the subjects (with even numbers), who
finished the eye-tracking experiment, were randomly divided into 2 equal groups
by 5 times. Then, we measured the linear correlation coefficient (CC) of the
fixation maps from two groups, and the CC values are averaged over the 5-
time division. Figure 3 shows the averaged CC values of two groups, when the
number of subjects increases. As seen in this figure, the CC value converges when
the subject number reaches 32. Thus, we stopped recruiting subjects, when we
collected the fixations of 32 subjects. Finally, 5,058,178 fixations of all 32 subjects
on 538 videos were collected for our eye-tracking database.

Findings. We mine our database to analyze human attention on videos. Specif-
ically, we have the following 3 findings, the analysis of which is presented in the
supplemental material. Finding 1 : High correlation exists between objectness
and human attention. Finding 2 : Human attention is more likely to be attracted
by the moving objects or the moving parts of objects. Finding 3 : There exists
a temporal correlation of human attention with a smooth saliency transition
across video frames.
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Fig. 3. The consistency (CC value) for different numbers of subjects over all videos in
LEDOV.

4 Proposed Method

4.1 Framework

For video saliency prediction, we develop a new DNN architecture that com-
bines OM-CNN and SS-ConvLSTM. According to Findings 1 and 2, human
attention is highly correlated to objectness and object motion. As such, OM-
CNN integrates both regions and motion of objects to predict video saliency
through two subnets, i.e., the subnets of objectness and motion. In OM-CNN,
the objectness subnet yields a cross-net mask on the features of the convolutional
layers in the motion subnet. Then, the spatial features from the objectness sub-
net and the temporal features from the motion subnet are concatenated by the
proposed hierarchical feature normalization to generate the spatio-temporal fea-
tures of OM-CNN. The architecture of OM-CNN is shown in Fig. 4. Besides,
SS-ConvLSTM with the CB dropout is developed to learn the dynamic saliency
of video clips, in which the spatio-temporal features of OM-CNN serve as the
input. Finally, the saliency map of each frame is generated from 2 deconvolu-
tional layers of SS-ConvLSTM. The architecture of SS-ConvLSTM is shown in
Fig. 5.

4.2 Objectness and Motion Subnets in OM-CNN

In OM-CNN, an objectness subnet is designed for extracting multi-scale spa-
tial features related to objectness information, which is based on a pre-trained
YOLO [30]. To avoid over-fitting, a pruned structure of YOLO is applied as
the objectness subnet, including 9 convolutional layers, 5 pooling layers and 2
fully connected layers (FC ). To further avoid over-fitting, an additional batch-
normalization layer is added to each convolutional layer. Assuming that BN(·),
P (·) and ∗ are the batch-normalization, max pooling and convolution operations,
the output of the k-th convolutional layer Ck

o in the objectness subnet can be
computed as

Ck
o = L0.1(BN(P (Ck−1

o ) ∗ Wk−1
o + Bk−1

o )), (1)

where Wk−1
o and Bk−1

o indicate the kernel parameters of weight and bias at the
(k −1)-th convolutional layer, respectively. Additionally, L0.1(·) is a leaky ReLU
activation with leakage coefficient of 0.1. In addition to the objectness subnet, a
motion subnet is also incorporated in OM-CNN to extract multi-scale temporal
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Fig. 4. Overall architecture of our OM-CNN for predicting video saliency of intra-
frame. The sizes of convolutional kernels are shown in the figure. For instance, 3 × 3 × 16
means 16 convolutional kernels with size of 3 × 3. Note that the 7 − 9th convolutional
layers (C7

o , C8
o & C9

o ) in the objectness subnet have the same size of convolutional
kernels, thus sharing the same cube in (a) but not sharing the parameters. Similarly,
each of the last four cubes in the motion subnet represents 2 convolutional layers with
same kernel size. The details of the inference and feature normalization modules are
shown in (b). Note that the proposed cross-net mask, hierarchical feature normalization
and saliency inference module are highlighted with gray background.

features from the pair of neighboring frames. Similar to the objectness subnet,
a pruned structure of FlowNet [6] with 10 convolutional layers is applied as the
motion subnet. For details about objectness and motion subnets, please refer to
Fig. 4(a). In the following, we propose combining the subnets of objectness and
motion.

4.3 Combination of Objectness and Motion Subnets

In OM-CNN, we propose the hierarchical FN and cross-net mask to combine
the multi-scale features of both objectness and motion subnets for predicting
saliency. In particular, the cross-net mask can be used to encode objectness
information when generating temporal features. Moreover, the inference module
is developed to generate the cross-net mask or saliency map, based on the learned
features.

Hierarchical FN. For leveraging the multi-scale information with various
receptive fields, the output features are extracted from different convolutional
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layers of the objectness and motion subnets. Here, a hierarchical FN is intro-
duced to concatenate the multi-scale features, which have different resolutions
and channel numbers. Specifically, we take hierarchical FN for spatial features
as an example. First, the features of the 4-th, 5-th, 6-th and last convolutional
layer in the objectness subnet are normalized through the FN module to obtain
4 sets of spatial features {FSi}4i=1. As shown in Fig. 4(b), each FN module is
composed of a 1 × 1 convolutional layer and a bilinear layer to normalize the
input features into 128 channels at a resolution of 28 × 28. All spatial features1

{FSi}5i=1 are concatenated in a hierarchy to obtain a total size of 28 × 28 × 542,
as the output of hierarchical FN. Similarly, the features of the 4-th, 6-th, 8-th and
10-th convolutional layers of the motion subnet are concatenated by hierarchical
FN, such that the temporal features {FTi}4i=1 with a total size of 28 × 28 × 512
are obtained.

Inference Module. Then, given the extracted spatial features {FSi}5i=1 and
temporal features {FTi}4i=1 from the two subnets of OM-CNN, an inference
module If is constructed to generate the saliency map Sf , which models the
intra-frame saliency of a video frame. Mathematically, Sf can be computed as

Sf = If ({FSi}5i=1, {FTi}4i=1). (2)

The inference module If is a CNN structure that consists of 4 convolutional
layers and 2 deconvolutional layers with a stride of 2. The detailed architecture
of If is shown in Fig. 4(b). Consequently, Sf is used to train the OM-CNN model,
as discussed in Sect. 4.5. Additionally, the output of convolutional layer C4 with
a size of 28 × 28 × 128 is viewed as the final spatio-temporal features, denoted
as FO. Afterwards, FO is fed into SS-ConvLSTM for predicting intra-frame
saliency.

Cross-Net Mask. Finding 2 shows that attention is more likely to be attracted
by the moving objects or the moving parts of objects. However, the motion
subnet can only locate the moving parts of a whole video frame without any
object information. Therefore, the cross-net mask is proposed to impose a mask
on the convolutional layers of the motion subnet, for locating the moving objects
and the moving parts of objects. The cross-net mask Sc can be obtained upon the
multi-scale features of the objectness subnet. Specifically, given spatial features
{FSi}5i=1 of the objectness subnet, Sc can be generated by another inference
module Ic as follows,

Sc = Ic({FSi}5i=1). (3)

Note that the architecture of Ic is same as that of If as shown in Fig. 4(b), but
not sharing the parameters. Consequently, the cross-net mask Sc can be obtained
to encode the objectness information, roughly related to salient regions. Then,
the cross-net mask Sc is used to mask the outputs of the first 6 convolutional

1 FS5 is generated by the output of the last FC layer in the objectness subnet, encod-
ing the high level information of the sizes, class and confidence probabilities of can-
didate objects in each grid.
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layers of the motion subnet. Accordingly, the output of the k-th convolutional
layer Ck

m in the motion subnet can be computed as

Ck
m = L0.1(M(Ck−1

m ,Sc) ∗ Wk−1
m + Bk−1

m ),
where M(Ck−1

m ,Sc) = Ck−1
m · (Sc · (1 − γ) + 1 · γ). (4)

In (4), Wk−1
m and Bk−1

m indicate the kernel parameters of weight and bias at the
(k − 1)-th convolutional layer in the motion subnet, respectively; γ (0 ≤ γ ≤ 1)
is an adjustable hyper-parameter for controlling the mask degree, mapping the
range of Sc from [0, 1] to [γ, 1]. Note that the last 4 convolutional layers are not
masked with the cross-net mask for considering the motion of the non-object
region in saliency prediction.

Fig. 5. Architecture of our SS-ConvLSTM for predicting saliency transition across
inter-frame, following the OM-CNN. Note that the training process is not annotated
in the figure.

4.4 SS-ConvLSTM

According to Finding 3, we develop the SS-ConvLSTM network for learning
to predict the dynamic saliency of a video clip. At frame t, taking the OM-
CNN features FO as the input (denoted as FOt), SS-ConvLSTM leverages both
long- and short-term correlations of the input features through the memory
cells (Mt−1

1 ,Mt−1
2 ) and hidden states (Ht−1

1 ,Ht−1
2 ) of the 1-st and 2-nd LSTM

layers at last frame. Then, the hidden states of the 2-nd LSTM layer Ht
2 are fed

into 2 deconvolutional layers to generate final saliency map St
l at frame t. The

architecture of SS-ConvLSTM is shown in Fig. 5.
We propose a CB dropout for SS-ConvLSTM, which improves the general-

ization capability of saliency prediction via incorporating the prior of CB. It is
because the effectiveness of the CB prior in saliency prediction has been verified
[37]. Specifically, the CB dropout is inspired by the Bayesian dropout [8]. Given
an input dropout rate pb, the CB dropout operator Z(pb) is defined based on an
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L-time Monte Carlo integration:

Z(pb) = Bino(L, pb · SCB)/(L · Mean(SCB)),

where SCB(i, j) = 1 −
√

(i − W/2)2 + (j − H/2)2
√

(W/2)2 + (H/2)2
. (5)

Bino(L,P) is a randomly generated mask, in which each pixel (i, j) is subject to
a L-trial Binomial distribution according to probability P(i, j). Here, the proba-
bility matrix P is modeled by CB map SCB, which is obtained upon the distance
from pixel (i, j) to the center (W/2,H/2). Consequently, the dropout operator
takes the CB prior into account, the dropout rate of which is based on pb.

Next, similar to [36], we extend the traditional LSTM by replacing the
Hadamard product (denoted as ◦) by the convolutional operator (denoted as ∗), to
consider the spatial correlation of input OM-CNN features in the dynamic model.
Taking the first layer of SS-ConvLSTM as an example, a single LSTM cell at frame
t can be written as

It1=σ((Ht−1
1 ◦ Zh

i ) ∗ Wh
i + (Ft ◦ Zf

i ) ∗ Wf
i + Bi),

At
1=σ((Ht−1

1 ◦ Zh
a) ∗ Wh

a + (Ft ◦ Zf
a) ∗ Wf

a + Ba),
Ot

1=σ((Ht−1
1 ◦ Zh

o ) ∗ Wh
o + (Ft ◦ Zf

o ) ∗ Wf
o + Bo),

Gt
1=tanh((Ht−1

1 ◦ Zh
g ) ∗ Wh

g + (Ft ◦ Zf
g ) ∗ Wf

g + Bg),

Mt
1=At

1 ◦ Mt−1
1 + It1 ◦ Gt

1, Ht
1 = Ot

1 ◦ tanh(Mt
1), (6)

where σ and tanh are the activation functions of sigmoid and hyperbolic
tangent, respectively. In (6), {Wh

i ,Wh
a , Wh

o ,Wh
g ,Wf

i ,Wf
a ,Wf

o ,Wf
g} and

{Bi,Ba,Bo,Bg} denote the kernel parameters of weight and bias at each con-
volutional layer ; It1, A

t
1 and Ot

1 are the gates of input (i), forget (a) and output
(o) for frame t; Gt

1, Mt
1 and Ht

1 are the input modulation (g), memory cells
and hidden states (h). They are all represented by 3-D tensors with a size of
28 × 28 × 128. Besides, {Zh

i ,Zh
a ,Zh

o ,Zh
g} are four sets of randomly generated

CB dropout masks (28 × 28 × 128) through Z(ph) in (5) with a hidden dropout
rate of ph. They are used to mask on the hidden states Ht

1, when computing
different gates or modulation {It1,At

1,O
t
1,G

t
1}. Similarly, given feature dropout

rate pf , {Zf
i ,Zf

a ,Zf
o ,Zf

g} are four randomly generated CB dropout masks from
Z(pf ) for the input features Ft. Finally, saliency map St

l is obtained upon the
hidden states of the 2-nd LSTM layer Ht

2 for each frame t.

4.5 Training Process

For training OM-CNN, we utilize the Kullback-Leibler (KL) divergence-based
loss function to update the parameters. This function is chosen because [13] has
proven that the KL divergence is more effective than other metrics in training
DNNs to predict saliency. Regarding the saliency map as a probability distribu-
tion of attention, we can measure the KL divergence DKL between the saliency
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map Sf of OM-CNN and the ground-truth distribution G of human fixations as
follows:

DKL(G,Sf ) = (1/WH)
∑W

i=1

∑H

j=1
Gij log(Gij/Sij

f ), (7)

where Gij and Sij
f refer to the values of location (i, j) in G and Sf (resolution:

W × H). In (7), a smaller KL divergence indicates higher accuracy in saliency
prediction. Furthermore, the KL divergence between the cross-net mask Sc of
OM-CNN and the ground-truth G is also used as an auxiliary function to train
OM-CNN. This is based on the assumption that the object regions are also cor-
related with salient regions. Then, the OM-CNN model is trained by minimizing
the following loss function:

LOM−CNN=
1

1 + λ
DKL(G,Sf )+

λ

1 + λ
DKL(G,Sc). (8)

In (8), λ is a hyper-parameter for controlling the weights of two KL divergences.
Note that OM-CNN is pre-trained on YOLO and FlowNet, and the remaining
parameters of OM-CNN are initialized by the Xavier initializer. We found from
our experimental results that the auxiliary function can decrease KL divergence
by 0.24.

To train SS-ConvLSTM, the training videos are cut into clips with the same
length T . In addition, when training SS-ConvLSTM, the parameters of OM-
CNN are fixed to extract the spatio-temporal features of each T -frame video
clip. Then, the loss function of SS-ConvLSTM is defined as the average KL
divergence over T frames:

LSS−ConvLSTM =
1
T

T∑

i=1

DKL(Si
l,Gi). (9)

In (9), {Si
l}Ti=1 are the final saliency maps of T frames generated by SS-

ConvLSTM, and {Gi}Ti=1 are their ground-truth attention maps. For each LSTM
cell, the kernel parameters are initialized by the Xavier initializer, while the
memory cells and hidden states are initialized by zeros.

5 Experimental Results

5.1 Settings

In our experiment, the 538 videos in our eye-tracking database are randomly
divided into training (456 videos), validation (41 videos) and test (41 videos)
sets. Specifically, to learn SS-ConvLSTM of DeepVS, we temporally segment 456
training videos into 24,685 clips, all of which contain T (=16) frames. An overlap
of 10 frames is allowed in cutting the video clips, for the purpose of data aug-
mentation. Before inputting to OM-CNN of DeepVS, the RGB channels of each
frame are resized to 448 × 448, with their mean values being removed. In training
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OM-CNN and SS-ConvLSTM, we learn the parameters using the stochastic gra-
dient descent algorithm with the Adam optimizer. Here, the hyper-parameters
of OM-CNN and SS-ConvLSTM are tuned to minimize the KL divergence of
saliency prediction over the validation set. The tuned values of some key hyper-
parameters are listed in Table 1. Given the trained models of OM-CNN and
SS-ConvLSTM, all 41 test videos in our eye-tracking database are used to eval-
uate the performance of our method, in comparison with 8 other state-of-the-art
methods. All experiments are conducted on a single Nvidia GTX 1080 GPU.
Benefiting from that, our method is able to make real-time prediction for video
saliency at a speed of 30 Hz.

Table 1. The values of hyper-parameters in OM-CNN and SS-ConvLSTM.

OM-CNN Objectness mask parameter γ in (4) 0.5

KL divergences weight λ in (8) 0.5

Stride k between input frames in motion subnet 5

Initial learning rate 1 × 10−5

Training epochs (iterations) 12(∼1.5 × 105)

Batch size 12

Weight decay 5 × 10−6

SS-ConvLSTM Bayesian dropout rates ph and pf 0.75 & 0.75

Times of Monte Carlo integration L 100

Initial learning rate 1 × 10−4

Training epochs (iterations) 15(∼2 × 105)

Weight decay 5 × 10−6

5.2 Evaluation on Our Database

In this section, we compare the video saliency prediction accuracy of our DeepVS
method and to other state-of-the-art methods, including GBVS [11], PQFT
[9], Rudoy [31], OBDL [12], SALICON [13], Xu [37], BMS [39] and SalGAN
[28]. Among these methods, [9,11,12,31] and [37] are 5 state-of-the-art saliency
prediction methods for videos. Moreover, we compare two latest DNN-based
methods: [13,28]. Note that other DNN-based methods on video saliency pre-
diction [1,2,23] are not compared in our experiments, since their codes are not
public. In our experiments, we apply four metrics to measure the accuracy of
saliency prediction: the area under the receiver operating characteristic curve
(AUC), normalized scanpath saliency (NSS), CC, and KL divergence. Note that
larger values of AUC, NSS or CC indicate more accurate prediction of saliency,
while a smaller KL divergence means better saliency prediction. Table 2 tabu-
lates the results of AUC, NSS, CC and KL divergence for our method and 8
other methods, which are averaged over the 41 test videos of our eye-tracking
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database. As shown in this table, our DeepVS method performs considerably
better than all other methods in terms of all 4 metrics. Specifically, our method
achieves at least 0.01, 0.51, 0.12 and 0.33 improvements in AUC, NSS, CC and
KL, respectively. Moreover, the two DNN-based methods, SALICON [13] and
SalGAN [28], outperform other conventional methods. This verifies the effec-
tiveness of saliency-related features automatically learned by DNN. Meanwhile,
our method is significantly superior to [13,28]. The main reasons for this result
are as follows. (1) Our method embeds the objectness subnet to utilize object-
ness information in saliency prediction. (2) The object motion is explored in the
motion subnet to predict video saliency. (3) The network of SS-ConvLSTM is
leveraged to model saliency transition across video frames. Section 5.4 analyzes
the above three reasons in more detail.

Table 2. Mean (standard deviation) of saliency prediction accuracy for our and 8 other
methods over all test videos in our database.

Fig. 6. Saliency maps of 8 videos randomly selected from the test set of our eye-tracking
database. The maps were yielded by our and 8 other methods as well the ground-truth
human fixations. Note that the results of only one frame are shown for each selected
video.
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Next, we compare the subjective results in video saliency prediction. Figure 6
demonstrates the saliency maps of 8 randomly selected videos in the test set,
detected by our DeepVS method and 8 other methods. In this figure, one frame
is selected for each video. As shown in Fig. 6, our method is capable of well
locating the salient regions, which are close to the ground-truth maps of human
fixations. In contrast, most of the other methods fail to accurately predict the
regions that attract human attention.

5.3 Evaluation on Other Databases

To evaluate the generalization capability of our method, we further evaluate the
performance of our method and 8 other methods on two widely used databases,
SFU [10] and DIEM [25]. In our experiments, the models of OM-CNN and SS-
ConvLSTM, learned from the training set of our eye-tracking database, are
directly used to predict the saliency of test videos from the DIEM and SFU
databases. Table 3 presents the average results of AUC, NSS, CC and KL for
our method and 8 other methods over SFU and DIEM. As shown in this table,
our method again outperforms all compared methods, especially in the DIEM
database. In particular, there are at least 0.05, 0.57, 0.11 and 0.34 improvements
in AUC, NSS, CC and KL, respectively. Such improvements are comparable to
those in our database. This demonstrates the generalization capability of our
method in video saliency prediction.

Table 3. Mean (standard deviation) values for saliency prediction accuracy of our and
other methods over SFU and DIEM databases.

5.4 Performance Analysis of DeepVS

Performance Analysis of Components. Depending on the independently
trained models of the objectness subnet, motion subnet and OM-CNN, we further
analyze the contribution of each component for saliency prediction accuracy in
DeepVS, i.e., the combination of OM-CNN and SS-ConvLSTM. The comparison
results are shown in Fig. 7. We can see from this figure that OM-CNN performs
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better than the objectness subnet with a 0.05 reduction in KL divergence, and
it outperforms the motion subnet with a 0.09 KL divergence reduction. Similar
results hold for the other metrics of AUC, CC and NSS. These results indicate the
effectiveness of integrating the subnets of objectness and motion. Moreover, the
combination of OM-CNN and SS-ConvLSTM reduces the KL divergence by 0.09
over the single OM-CNN architecture. Similar results can be found for the other
metrics. Hence, we can conclude that SS-ConvLSTM can further improve the
performance of OM-CNN due to exploring the temporal correlation of saliency
across video frames.

Fig. 7. Saliency prediction accuracy of objectness subnet, motion subnet, OM-CNN
and the combination of OM-CNN and SS-ConvLSTM (i.e., DeepVS), compared with
SALICON [13] and SalGAN [28]. Note that the smaller KL divergence indicates higher
accuracy in saliency prediction.

Performance Analysis of SS-ConvLSTM. We evaluate the performance
of the proposed CB dropout of SS-ConvLSTM. To this end, we train the SS-
ConvLSTM models at different values of hidden dropout rate ph and feature
dropout rate pf , and then test the trained SS-ConvLSTM models over the vali-
dation set. The averaged KL divergences are shown in Fig. 8(a). We can see that
the CB dropout can reduce KL divergence by 0.03 when both ph and pf are set
to 0.75, compared to the model without CB dropout (ph = pf = 1). Meanwhile,
the KL divergence sharply rises by 0.08, when both ph and pf decrease from
0.75 to 0.2. This is caused by the under-fitting issue, as most connections in
SS-ConvLSTM are dropped. Thus, ph and pf are set to 0.75 in our model. The
SS-ConvLSTM model is trained for a fixed video length (T = 16). We further
evaluate the saliency prediction performance of the trained SS-ConvLSTM model
over variable-length videos. Here, we test the trained SS-ConvLST model over
the validation set, the videos of which are clipped at different lengths. Figure 8(b)
shows the averaged KL divergences for video clips at various lengths. We can
see that the performance of SS-ConvLSTM is even a bit better, when the video
length is 24 or 32. This is probably because the well-trained LSTM cell is able to
utilize more inputs to achieve a better performance for video saliency prediction.
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Fig. 8. (a): KL divergences of our models with different dropout rates. (b): KL diver-
gences over test videos with variable lengths.

6 Conclusion

In this paper, we have proposed the DeepVS method, which predicts video
saliency through OM-CNN and SS-ConvLSTM. For training the DNN models
of OM-CNN and SS-ConvLSTM, we established the LEDOV database, which
has the fixations of 32 subjects on 538 videos. Then, the OM-CNN archi-
tecture was proposed to explore the spatio-temporal features of the object-
ness and object motion to predict the intra-frame saliency of videos. The SS-
ConvLSTM architecture was developed to model the inter-frame saliency of
videos. Finally, the experimental results verified that DeepVS significantly out-
performs 8 other state-of-the-art methods over both our and other two public
eye-tracking databases, in terms of AUC, CC, NSS, and KL metrics. Thus, the
prediction accuracy and generalization capability of DeepVS can be validated.
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