
Transferable Adversarial Perturbations

Wen Zhou(B) , Xin Hou , Yongjun Chen , Mengyun Tang ,
Xiangqi Huang , Xiang Gan , and Yong Yang

Basic Research Group, Security Platform Department, Tencent, Beijing, China
wen8.zhou@gmail.com, hx173149@gmail.com,

{yongjunchen,mengyuntang,angelahuang,xenosgan,coolcyang}@tencent.com

Abstract. State-of-the-art deep neural network classifiers are highly
vulnerable to adversarial examples which are designed to mislead clas-
sifiers with a very small perturbation. However, the performance of
black-box attacks (without knowledge of the model parameters) against
deployed models always degrades significantly. In this paper, We pro-
pose a novel way of perturbations for adversarial examples to enable
black-box transfer. We first show that maximizing distance between nat-
ural images and their adversarial examples in the intermediate feature
maps can improve both white-box attacks (with knowledge of the model
parameters) and black-box attacks. We also show that smooth regu-
larization on adversarial perturbations enables transferring across mod-
els. Extensive experimental results show that our approach outperforms
state-of-the-art methods both in white-box and black-box attacks.
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1 Introduction

Recently, deep neural networks achieve state-of-the-art performance in many
fields such as computer vision [1,2], speech recognition [3], and machine transla-
tion [4]. However, recent works [5–9] show that deep neural networks are highly
vulnerable to adversarial perturbations of the data. Adversarial examples are
modified very slightly in a way that is intended to cause a classifier to misclassify
them. Several methods have been proposed to generated adversarial examples
using the gradient information of neural networks. Fast Gradient Sign Method
(FGSM) [7] and Basic Iterative Method (BIM) [8] serve as two baseline methods
to generate adversarial examples with different transfer abilities. FGSM gener-
ates adversarial examples by linearizing the cost function around the current
parameters of models. It can be computed efficiently using back-propagation.

W. Zhou and X. Hou—Equal contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01264-9 28) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11218, pp. 471–486, 2018.
https://doi.org/10.1007/978-3-030-01264-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01264-9_28&domain=pdf
http://orcid.org/0000-0002-5485-287X
http://orcid.org/0000-0002-0788-3438
http://orcid.org/0000-0002-3608-7799
http://orcid.org/0000-0003-1210-2779
http://orcid.org/0000-0003-1612-0819
http://orcid.org/0000-0002-7495-0071
http://orcid.org/0000-0003-2117-0853
https://doi.org/10.1007/978-3-030-01264-9_28
https://doi.org/10.1007/978-3-030-01264-9_28


472 W. Zhou et al.

However, it usually has a low success rate with white-box attacks since it does
not increase the cost function sufficiently with a single step. BIM extends FGSM
by taking multiple steps of FGSM. It usually induces higher error rates than
the FGSM for white-box attacks since it can produce more harmful adversarial
examples without any approximation for the white-box model. However, BIM
transfers across models at lower rates and it produces weaker black-box attacks
than FGSM, which indicates that BIM tends to overfit on the white-box model.
Because of the huge search space, both one-step and iterative methods can not
search the transferrable perturbations efficiently, where the transferrable pertur-
bations are insensitive to diverse parameters and architectures of models.

We propose a novel adversarial perturbations generation method which
enables black-box transfer. We introduce two terms into cost function to guide
the search directions of perturbations.

First, we maximize the distances between natural images and their adver-
sarial examples in the intermediate feature maps which can address vanishing
gradients for adversarial perturbations generation. Thus, it can search pertur-
bations efficiently with back-propagation. Besides, since large distances in the
intermediate feature maps correlate with the large distances in the predictions
of neural networks, it will cause error predictions with high probability. We show
that it also can increase the probability of successful black-box transfer.

Second, we introduce a regularization term into cost function to remove the
high-frequency perturbations, which enables black-box transfer with high error
rates. Because of the continuity of the neighboring pixels emerged in data, the
convolutional kernels learned by deep neural networks also capture this property.
Thus, the high-frequency perturbations are smoothed by these kernels layer by
layer without effort, which makes no changes in the final predictions of neural
networks. The regularization term reduces the variations of adversarial pertur-
bations and makes them difficult to be smoothed by layer-by-layer convolutions,
which enables black-box transfer. Figure 1 gives several adversarial examples
generated by FGSM, BIM and the proposed method using Inception-V3 model.

Fig. 1. Different adversarial examples for Inception V3 model using FGSM, BIM and
our method respectively.
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We evaluate the proposed method on two public datasets with various mod-
els including state-of-the-art classifiers [10] and defense models [11]. Experimen-
tal results show that our method outperforms state-of-the-art methods both in
white-box and black-box attacks.

2 Related Work

In this section, we review some of the relevant work. Szegedy et al. [12] first
introduce adversarial examples generation by analyzing the instability of deep
neural networks. They show that the adversarial perturbations are more effec-
tive than random perturbations for deep neural networks despite of the larger
magnitude of random perturbations, which indicates that adversarial examples
expose fundamental blind spots of learning algorithms. Goodfellow et al. [7] fur-
ther explain the phenomenon of adversarial examples by analyzing the linear
behavior of deep neural network and propose a simple and efficient adversarial
examples generating method: FGSM. It can generalize across models by taking
advantage of the linear behavior of neural networks.

Kurakin et al. [8] investigate adversarial examples for large-scale dataset:
ImageNet and they compare FGSM and BIM in terms of the robustness of
black-box adversarial attacks. They show that BIM with multi-step of FGSM is
less transferable than a single-step FGSM despite of the higher error rates for
white-box attacks. Kurakin et al. [13] further explore the adversarial examples in
the physical world and demonstrate BIM is also not robust to transformations
caused by the camera. Both of these two works show multi-step optimization
is less transferable than single-step optimization. However, we show that with
properly guided gradients, multi-step optimization can achieve higher error rates
for both white-box and black-box attacks.

It is natural to use ensemble methods for both inputs and architectures to
enable transferring across models. Moosavi-Dezfooli et al. [6] use an ensemble
of inputs to seek universal perturbations which generalize across both deep neu-
ral networks and inputs. Unlike prior works which compute perturbations for
each example independently, they aggregate atomic perturbations to reduce the
variations of perturbations. They show that such perturbations generalize well
across different classification models. Another type of work uses an ensemble of
different architectures to enable transferring across models which is widely used
in the competitions. From the defensive point of view, Florian et al. [11] incor-
porate adversarial examples transferred from other pre-trained models to take
the advantage of ensemble of different architectures, which improves the robust-
ness of deep neural networks against black-box attacks. Both of these ensemble
methods encourage algorithms to search a shared space to reduce the variations
of perturbations with high computational complexity. We show that a smooth
regularization on perturbations can reduce the variations of perturbations effi-
ciently.
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3 Transferable Perturbations

Let f(x) denote an arbitrary deep neural network which takes x (x ∈ Rn)
as input and outputs the probability of classes y (y ∈ Rm), we first define
an adversarial example fooling the model f(x) for a chosen p-norm and noise
parameter ε as follows:

x̃ = argmax
‖x̃−x‖p≤ε

l(x̃, t) (1)

where t and l(·, ·) denote the label of x and the loss function used to train the
model respectively. In all our experiments, we use the cross entropy as the loss
function. FGSM [7,8] and BIM [13] can be used to optimize above function and
generate adversarial examples x̃. FGSM finds adversarial perturbations which
increase the value of the loss function with one step. BIM extends FGSM which
applies it multiple times with a small step size to increase the loss function
further. It usually achieves higher success rate than FGSM for white-box attacks.
However, it is less transferable than FGSM. To address this, we first maximize
the distances between natural images and adversarial examples in feature space
to increase transfer rates. Besides, we introduce the smooth regularization on
perturbations which punishes the discontinuity of the neighboring pixels.

3.1 Maximizing Distance

Standard neural network architectures are deep hierarchy of convolutions and
max-pooling with large capacity. Previous adversarial examples generation meth-
ods aim to increase the loss function as defined in (1) using gradient ascent.
However, due to the deep hierarchy of architectures, the gradients of loss with
respect to input x become extremely small (vanishing gradient problem). Thus,
it is insufficient to maximize loss with few steps. To address this issue, we add
an intermediate loss which measures the distance of intermediate feature maps
between input x and adversarial examples x̃. The gradient of intermediate loss
with respect to input x is sufficient to maximize intermediate loss in few steps.
Besides, these gradients also provide good guides to maximize the loss function
(1). Large distance of intermediate feature maps between x and x̃ will eventu-
ally result in large distance in final outputs of neural networks between x and x̃
with high probability, which will increase the loss function (1) and make error
predictions.

Let L(x, d) denote the intermediate feature map in layer d ∈ D, we maxi-
mize the l2-norm distance between T (L(x, d)) and T (L(x̃, d)) for all layers, where
T (L(x̃, d)) denotes the power normalization [14] of L(x̃, d). The power normal-
ization is used to down-weight the contribution of large value in L(x, d), which
is defined as follows:

T (L(x̃, d)) = sign(L(x̃, d)) � abs L(x̃, d)α (2)
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where 0 ≤ α ≤ 1 is a parameter of the normalization and � denotes element-wise
production. In our experiments, we find above transformation is quite effective
for black-box transfer.

By maximizing the distance of intermediate feature maps between input x
and adversarial examples x̃, we generate adversarial examples as follows:

x̃ = argmax
‖x̃−x‖p≤ε

(l(x̃, t) + λ
∑

d∈D

‖T (L(x, d)) − T (L(x̃, d))‖2), (3)

where λ denotes the trade-off between the loss (1) and the intermediate loss. To
make the feature in each layer contribute equally, we normalize L(x, d) to [0, 1]
using min-max scaling.

3.2 Regularization

Due to the diverse inputs and architectures of deep neural networks, the maxi-
mization of loss function used in one architecture does not guarantee the max-
imization of loss function used in other architectures. Thus, the transfer rate
always degrades, especially when transferring to complex architectures such as
Inception-Resnet-V2 and ResNet. An ensemble of diverse inputs [6] or archi-
tectures can partially solve this problem with high computational complexity.
Both of these methods want to remove high-frequency perturbations and reduce
the variations of adversarial perturbations to make adversarial examples more
transferable. We introduce regularization on perturbations to reduce variations
with much more efficiency:

x̃ =argmax
‖x̃−x‖p

J(x̃, x, t, ws) = argmax
‖x̃−x‖p≤ε

(l(x̃, t)

+ λ
∑

d∈D

‖T (L(x, d)) − T (L(x̃, d))‖2

+ η
∑

i

abs Ri(x̃ − x,ws))

(4)

where η controls the balance between regularization and loss function. Ri(x̃ −
x,ws) denotes the i-th element in the response map which is calculated by doing
a convolution between the kernel ws (with size s) and the perturbation x̃ − x.
ws is designed to be a box linear filter which is a spatial domain linear filter in
which each pixel in the resulting image has a value equal to the average value of
its neighboring pixels in the input. It is a form of low-pass filter which enforces
the continuity of the neighboring pixels and reduces the variations of adversarial
perturbations.

3.3 Optimization

To optimize (4), we use Iterative FGSM (I-FGSM) [11] which iteratively applies
FGSM k times with budget ε′ = ε/k. First, we scale the input x into [−1,1] and
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initialize x̃0 = x. And then, we compute the gradients of loss (4) with respect
to input x. After that, the adversarial examples are updated by multiple steps.
In each step, we take the sign function of the gradients and clip the adversarial
examples into [−1,1] to make valid images. Finally, adversarial examples are
calculated by adding the pixel differences between the last updated adversarial
examples and the input x with ε. Algorithm 1 gives the details of perturbations
generation.

Algorithm 1. Computation of transferable perturbations
initialize: x̃0 = x, ε′ = ε/k, i = 0,
while i < k do

x̃i+1 = clip(x̃i + ε′ sign(∇xJ(x̃i, x, t, ws)), −1, 1)
end while
return x̃ = clip(x + ε sign(x − x̃k), −1, 1)

4 Experiments

In this section, we describe the implementation details and experimental results
on two public datasets. We first analyze the transferability of our method, FGSM,
BIM, C&W [23], MI-FGSM [22] and Universal Adversarial Perturbations (UAP)
on a ImageNet-compatible dataset1. This dataset contains 1000 images which
are not used in the original ImageNet dataset. To avoid overfitting on above
dataset, we perform hyper-parameter selection on a subset of ImageNet dataset
[15] which contains 1000 images randomly selected from ILSVRC 2012 validation
set [16].

We use diverse architectures including VGG16 [17], Inception V3 [18], Incep-
tion V4 [10], Inception-ResNet-v2 [10], ResNet V2 [2,19]2 as defense models.
Besides, we average the predicted probabilities of above models as the ensem-
ble model (Ensemble). We also use adversarially trained Inception v3 model
[8] (adv-v3), adversarially trained Inception-ResNet-V2 model (adv-res-v2),
and adversarially trained Inception v3 with an ensemble of 3 models (ens3-inc-
v3) and 4 models (ens4-inc-v3) [11]3 respectively as defense models. In all our
experiments, we report the recognition accuracy for comparison. Besides, to
address “label leaking” problem [8], we use the prediction of the current model
as the ground truth t (4). We use TAP to represent the proposed method for
short (Table 1).

1 This dataset can be download at https://github.com/tensorflow/cleverhans/tree/
master/examples/nips17 adversarial competition/dataset.

2 https://github.com/tensorflow/models/tree/master/research/slim.
3 https://github.com/tensorflow/models/tree/master/research/

adv imagenet models.

https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset
https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/dataset
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
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Table 1. The comparisons of transferability in terms of recognition accuracies. Per-
turbations are generated using VGG16 and Inception-V3 respectively.

VGG16 InceptionV3 InceptionV4 Inception

ResNet-V2

ResNet-V2 Ensemble

No perturbation 86.8% 96.4% 97.6% 100% 89.6% 99.8%

Random noise 81.3% 91.7% 94.6% 97.8% 84.5% 98.1%

VGG16-TAP 3.2% 23.9% 28.1% 32.3% 23.9% 26.7%

VGG16-FGSM 3.7% 34.9% 44.0% 50.0% 34.7% 46.4%

VGG16-BIM 4.0% 24.2% 24.5% 28.5% 23.9% 22.7%

VGG16-UAP 12.4% 31.2 % 32.8% 46.9 % 33.2% 43.7%

Inc-V3-TAP 29.4% 0.0% 22.1% 24.7% 46.9% 30.8%

Inc-V3-FGSM 57.7% 26.9% 70.2% 72.9% 65.7% 75.4%

Inc-V3-BIM 66.0% 0.01% 67.7% 70.2% 76.8% 73.6%

Inc-V3-UAP 39.8% 52.2% 56.4% 63.1% 50.5% 64.6%

Inc-V3-MI-FGSM 45.9% 0.1% 47.3% 50.7% 61.8% 62.5%

Inc-V3-CW 84.9% 24.5% 93.5% 98.6% 86.9% 96.9%

We use FGSM and BIM as our two baseline methods for comparison which
are defined as follows:

FGSM : x̃ = x + ε sign∇xl(x̃, t)
BIM : x̃0 = x, x̃k = clip(x̃k−1 + ε sign∇xl(x̃k−1, t)).

(5)

We use implementations of FGSM, BIM and C&W with default parameters
from CleverHans [20,21] in our experiments. We also modify CleverHans to
implement our approach. We also use the implementation of MI-FGSM [22]4 for
comparison. To fairly compared with these methods, the perturbation size is set
to 16. We linearly normalize the perturbation size of C&W method [23] to 16
for fair comparison and use simple gradient descent to optimize the objective
function defined in [23].

In our experiments, the perturbation size ε is set to 16 for all experiments. λ
and η are set to 0.05 and 103 respectively to make each loss contribute equally.
The parameter of the normalization α is set to 0.5 for best performance. The
size of kernel ws in (4) is set to 3 for balancing the smooth term and loss. The
number of iterations k is empirically set to 5. We will analyze the effects of these
parameters on transferability using the subset of ImageNet dataset as described
above.

We first use above models to evaluate the clean images and those images
added with random noise perturbations (ε = 16). The results are listed in
Table 2. Inception-Resnet-V2 (100%) achieves significantly better performance
than VGG16 (86.8%) for clean images because of the higher capacity. Both of
these models can resist random noise attacks and the models with higher capac-
ity also perform better.

4 https://github.com/dongyp13/Non-Targeted-Adversarial-Attacks.

https://github.com/dongyp13/Non-Targeted-Adversarial-Attacks
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Table 2. The comparisons of transferability in terms of recognition accuracies. Pertur-
bations are generated using Inception-ResNet-V2, ResNet-V2 and ResNet-V1 respec-
tively.

VGG16 InceptionV3 InceptionV4 Inception
ResNet-V2

ResNet-V2 Ensemble

Inc-ResV2-TAP 37.0% 25.9% 33.2% 4.8% 53.3% 48.2%

Inc-ResV2-FGSM 59.4% 69.0% 76.5% 57.2% 71.7% 78.7%

Inc-ResV2-BIM 48.9% 41.5% 51.5% 1.2% 60.4% 54.5%

Inc-ResV2-MI-FGSM 38.8% 25.3% 33.2% 0.1% 51.6% 46.3%

Inc-ResV2-CW 83.4% 91.7% 92.4% 49.0% 85.6% 93.5%

ResNet-V2-TAP 31.8% 48.2% 55.7% 55.5% 7.6% 47.4%

ResNet-V2-FGSM 37.3% 56.3% 64.8% 66.8% 14.6% 63.3%

ResNet-V2-BIM 44.8% 53.2% 62.0% 63.8% 4.4% 54.3%

ResNet-V2-MI-FGSM 46.3% 45.2% 51.6% 55.2% 24.1% 56.2%

ResNet-V2-CW 84.0% 94.5% 96.4% 99.5% 37.7% 98.5%

ResNet-V1-TAP 20.2% 38.1% 48.7% 49.1% 25.3% 44.4%

ResNet-V1-UAP 35.3% 41.6% 50.2% 57.8% 40.3% 56.8%

ResNet-V1-MI-FGSM 65.3% 74.3% 78.7% 82.0% 71.3% 86.8%

ResNet-V1-CW 86.9% 96.0% 97.5% 99.9% 89.4 % 99.6%

The Transferability Across Models. We first use VGG16, Inception-V3,
Inception-V4, Inception-ResNet-V2, ResNet-V2 and an ensemble of these mod-
els as defense models. We iteratively generate perturbations using one model and
report the recognition accuracy on all these models. For each iteration, we use all
feature maps for the selected model except ResNet-V1 and ResNet-V2 because
of the large number of layers. We use the feature maps: “block3/uint 23” ∼
“block3/uint 36” and “block4/uint 3” in ResNet-V2 and “block1” and “block2”
in ResNet-V1 for adversarial examples generation. To demonstrate the superi-
ority of the proposed method, we also compare our method with FGSM, BIM
and UAP respectively. From Table 2 we can see that, our method achieves 3.2%,
0.0%, 4.8% and 7.6% accuracy for VGG16, Inception-V3, Inception-ResNet-V2
and ResNet-V2 respectively for white-box attacks, which are significantly better
than FGSM, BIM, UAP, MI-FGSM and C&W except ResNet-V2-BIM, Inc-
ResV2-MI-FGSM and Inc-ResV2-BIM. As for black-box transfer, our method
achieves lowest recognition accuracy using Inception-V3 and ResNet-V1 to gen-
erate adversarial perturbations. Our method also get comparable or better
results using Inception-ResNet-V2 and ResNet-V2 with MI-FGSM. Notably,
using VGG16 model to generate perturbations has the highest transfer rate for
all methods. We find the gradients of loss with respect to inputs for VGG model
are several orders of magnitude larger than those gradients for more complex
architectures because of the relatively small number of layers. Our method is
unable to gain more benefits for VGG model.
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Table 3. The robustness of TAP, FGSM, BIM and UAP to adversarially trained
models.

adv-v3 adv-res-v2 ens3-inc-v3 ens4-inc-v3

VGG16-TAP 38.8% 63.8% 41.9% 47.3%

VGG16-FGSM 50.9% 71.1% 56.1% 58.5%

VGG16-BIM 57.3% 73.6% 53.5% 55.4%

VGG16-UAP 39.4% 57.3% 47.4% 43.9%

Inc-V3-TAP 52.8% 68.8% 60.9% 59.8%

Inc-V3-FGSM 72.1% 93.6% 85.1% 86.4%

Inc-V3-BIM 82.4% 93.9% 88.2% 88.5%

Inc-V3-UAP 65.5% 82.4% 77.0% 76.9%

Inc-V3-MI-FGSM 74.3% 90.6% 80.7% 82.0%

Inc-V3-CW 93.0% 96.4% 92.3% 90.0%

Inc-ResV2-TAP 60.5% 87.8% 79.1% 82.1%

Inc-ResV2-FGSM 73.9% 92.7% 86.9% 87.3%

Inc-ResV2-BIM 70.8% 92.9% 84.8% 86.9%

Inc-ResV2-MI-FGSM 66.9% 83.6% 71.8% 73.4%

Inc-ResV2-CW 91.8% 94.9% 91.9% 89.3%

ResNet-V2-TAP 49.2% 64.1% 57.8% 56.0%

ResNet-V2-FGSM 62.1% 85.7% 77.4% 77.8%

ResNet-V2-BIM 64.7% 82.6% 72.3% 74.7%

ResNet-V2-MI-FGSM 71.1% 86.6% 76.9% 77.9%

ResNet-V2-CW 94.0% 96.3% 92.8% 90.5%

ResNet-V1-TAP 50.2% 64.4% 55.5% 57.7%

ResNet-V1-UAP 60.4% 77.9% 68.8% 66.1%

ResNet-V1-MI-FGSM 84.5% 93.4% 90.3% 90.2%

ResNet-V1-CW 95.0% 97.5% 94.2% 91.8%

We also evaluate the robustness of TAP to adversarially trained models as
shown in Table 3. We show that VGG16 model still gives the highest transfer
rate for black-box transfer. Kurakin et al. [8] show that adversarial training
provides robustness to adversarial examples generated using one-step methods
such as FGSM, but it can not help much against iterative methods such as BIM.
They also show that adversarial examples generated by iterative methods are less
likely to be transferred across models. However, we show that our method, which
generates adversarial examples using iterative methods, still enables adversarial
examples transferring across models because of the guided gradients.

We calculate the regularization term of (4):
∑

i abs Ri(x̃ − x,ws) to inspect the
low-frequency information captured by FGSM, BIM and TAP respectively. The
values of regularization term in Fig. 1 are 3.72 × 105, 2.71 × 105 and 5.35 × 105
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respectively. Since we use low-pass filter ws for convolution, larger value of the reg-
ularization term means that the neighbor pixels vary more smoothly.

The Influence of Loss Functions. We remove two terms in the loss func-
tion (4) for each time to inspect the influence of these terms on performance.
We remove the second and third terms by setting λ and η to 0 respectively.
Figure 2 shows the performance of the proposed method which generates adver-
sarial examples using Inception-V3 with different conditions. From Fig. 2 we can
see that, adversarial training can resist adversarial examples. For example, adver-
sarially trained Inception-ResNet-V2 (adv-res-v2) gets much higher recognition
accuracy than original Inception-ResNet-V2.

With λ = 0 and η = 0, the proposed method degrades to BIM which has
the highest recognition accuracy for all defense models, which indicates these
defense models are robust to adversarial examples generated using BIM.

By adding the regularization term in (4) (λ = 0 and η = 103), we show that
such operation reduces the recognition accuracy for all adversarially trained
models (ens3-inc-v3, ens4-inc-v3, adv-res-v2, adv-v3) consistently. Such opera-
tion can also reduce the recognition accuracy for ResNet-V2 and the ensemble
model, and it performs slightly worse on Inception-V4 and Inception-ResNet-V2
than BIM. Since it imposes restrictions on perturbations with smooth regular-
ization, it removes the subtle and optimal perturbations for white-box attack
(Inception-V3). Thus, it has higher recognition accuracy than BIM.

With λ = 0.05 and η = 0, the proposed method takes feature distances
into consideration. We show that the proposed method achieves slightly lower
accuracy on adversarially trained models than BIM. It reduces the recognition
accuracy significantly on Inception-V3, Inception-V4 and Inception-ResNet-V2,
ResNet-V2 and the ensemble model. Notably, for white-box attacks, it achieves
extremely low recognition rate on Inception-V3.
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Fig. 2. Recognition accuracies of the proposed method with different configurations of
λ and η. Inception-V3 is used to generate adversarial examples.
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From above experiments we can see that, adversarially trained models (ens3-
inc-v3, ens4-inc-v3, adv-res-v2 and adv-v3) and original models (Inception-V3,
VGG16, Inception-V4, Inception-ResNet-V2, ResNet-V2 and Ensemble) are very
complementary. Adversarial training injects adversarial examples from other
models into the training set and it tends to solve the weaknesses of original
models. Two terms in (4) behave differently on these two types of models. We
set λ = 0.05 and η = 103 to balance the performance on these two types of
models.

The Sensibility of Parameters on Transferability. To analyze the sensibil-
ity of parameters on transferability, we vary one parameter and fix other param-
eters to report recognition accuracies on defense models. λ varies from 5 × 10−4

to 100 (λ ∈ {5 × 10−4, 10−3, 5 × 10−3, 0.01, 0.02, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100})
and α and η are set to 0.5 and 103 respectively. The recognition accuracies on
defense models are reported in Fig. 3. With increasing value of λ, the adversarial
examples generated by our method perform differently on two groups of models
(with and without adversarial training). Adversarial examples are more difficult
to be transferred to adversarially trained models with larger λ while it is easier
for those models without adversarial training.

Figure 4 shows the recognition accuracies with varied α (α ∈ {0, 0.5, 1, 1.5, 2}).
We observe that there is an optimal value α = .5 of α yielding best robustness.
Figure 5 presents the performance of the proposed methods with different size of
ws as in (4). With large s, the transfer rates of the proposed method degrades for
all models slightly and consistently. Thus, we choose s = 3 for best performance.
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Fig. 3. Recognition accuracies with varied λ.
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Fig. 4. Recognition accuracies with varied α.
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Fig. 6. Recognition accuracies with varied η.

We vary η from 0.05 to 104 (η ∈ {0.05, 0.1, 1, 10, 50, 100, 500, 103, 2× 103, 5×
103, 104}) and observe two distinct patterns for two types of models in Fig. 6.
With increasing value of η, the recognition accuracies of adversarial examples on
adversarially trained models decrease, which means that adversarially trained
models are less robust to adversarial examples with larger value of η. However,
with larger value of η, the proposed method performs better on those models
without adversarial training.

t-SNE Visualization of Adversarial Examples. To demonstrate the influ-
ence of adversarial examples intuitively, we visualize the extracted features of
black-box model as shown in Fig. 7. Specifically, we generate adversarial exam-
ples using Inception-V3 and extract 1536-dimensional features using Inception-
V4 in the penultimate layer. We use t-SNE to compute a 3-dimensional embed-
ding that respects the high-dimensional (L2) distances. Adversarial examples of
our method and other two baseline methods are connected to the clean image
by straight lines with red and blue color respectively.

By adding perturbations into clean images, it causes the perturbations in
the penultimate feature space which will result in error predictions. For white-
box attacks, it is clear that we optimize the objective function to find the per-
turbations in pixels to maximize the perturbations in the penultimate feature
space directly. It will cause the extreme low accuracies on white-box models. For
black-box attacks, such perturbations in pixels generated using one model can
not transfer to the perturbations in the penultimate feature spaces of another
model effectively because of different architectures.
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Fig. 7. t-SNE visualization of features which are extracted using Inception-V4 from
clean images and adversarial examples (generated by FGSM, BIM and TAP (our
method) on Inception-V3 respectively). The distances between adversarial examples
generated by TAP and clean images in the embedding space are much larger than
those distances corresponding to FGSM and BIM, which means the perturbations gen-
erated by TAP are more transferrable than FGSM and BIM.

Both FGSM and BIM can perturb adversarial examples in the penultimate
feature space to make error predictions for Inception-V4 as shown in Fig. 7.
However, Table 2 shows that Inception-V4 model can still achieve 70.2% and
67.7% on those adversarial examples generated using FGSM and BIM respec-
tively. It means that most of the perturbations in pixels can not cause large
enough perturbations in the penultimate feature space to make error predictions
for Inception-V4.

As shown in Fig. 7, the distances between adversarial examples generated by
our method and clean images are larger than those corresponding distances of
FGSM and BIM. It will cause error predictions in Inception-V4 with high prob-
ability, which is validated by Table 2. We show that our method can generate
the perturbations in pixels using Inception-V3 which can transfer to the pertur-
bations in the penultimate feature space of Inception-V4 with high probability.

5 Conclusion

In this paper, we propose a novel transferable adversarial perturbations gen-
erating method to fool deep neural networks. We use two extra penalty terms
to guide the search directions efficiently. We show that maximizing the dis-
tance of intermediate feature maps between inputs and adversarial examples
makes adversarial examples transfer across models. In addition, we observe that
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a smooth regularization can enable black-box transfer by reducing the variations
of adversarial perturbations. We further use t-SNE to visualize the correlations
between transferable ability and the distance in the penultimate feature space
which also provides a insight for future research.
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