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Abstract. Several methods were recently proposed for the task of trans-
lating images between domains without prior knowledge in the form
of correspondences. The existing methods apply adversarial learning to
ensure that the distribution of the mapped source domain is indistin-
guishable from the target domain, which suffers from known stability
issues. In addition, most methods rely heavily on “cycle” relationships
between the domains, which enforce a one-to-one mapping. In this work,
we introduce an alternative method: Non-Adversarial Mapping (NAM),
which separates the task of target domain generative modeling from
the cross-domain mapping task. NAM relies on a pre-trained genera-
tive model of the target domain, and aligns each source image with an
image synthesized from the target domain, while jointly optimizing the
domain mapping function. It has several key advantages: higher quality
and resolution image translations, simpler and more stable training and
reusable target models. Extensive experiments are presented validating
the advantages of our method.

1 Introduction

The human ability to think in spontaneous analogies motivates the field of unsu-
pervised domain alignment, in which image to image translation is achieved with-
out correspondences between samples in the training set. Unsupervised domain
alignment methods typically operate by finding a function for mapping images
between the domains so that after mapping, the distribution of mapped source
images is identical to that of the target images.

Successful recent approaches, e.g. DTN [28], CycleGANs [37] and Disco-
GAN [14], utilize Generative Adversarial Networks (GANs) [9] to model the
distributions of the two domains, X and Y. GANs are very effective tools for
generative modeling of images, however they suffer from instability in training,
making their use challenging. The instability typically requires careful choice of
hyper-parameters and often multiple initializations due to mode collapse. Cur-
rent methods also make additional assumptions that can be restrictive, e.g., DTN
assumes that a pre-trained high-quality domain specific feature extractor exists
which is effective for both domains. This assumption is good for the domain
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of faces (which is the main application of DTN) but may not be valid for all
cases. CycleGAN and DiscoGAN make the assumption that a transformation
TXY can be found for every X -domain image x to a unique Y-domain image y,
and another transformation TY X exists between the Y domain and the original
X-domain image y = TXY (x), x = TY X(y). This is problematic if the actual
mapping is many-to-one or one-to-many, as in super-resolution or coloring.

We propose a novel approach motivated by cross-domain matching. We sep-
arate the problem of modeling the distribution of the target domain from the
source to target mapping problem. We assume that the target image domain dis-
tribution is parametrized using a generative model. This model can be trained
using any state-of-the-art unconditional generation method such as GAN [25],
GLO [2], VAE [15] or an existing graphical or simulation engine. Given the gen-
erative model, we solve an unsupervised matching problem between the input Y
domain images and the X domain. For each source input image y, we synthesize
an X domain image G(zy), and jointly learn the mapping function T (), which
maps images from the X domain to the Y domain. The synthetic images and
mapping function are trained using a reconstruction loss on the input Y domain
images.

Our method is radically different from previous approaches and it presents
the following advantages:

1. A generative model needs to be trained only once per target dataset, and can
be used to map to this dataset from all source datasets without adversarial
generative training.

2. Our method is one-way and does not assume a one-to-one relationship
between the two domains, e.g., it does not use cycle-constraints.

3. Our work directly connects between the vast literature of unconditional image
generation and the task of cross-domain translation. Any progress in uncon-
ditional generation architectures can be simply plugged in with minimal
changes. Specifically, we can utilize recent very high-resolution generators
to obtain high quality results.

2 Previous Work

Unsupervised Domain Alignment: Mapping across similar domains without
supervision has been successfully achieved by classical methods such as Con-
gealing [22]. Unsupervised translation across very different domains has only
very recently began to generate strong result, due to the advent of generative
adversarial networks (GANs), and all state-of-the-art unsupervised translation
methods we are aware of employ GAN technology. As this constraint is insuf-
ficient for generating good translations, current methods are differentiated by
additional constraints that they impose.

The most popular constraint is cycle-consistency: enforcing that a sample
that is mapped from X to Y and back to X , reconstructs the original sample.
This is the approach taken by DiscoGAN [14], CycleGAN [37] and DualGAN
[30]. Recently, StarGAN [5] created multiple cycles for mapping in any direction
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between multiple (two or more) domains. The generator receives as input the
source image as well as the specification of the target domain.

For the case of linear mappings, orthogonality has a similar effect to cir-
cularity. Very recently, it was used outside computer vision by several meth-
ods [6,12,33,34] for solving the task of mapping words between two languages
without using parallel corpora.

Another type of constraint is provided by employing a shared latent space.
Given samples from two domains X and Y, CoGAN [21], learns a mapping
from a random input vector z to matching samples, one in each domain. The
domains X and Y are assumed to be similar and their generators (and GAN
discriminators) share many of the layers’ weights, similar to [27]. Specifically,
the earlier generator layers are shared while the top layer are domain specific.
CoGAN can be modified to perform domain translation in the following way:
given a sample x ∈ X , a latent vector zx is fitted to minimize the distance
between the image generated by the first generator GX (zx) and the input image
x. Then, the analogous image in Y is given by GY(zx). This method was shown
in [37] to be less effective than cycle-consistency based methods.

UNIT [20] employs an encoder-decoder pair per each domain. The latent
spaces of the two are assumed to be shared, and similarly to CoGAN, the layers
that are distant from the image (the top layers of the encoder and the bottom
layers of the encoder) are shared between the two domains. Cycle-consistency
is added as well, and structure is added to the latent space using variational
autoencoder [16] loss terms.

As mentioned above our method does not use adversarial or cycle-consistency
constraints.

Mapping Using Domain Specific Features. Using domain specific features has
been found by DTN [28] to be important for some tasks. It assumed that a feature
extractor can be found, for which the source and target would give the same
activation values. Specifically it uses face specific features to map faces to emojis.
While for some of the tasks, our work does use a “perceptual loss” that employs a
pretrained imagenet-trained network, this is a generic feature extraction method
that is not domain specific. We claim therefore that our method still qualifies as
unsupervised. For most of the tasks presented, the VGG loss alone, would not
be sufficient to recover good mappings between the two domains, as shown in
ANGAN [11].

Unconditional Generative Modeling. Many methods were proposed for genera-
tive models of image distributions. Currently the most popular approaches rely
on GANs and VAEs [15]. GAN-based methods are plagued by instability dur-
ing training. Many methods were proposed to address this issue for uncondi-
tional generation, e.g., [1,10,23]. The modifications are typically not employed
in cross-domain mapping works. Our method trains a generative model (typi-
cally a GAN), in the X domain separately from any Y domain considerations,
and can directly benefit from the latest advancements in the unconditional image
generation literature. GLO [3] is an alternative to GAN, which iteratively fits
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per-image latent vectors (starting from random “noise”) and learns a mapping
G() between the noise vectors and the training images. GLO is trained using a
reconstruction loss, minimizing the difference between the training images and
those generated from the noise vectors. Differently from our approach is tackles
unconditional generation rather than domain mapping.

3 Unsupervised Image Mapping Without GANs

In this section, we present our method - NAM - for unsupervised domain map-
ping. The task we aim to solve, is finding analogous images across domains. Let
X and Y be two image domains, each with some unique characteristics. For each
domain we are given a set of example images. The objective is to find for every
image y in the Y domain, an analogous image x which appears to come from
the X domain but preserves the unique content of the original y image.

3.1 Non-Adversarial Exact Matching

To motivate our approach, we first consider the simpler case, where we have two
image domains X and Y, consisting of sets of images {xi} and {yi} respectively.
We assume that the two sets are approximately related by a transformation
T , and that a matching paired image x exists for every image y in domain Y
such that T (x) = y. The task of matching becomes a combination of two tasks:
(i) inferring the transformation between the two domains (ii) finding matching
pairs across the two domains. Formally this becomes:

L =
∑

i

‖T (
∑

j

Mijxj), yi‖ (1)

Where Mij is the matching matrix containing Mi,j = 1 if xj and yi are matching
and 0 otherwise. The optimization is over both the transformation T () as well
as binary match matrix M .

Since the optimization of this problem is hard, a relaxation method -ANGAN -
was recently proposed [11]. The binary constraint on the matrix was replaced by
the requirement that Mij ≥ 0 and

∑
j Mij = 1. As optimization progresses, a

barrier constraint on M , pushes the values of M to 0 or 1.
ANGAN was shown to be successful in cases where exact matches exist and

T () is initialized with a reasonably good solution obtained by CycleGAN.

3.2 Non-Adversarial Inexact Matching

In Sect. 3.1, we described the scenario in which exact matches exist between the
images in domains X and Y. In most situations, exact matches do not exist
between the two domains. In such situations it is not sufficient to merely find
an image x in the domain X training set such that for a target Y domain image
y, we have y = T (x) as we cannot hope that such a match will exist. Instead,
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Fig. 1. Given a generator G for domain X and training samples {yi} in domain Y,
NAM jointly learns the transformation T : X → Y and the latent vectors {zi} that
give rise to samples {T (G(zi))} that resemble the training images in Y

we need to synthesize an image x̃ that comes from the X domain distribution,
and satisfies y = T (x̃). This can be achieved by removing the stochasticity
requirement in Eq. 1. Effectively, this models the images in the X domain as:

x̃ =
∑

j

αixi (2)

This solution is unsatisfactory on several counts: (i) the simplex model for the X
domain cannot hope to achieve high quality image synthesis for general images
(ii) The complexity scales quadratically with the number of training images
making both training and evaluation very slow.

3.3 Non-Adversarial Mapping (NAM)

In this section we generalize the ideas presented in the previous sections into an
effective method for mapping between domains without supervision or the use
of adversarial methods.

In Sect. 3.2, we showed that to find analogies between domains X and Y,
the method requires two components: (i) a model for the distribution of the X
domain, and (ii) a mapping function T () between domains X and Y.

Instead of the linear simplex model of Sect. 3.2, we propose to model the
X domain distribution by a neural generative model G(z), where z is a latent
vector. The requirements on the generative model G() are such that for every
image x in the X domain distribution we can find z such x = G(z) and that
G() is compact, that is, for no z, will G(z) lie outside the X domain. The task
of learning such generative models, is the research focus of several communities.
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In this work we do not aim to contribute to the methodology of unsupervised
generative modeling, but rather use the state-of-the-art modeling techniques
obtained by previous approaches, for our generator G(). Methods which can be
used to obtain generative model G() include: GLO [2], VAE [15], GAN [9] or a
hand designed simulator (see for example [29]). In our method, the task of single
domain generative modeling is entirely decoupled from the task of cross-domain
mapping, which is the one we set to solve.

Armed with a much better model for the X domain distribution, we can now
make progress on finding synthetic analogies between X and Y. Our task is to
find for every Y domain image y, a synthetic X domain image G(zy) so that when
mapped to the Y domain y = T (G(zy)). The task is therefore twofold: (i) for
each y, we need to find the latent vector zy which will synthesize the analogous
X domain image, and (ii) the mapping function T () needs to be learned.

The model can therefore be formulated as an optimization problem, where
the objective is to minimize the reconstruction cost of the training images of the
Y domain. The optimization is over the latent codes, a unique latent code zy
vector for every input Y domain image y, as well as the mapping function T ().
It is formally written as below:

argminT,zy

∑

y∈B

‖T (G(zy)), y‖ (3)

The model is fully differentiable, as both the generative model G() and the
mapping function T () are parameterized by neural networks. The above objective
is jointly optimized for zy and T (), but not for G() which is kept fixed. The
method is illustrated in Fig. 1.

3.4 Perceptual Loss

Although the optimization described in Sect. 3.3 can achieve good solutions, we
found that introducing a perceptual loss, can significantly help further improve
the quality of analogies. Let φi() be the features extracted from a deep-network
at the end of the i’th block (we use VGG [26]). The perceptual loss is given by:

‖., .‖V GG =
∑

i

‖φi(T (G(zy))), φi(y)‖1 + ‖T (G(zy)), y‖1 (4)

The final optimization problem becomes:

argminT,zy

∑

y∈B

‖T (G(zy)), y‖V GG (5)

The VGG perceptual loss was found by several recent papers [4,35] to give
perceptually pleasing results. There have been informal claims in the past that
methods using perceptual loss functions should count as supervised. We claim
that the perceptual loss does not make our method supervised, as the VGG
network does not come from our domains and does not require any new label-
ing effort. Our view is that taking advantage of modern feature extractors will
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benefit the field of unsupervised learning in general and unsupervised analogies
in particular.

3.5 Inference and Multiple Solutions

Once training has completed, we are now in possession of the mapping function
T () which is now fixed (the pre-trained G() was never modified as a part of
training).

To infer the analogy of a new Y domain image y, we need to recover the latent
code zy which would yield the optimal reconstruction. The mapping function T ()
is now fixed, and is not modified after training. Inference is therefore performed
via the following optimization:

argminzy‖T (G(zy)), y‖ (6)

The synthetic X domain image G(zy) is our proposed solution to Y domain
image y.

This inference procedure is a non-convex optimization problem. Different
initializations, yield different final analogies. Let us denote initialization zt0 where
t is the ID of the solution. At the end of the optimization procedure for each
initialization, the synthetic images G(zt) yield multiple proposed analogies for
the task. We find G(z0)...G(zT ) are very diverse when in fact many analogies
are available. For example, when the X domain is Shoes and the Y domain is
Edges, there are many shoes that can result in the same edge image.

3.6 Implementation Details

In this section we give a detailed description of the procedure used to generate
the experiments presented in this paper.

X Domain Generative Model G(.): Our method takes as input a pre-trained
generative model for the X domain. In our MNIST, SVHN and cars, Edges2
(Shoes,Handbags) experiments, we used DCGAN [25] with (32,32,32,100,100)
latent dimensions. The low resolution face image generator was trained on celebA
and used the training method of [23]. The high resolution face generator is pro-
vided by [13] and the Dog generator by [32]. The hyperparameters of all trained
generators were set to their default value. In our experiments GAN unconditional
generators provided more compelling results than competing SOTA methods
such as GLO and VAE.

Mapping FunctionT (.): The mapping function was designed so that it is powerful
enough but not too large as to overfit. Additionally, it needs to preserve image
locality, in the case of spatially aligned domains. We elected to use a network
with an architecture based on [4]. We found that as we only rely on the networks
to find correspondences rather than generate high-fidelity visual outputs, small
networks were the preferred choice. We used a similar architecture to [4], with a
single layer per scale, and linearly decaying number of filters per layer starting
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with 4F , and decreasing by F with every layer. F = 8 for SVHN and MNIST
and F = 32 for the other experiments.

Optimization: We optimized using SGD with ADAM [17]. For all datasets we
used a learning rate of 0.03 for the latent codes zy and 0.001 for the mapping
function T (.) (due to the uneven update rates of each zy and T ()). On all datasets
training was performed on 2000 randomly selected examples (a subset) from the
Y domain. Larger training sets were not more helpful as each zy is updated less
frequently.

Generating Results: The X domain translation of Y domain image y is given by
G(zy), where zy is the latent code found in optimization. The X → Y mapping
T (x), typically resulted in weaker results due to the relatively shallow architec-
ture selected for T (.). A strong T (.) can be trained by calculating a set of G(zy)
and y (obtained using NAM), and training a fully-supervised network T (.), e.g.
as described by [4]. A similar procedure was carried out in [11].

4 Experiments

To evaluate the merits of our method, we carried out an extensive set of quali-
tative and quantitative experiments.

SVHN-MNIST Translation: We evaluated our method on the SVHN-MNIST
translation task. Although SVHN [24] and MNIST [18] are simple datasets, the
mapping task is not trivial. The MNIST dataset consists of simple handwritten
single digits written on black background. In contrast, SVHN images are taken
from house numbers and typically contain not only the digit of interest but also
parts of the adjacent digits, which are nuisance information. We translate in
both directions SVHN→MNIST and MNIST→SVHN. The results are presented
in Fig. 2. We can observe that in the easier direction of SVHN→MNIST, in
which there is information loss, NAM resulted in more accurate translations than
CycleGAN. In the reverse direction of MNIST→SVHN, which is harder due to
information gain, CycleGAN did much worse, whereas NAM was often successful.
Note that perceptual loss was not used in the MNIST→SVHN translation task.

Fig. 2. Converting digits between SVHN and MNIST (both directions). (a) CycleGAN
results (b) NAM results (c) the input images.
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Table 1. Translation quality measured by translated digit classification accuracy (%)

SVHN→MNIST MNIST→SVHN

CycleGAN 26.8 17.7

NAM 33.3 31.9

We performed a quantitative evaluation of the quality of SVHN↔MNIST
translation. This was achieved by mapping an image from the one dataset to
appear like the other dataset, and classifying it using a pre-trained classifier
trained on the clean target data (the classifier followed a NIN architecture [19],
and achieved test accuracies of around 99.5% on MNIST and 95.0% on SVHN).
The results are presented in Table 1. We can see that the superior translations
of NAM are manifested in higher classification accuracies.

Edges2Shoes: The task of mapping edges to shoes is commonly used to quali-
tatively evaluate unsupervised domain mapping methods. The two domains are
a set of Shoe images first collected by [31], and their edge maps. The trans-
formation between an edge map and the original photo-realistic shoe image is
non-trivial, as much information needs to be hallucinated.

Examples of NAM and DiscoGAN results can be seen in Fig. 3(a). The higher
quality of the analogies generated by NAM is apparent. This stems from using a
pre-learned generative model rather than learning jointly with mapping, which
is hard and results in worse performance. We also see the translations result in
more faithful analogies. Another advantage of our method is the ability to map

Fig. 3. (a) Comparison of NAM and DiscoGAN for Edges2Shoes. Each triplet shows
NAM (center row) vs. DiscoGAN (top row) for a given input (bottom row). (b) A
similar visualization for Edges2Handbags. (c, d) NAM mapping from a single source
edge image (shown first) for different random initializations.
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Fig. 4. Comparison of NAM results for different generators

one input into many proposed solutions. Two examples are shown in Fig. 3(c)
and (d). It is apparent that the solutions all give correct analogies, however they
give different possibilities for the correct analogy. This captures the one-to-many
property of the edge to shoes transformation.

As mentioned in the method description, NAM requires high-quality gener-
ators, and performs better for better pre-trained generators. In Fig. 4 we show
NAM results for generators trained with: VAE [15] with high (VAE-h) and low
(VAE-l) regularization, GLO [2], DCGAN [25] and Spectral-Normalization GAN
[23]. We can see from the results that NAM works is all cases. however results
are much better for the best generators (DCGAN, Spectral-Norm GAN).

Edges2Handbags: The Edges2Handbags [36] dataset is constructed similarly
to Edges2Shoes. Sample results on this dataset can be seen in Fig. 3(b). The
conclusions are similar to Edges2Shoes: NAM generates analogies that are both
more appealing and more precise than DiscoGAN.

Shoes2Handbags: One of the major capabilities displayed by DiscoGAN is
being able to relate domains that are very different. The example shown in [14],
of mapping images of handbags to images of shoes that are semantically related,
illustrates the ability of making distant analogies.

In this experiment we show that NAM is able to make analogies between
handbags and shoes, resulting in higher quality solutions than those obtained by
DiscoGAN. In order to achieve this, we replace the reconstruction VGG loss by
a Gram matrix VGG loss, as used in Style Transfer [8]. DiscoGAN also uses a
Gram matrix loss (with feature extracted from its discriminator). For this task,
we also add a skip connection from G(z), as the domains are already similar
under a style loss.

Example images can be seen in Fig. 5. The superior quality of the NAM
generated mapped images is apparent. The better quality is a result of using an
interpretable and well understood non-adversarial loss which is quite straight
forward to optimize. Another advantage comes from being able to “plug-in” a
high-quality generative model.

Car2Car: The Car2Car dataset is a standard numerical baseline for cross-
domain image mapping. Each domain consists of a set of different cars, presented
in angles varying from −75 to 75◦. The objective is to align the two domains
such that a simple relationship exists between orientation of car image y and
mapped image x (typically, either the orientation of x and y should be equal or



NAM: Non-Adversarial Unsupervised Domain Mapping 465

Fig. 5. Example results for mapping from bags (original images - top) to shoes. NAM
mapped images (center) are clearly better than DiscoGAN mapped images (bottom).

Table 2. Car2Car root median residual deviation from linear alignment (lower is
better).

DiscoGAN NAM

13.81 1.47

reversed). A few cars mapped by NAM and DiscoGAN can be seen in Fig. 6. Our
method results in a much cleaner mapping. We also quantitatively evaluate the
mapping, by training a simple regressor on the car orientation in the X domain,
and comparing the ground-truth orientation of y with the predicted orientation
of the mapped image x. We evaluate using the root median residuals (as the
regressor sometimes flips orientations of −75 to 75 resulting in anomalies). For
car2car, we used a skip connection from G(z) to the output. Results are seen
in Table 2. Our method significantly outperforms DiscoGAN. Interestingly, on
this task, on this task, it was not necessary to use a perceptual loss, a simple
Euclidean pixel loss was sufficient for a very high-quality solution on this task.
As a negative result, on the car2head task i.e. mapping between car images and
images of heads of different people at different azimuth angles; NAM did not
generate a simple relation between the orientations of the cars and heads but
a more complex relationship. Our interpretation from looking at results is that
black cars were inversely correlated with the head orientation, whereas white
cars were positively correlated.

Avatar2Face: One of the first applications of cross-domain translation was face
to avatar generation by DTN [28]. This was achieved by using state-of-the-art
face features, and ensured the features are preserved in the original face and the
output avatar (f -constancy). Famously however, DTN does not generate good
results on avatar2face generation, which involves adding rather than taking away
information. Due to the many-to-one nature of our approach, NAM is better
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Fig. 6. Example results for mapping across two sets of car models at different orienta-
tions. Although DiscoGAN (bottom) does indeed preserve orientation of the original
images (top) to some extent, NAM (center) preserves both orientation and general car
properties very accurately - despite the target domain containing few sports cars.

Fig. 7. Example results for mapping Avatars (top) to Faces (bottom) using NAM.

suited for this task. In Fig. 7 we present example images of our avatar2face
conversions. This was generated by a small generative model with a DCGAN
[25] architecture, trained using Spectral Normalization GAN [23] using celebA
face images. The avatar dataset was obtained from the authors of [29].

Plugging in State-of-the-Art Generative Models: One of the advantages
of our method is the independence between mapping and generative modeling.
The practical consequence is that any generative model, even very large models
that take weeks to train, can be effortlessly plugged into our framework. We can
then map any suitable source domain to it, very quickly and efficiently.

Amazing recent progress has been recently carried out on generative mod-
eling. One of the most striking examples of it is Progressive Growing of GANs
(PGGAN) [13], which has yielded generative models of faces with unprecedented
resolutions of 1024 × 1024. The generative model training took 4 days of 8 GPUs,
and the architecture selection is highly non-trivial. Including the training of such
generative models in unsupervised domain mapping networks is therefore very
hard.
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Fig. 8. One-to-many high-resolution mapping from Avatars to Faces using the pre-
trained generator from [13]

Fig. 9. High-resolution mapping from Avatars to Dogs, using the pre-trained generator
from [32].

For NAM, however, we simply set G() as the trained generative model from
the authors’ code release. A spatial transformer layer, with parameters optimized
by SGD per-image, reduced the model outputs to the Avatar scale (which we
chose to be 64X64). We present visual results in Fig. 9. Our method is able to
find very compelling analogous high-resolution faces. Scaling up to such high
resolution would be highly-nontrivial with state-of-the-art domain translation
methods. We mention that DTN [28], the state-of-the-art approach for unsuper-
vised face-to-emoji mapping, has not been successful at this task, even though
it uses domain specific facial features.
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To show the generality of our approach, we also mapped Avatars to Dog
images. The generator was trained using StackGAN-v2 [32]. We plugged in the
trained generators from the publicly released code into NAM. Although emoji
to dogs is significantly more distant than emoji to human face (all the Avatars
used, were human faces), NAM was still able to find compelling analogies.

5 Discussion

Human knowledge acquisition typically combines existing knowledge with new
knowledge obtained from novel domains. This process is called blending [7]. Our
work (as most of the existing literature) focuses on the mapping process i.e.
being able to relate the information from both domains, but does not deal with
the actual blending of knowledge. We believe that blending, i.e., borrowing from
both domains to create a unified view that is richer than both sources would be
an extremely potent direction for future research.

An attractive property of our model, is the separation between the acquisition
of the existing knowledge and the fitting of a new domain. The preexisting
knowledge is modeled as the generative model of domain X , given by G; The
fitting process includes the optimization of a learned mapper from domain X to
domain Y, as well as identifying exemplar analogies G(zy) and y.

A peculiar feature of our architecture, is that function T () maps from the
target (X domain) to the source (Y domain) and not the other way around.
Mapping in the other direction would fail, since it can lead to a form of mode-
collapse, in which all Y samples are mapped to the same generated G(z) for a
fixed z. While additional loss terms and other techniques can be added in order
to avoid this, mode collapse is a challenge in generative systems and it is better
to avoid the possibility of it altogether. Mapping as we do avoids this issue.

6 Conclusions

Unsupervised mapping between domains is an exciting technology with many
applications. While existing work is currently dominated by adversarial training,
and relies on cycle constraints, we present results that support other forms of
training.

Since our method is very different from the existing methods in the literature,
we have been able to achieve success on tasks that do not fit well into other
models. Particularly, we have been able to map low resolution face avatar images
into very high resolution images. On lower resolution benchmarks, we have been
able to achieve more visually appealing and quantitatively accurate analogies.

Our method relies on having a high quality pre-trained unsupervised gener-
ative model for the X domain. We have shown that we can take advantage of
very high resolution generative models, e.g., [13,32]. As the field of unconditional
generative modeling progresses, so will the quality and scope of NAM.



NAM: Non-Adversarial Unsupervised Domain Mapping 469

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

2. Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space
of generative networks. arXiv preprint arXiv:1707.05776 (2017)

3. Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latentspace
of generative networks. arXiv preprint arXiv:1707.05776 (2017)

4. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement
networks. In: ICCV (2017)

5. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified gen-
erative adversarial networks for multi-domain image-to-image translation. arXiv
preprint arXiv:1711.09020 (2017)

6. Conneau, A., Lample, G., Ranzato, M., Denoyer, L., Jégou, H.: Word translation
without parallel data. arXiv preprint arXiv:1710.04087 (2017)

7. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. Basic Books, New York (2002)

8. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: CVPR (2016)

9. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved

training of wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, pp. 5769–5779 (2017)

11. Hoshen, Y., Wolf, L.: Identifying analogies across domains. In: International Con-
ference on Learning Representations (2018)

12. Hoshen, Y., Wolf, L.: An iterative closest point method for unsupervised word
translation. arXiv preprint arXiv:1801.06126 (2018)

13. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

14. Kim, T., Cha, M., Kim, H., Lee, J., Kim, J.: Learning to discover cross-domain
relations with generative adversarial networks. arXiv preprint arXiv:1703.05192
(2017)

15. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114 (2013)

16. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. Stat 1050, 10 (2014)
17. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: The Interna-

tional Conference on Learning Representations (ICLR) (2016)
18. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
19. Lin, M., Chen, Q., Yan, S.: Network in network. In: ICLR (2014)
20. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation net-

works. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)
21. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS, pp. 469–

477 (2016)
22. Miller, E.G., Matsakis, N.E., Viola, P.A.: Learning from one example through

shared densities on transforms. In: 2000 IEEE Conference on Computer Vision
and Pattern Recognition, Proceedings, vol. 1, pp. 464–471. IEEE (2000)

23. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: International Conference on Learning Repre-
sentations (2018)

http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1707.05776
http://arxiv.org/abs/1707.05776
http://arxiv.org/abs/1711.09020
http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/1801.06126
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1703.05192
http://arxiv.org/abs/1312.6114


470 Y. Hoshen and L. Wolf

24. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

25. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

27. Sutskever, I., Jozefowicz, R., Gregor, K., Rezende, D., Lillicrap, T., Vinyals, O.:
Towards principled unsupervised learning. In: ICLR Workshop (2016)

28. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation.
In: International Conference on Learning Representations (ICLR) (2017)

29. Wolf, L., Taigman, Y., Polyak, A.: Unsupervised creation of parameterized avatars.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1530–1538 (2017)

30. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for
image-to-image translation. arXiv preprint arXiv:1704.02510 (2017)

31. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In:
CVPR (2014)

32. Zhang, H., et al.: StackGAN++: realistic image synthesis with stacked generative
adversarial networks. arXiv: 1710.10916 (2017)

33. Zhang, M., Liu, Y., Luan, H., Sun, M.: Adversarial training for unsupervised bilin-
gual lexicon induction. In: Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, (volume 1: Long Papers), vol. 1, pp. 1959–1970
(2017)

34. Zhang, M., Liu, Y., Luan, H., Sun, M.: Earth mover’s distance minimization for
unsupervised bilingual lexicon induction. In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 1934–1945 (2017)

35. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effec-
tiveness of deep features as a perceptual metric. arXiv preprint arXiv:1801.03924
(2018)
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