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Abstract. We introduce effective training algorithms for Generative
Adversarial Networks (GAN) to alleviate mode collapse and gradient
vanishing. In our system, we constrain the generator by an Autoencoder
(AE). We propose a formulation to consider the reconstructed samples
from AE as “real” samples for the discriminator. This couples the con-
vergence of the AE with that of the discriminator, effectively slowing
down the convergence of discriminator and reducing gradient vanishing.
Importantly, we propose two novel distance constraints to improve the
generator. First, we propose a latent-data distance constraint to enforce
compatibility between the latent sample distances and the corresponding
data sample distances. We use this constraint to explicitly prevent the
generator from mode collapse. Second, we propose a discriminator-score
distance constraint to align the distribution of the generated samples
with that of the real samples through the discriminator score. We use
this constraint to guide the generator to synthesize samples that resem-
ble the real ones. Our proposed GAN using these distance constraints,
namely Dist-GAN, can achieve better results than state-of-the-art meth-
ods across benchmark datasets: synthetic, MNIST, MNIST-1K, CelebA,
CIFAR-10 and STL-10 datasets. Our code is published here (https://
github.com/tntrung/gan) for research.
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1 Introduction

Generative Adversarial Network [12] (GAN) has become a dominant approach
for learning generative models. It can produce very visually appealing sam-
ples with few assumptions about the model. GAN can produce samples with-
out explicitly estimating data distribution, e.g. in analytical forms. GAN has
two main components which compete against each other, and they improve

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01264-9 23) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11218, pp. 387–401, 2018.
https://doi.org/10.1007/978-3-030-01264-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01264-9_23&domain=pdf
http://orcid.org/0000-0002-1308-9142
http://orcid.org/0000-0003-4123-2628
http://orcid.org/0000-0003-0135-3791
https://github.com/tntrung/gan
https://github.com/tntrung/gan
https://doi.org/10.1007/978-3-030-01264-9_23
https://doi.org/10.1007/978-3-030-01264-9_23


388 N.-T. Tran et al.

through the competition. The first component is the generator G, which takes
low-dimensional random noise z ∼ Pz as an input and maps them into high-
dimensional data samples, x ∼ Px. The prior distribution Pz is often uniform or
normal. Simultaneously, GAN uses the second component, a discriminator D,
to distinguish whether samples are drawn from the generator distribution PG or
data distribution Px. Training GAN is an adversarial process: while the discrim-
inator D learns to better distinguish the real or fake samples, the generator G
learns to confuse the discriminator D into accepting its outputs as being real.
The generator G uses discriminator’s scores as feedback to improve itself over
time, and eventually can approximate the data distribution.

Despite the encouraging results, GAN is known to be hard to train and
requires careful designs of model architectures [11,24]. For example, the imbal-
ance between discriminator and generator capacities often leads to convergence
issues, such as gradient vanishing and mode collapse. Gradient vanishing occurs
when the gradient of discriminator is saturated, and the generator has no infor-
mative gradient to learn. It occurs when the discriminator can distinguish very
well between “real” and “fake” samples, before the generator can approximate
the data distribution. Mode collapse is another crucial issue. In mode collapse,
the generator is collapsed into a typical parameter setting that it always gener-
ates small diversity of samples.

Several GAN variants have been proposed [4,22,24,26,29] to solve these prob-
lems. Some of them are Autoencoders (AE) based GAN. AE explicitly encodes
data samples into latent space and this allows representing data samples with
lower dimensionality. It not only has the potential for stabilizing GAN but is also
applicable for other applications, such as dimensionality reduction. AE was also
used as part of a prominent class of generative models, Variational Autoencoders
(VAE) [6,17,25], which are attractive for learning inference/generative models
that lead to better log-likelihoods [28]. These encouraged many recent works
following this direction. They applied either encoders/decoders as an inference
model to improve GAN training [9,10,19], or used AE to define the discrimi-
nator objectives [5,30] or generator objectives [7,27]. Others have proposed to
combine AE and GAN [18,21].

In this work, we propose a new design to unify AE and GAN. Our design can
stabilize GAN training, alleviate the gradient vanishing and mode collapse issues,
and better approximate data distribution. Our main contributions are two novel
distance constraints to improve the generator. First, we propose a latent-data dis-
tance constraint. This enforces compatibility between latent sample distances and
the corresponding data sample distances, and as a result, prevents the generator
from producing many data samples that are close to each other, i.e. mode collapse.
Second, we propose a discriminator-score distance constraint. This aligns the dis-
tribution of the fake samples with that of the real samples and guides the generator
to synthesize samples that resemble the real ones. We propose a novel formulation
to align the distributions through the discriminator score. Comparing to state of
the art methods using synthetic and benchmark datasets, our method achieves
better stability, balance, and competitive standard scores.
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2 Related Works

The issue of non-convergence remains an important problem for GAN research,
and gradient vanishing and mode collapse are the most important problems
[3,11]. Many important variants of GAN have been proposed to tackle these
issues. Improved GAN [26] introduced several techniques, such as feature
matching, mini-batch discrimination, and historical averaging, which drasti-
cally reduced the mode collapse. Unrolled GAN [22] tried to change optimiza-
tion process to address the convergence and mode collapse. [4] analyzed the
convergence properties for GAN. Their proposed GAN variant, WGAN, lever-
aged the Wasserstein distance and demonstrated its better convergence than
Jensen Shannon (JS) divergence, which was used previously in vanilla GAN
[12]. However, WGAN required that the discriminator must lie on the space of
1-Lipschitz functions, therefore, it had to enforce norm critics to the discrimina-
tor by weight-clipping tricks. WGAN-GP [13] stabilized WGAN by alternating
the weight-clipping by penalizing the gradient norm of the interpolated samples.
Recent work SN-GAN [23] proposed a weight normalization technique, named
as spectral normalization, to slow down the convergence of the discriminator.
This method controls the Lipschitz constant by normalizing the spectral norm
of the weight matrices of network layers.

Other work has integrated AE into the GAN. AAE [21] learned the inference
by AE and matched the encoded latent distribution to given prior distribution by
the minimax game between encoder and discriminator. Regularizing the genera-
tor with AE loss may cause the blurry issue. This regularization can not assure
that the generator is able to approximate well data distribution and overcome the
mode missing. VAE/GAN [18] combined VAE and GAN into one single model
and used feature-wise distance for the reconstruction. Due to depending on VAE
[17], VAEGAN also required re-parameterization tricks for back-propagation or
required access to an exact functional form of prior distribution. InfoGAN [8]
learned the disentangled representation by maximizing the mutual information
for inducing latent codes. EBGAN [30] introduced the energy-based model, in
which the discriminator is considered as energy function minimized via recon-
struction errors. BEGAN [5] extended EBGAN by optimizing Wasserstein dis-
tance between AE loss distributions. ALI [10] and BiGAN [9] encoded the data
into latent and trained jointly the data/latent samples in GAN framework. This
model can learn implicitly encoder/decoder models after training. MDGAN [7]
required two discriminators for two separate steps: manifold and diffusion. The
manifold step tended to learn a good AE, and the diffusion objective is similar
to the original GAN objective, except that the constructed samples are used
instead of real samples.

In the literature, VAEGAN and MDGAN are most related to our work in
term of using AE to improve the generator. However, our design is remark-
ably different: (1) VAEGAN combined KL divergence and reconstruction loss
to train the inference model. With this design, it required an exact form of
prior distribution and re-parameterization tricks for solving the optimization
via back-propagation. In contrast, our method constrains AE by the data and
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latent sample distances. Our method is applicable to any prior distribution. (2)
Unlike MDGAN, our design does not require two discriminators. (3) VAEGAN
considered the reconstructed samples as “fake”, and MDGAN adopts this sim-
ilarly in its manifold step. In contrast, we use them as “real” samples, which
is important to restrain the discriminator in order to avoid gradient vanishing,
therefore, reduce mode collapse. (4) Two of these methods regularize G simply by
reconstruction loss. This is inadequate to solve the mode collapse. We conduct an
analysis and explain why additional regularization is needed for AE. Experiment
results demonstrate that our model outperforms MDGAN and VAEGAN.

3 Proposed Method

Mode collapse is an important issue for GAN. In this section, we first propose a
new way to visualize the mode collapse. Based on the visualization results, we
propose a new model, namely Dist-GAN, to solve this problem.

3.1 Visualize Mode Collapse in Latent Space

Mode collapse occurs when “the generator collapses to a parameter setting where
it always emits the same point. When collapse to a single mode is imminent, the
gradient of the discriminator may point in similar directions for many similar
points.” [26]. Previous work usually examines mode collapse by visualizing a few
collapsed samples (generated from random latent samples of a prior distribution).
Figure 1a is an example. However, the data space is high-dimensional, therefore
it is difficult to visualize points in the data space. On the other hand, the latent
space is lower-dimensional and controllable, and it is possible to visualize the
entire 2D/3D spaces. Thus, it could be advantageous to examine mode collapse
in the latent space. However, the problem is that GAN is not invertible to map
the data samples back to the latent space. Therefore, we propose the following
method to visualize the samples and examine mode collapse in the latent space.
We apply an off-the-shelf classifier. This classifier predicts labels of the generated
samples. We visualize these class labels according to the latent samples, see
Fig. 1b. This is possible because, for many datasets such as MNIST, pre-trained
classifiers can achieve high accuracy, e.g. 0.04% error rate.

Fig. 1. (a) Mode collapse observed by data samples of the MNIST dataset, and (b)
their corresponding latent samples of an uniform distribution. Mode collapse occurs fre-
quently when the capacity of networks is small or the design of generator/discriminator
networks is unbalance.
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Fig. 2. Latent space visualization: The labels of 55 K 2D latent variables obtained by
(a) DCGAN, (b) WGANGP, (c) our Dist-GAN2 (without latent-data distance) and
(d) our Dist-GAN3 (with our proposed latent-data distance). The Dist-GAN settings
are defined in the section of Experimental Results.

3.2 Distance Constraint: Motivation

Fig. 1b is the latent sample visualization using this technique, and the latent
samples are uniformly distributed in a 2D latent space of [−1, 1]. Figure 1b clearly
suggests the extent of mode collapse: many latent samples from large regions of
latent space are collapsed into the same digit, e.g. ‘1’. Even some latent samples
reside very far apart from each other, they map to the same digit. This suggests
that a generator Gθ with parameter θ has mode collapse when there are many
latent samples mapped to small regions of the data space:

xi = Gθ(zi), xj = Gθ(zj) : f(xi, xj) < δx (1)

Here {zi} are latent samples, and {xi} are corresponding synthesized samples by
Gθ. f is some distance metric in the data space, and δx is a small threshold in
the data space. Therefore, we propose to address mode collapse using a distance
metric g in latent space, and a small threshold δz of this metric, to restrain Gθ

as follows:
g(zi, zj) > δz → f(xi, xj) > δx (2)

However, determining good functions f, g for two spaces of different dimension-
ality and their thresholds δx, δz is not straightforward. Moreover, applying these
constraints to GAN is not simple, because GAN has only one-way mapping from
latent to data samples. In the next section, we will propose novel formulation to
represent this constraint in latent-data distance and apply this to GAN.

We have also tried to apply this visualization for two state-of-the-art methods:
DCGAN [24], WGANGP [13] on the MNIST dataset (using the code of [13]). Note
that all of our experiments were conducted in the unsupervised setting. The off-
the-shelf classifier is used here to determine the labels of generated samples solely
for visualization purpose. Figure 2a and b represent the labels of the 55 K latent
variables of DCGAN and WGANGP respectively at iteration of 70K. Figure 2a
reveals that DCGAN is partially collapsed, as it generates very few digits ‘5’ and
‘9’ according to their latent variables near the bottom-right top-left corners of
the prior distribution. In contrast, WGANGP does not have mode collapse, as
shown in Fig. 2b. However, for WGANGP, the latent variables corresponding to
each digit are fragmented in many sub-regions. It is an interesting observation for
WGANGP. We will investigate this as our future work.
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3.3 Improving GAN Using Distance Constraints

We apply the idea of Eq. 2 to improve generator through an AE. We apply AE to
encode data samples into latent variables and use these encoded latent variables
to direct the generator’s mapping from the entire latent space. First, we train
an AE (encoder Eω and decoder Gθ), then we train the discriminator Dγ and
the generator Gθ. Here, the generator is the decoder of AE and ω, θ, γ are the
parameters of the encoder, generator, and discriminator respectively. Two main
reasons for training an AE are: (i) to regularize the parameter θ at each training
iteration, and (ii) to direct the generator to synthesize samples similar to real
training samples. We include an additional latent-data distance constraint to
train the AE:

min
ω,θ

LR(ω, θ) + λrLW (ω, θ) (3)

where LR(ω, θ) = ||x − Gθ(Eω(x))||22 is the conventional AE objective. The
latent-data distance constraint LW (ω, θ) is to regularize the generator and pre-
vent it from being collapsed. This term will be discussed later. Here, λr is
the constant. The reconstructed samples Gθ(Eω(x)) can be approximated by
Gθ(Eω(x)) = x + ε, where ε is the reconstruction error. Usually the capac-
ity of E and G are large enough so that ε is small (like noise). Therefore, it
is reasonable to consider those reconstructed samples as “real” samples (plus
noise ε). The pixel-wise reconstruction may cause blurry. To circumvent this,
we instead use feature-wise distance [18] or similarly feature matching [26]:
LR(ω, θ) = ||Φ(x)−Φ(Gθ(Eω(x)))||22. Here Φ(x) is the high-level feature obtained
from some middle layers of deep networks. In our implementation, Φ(x) is the
feature output from the last convolution layer of discriminator Dγ . Note that in
the first iteration, the parameters of discriminator are randomly initialized, and
features produced from this discriminator is used to train the AE.

Our framework is shown in Fig. 3. We propose to train encoder Eω, generator
Gθ and discriminator Dγ following the order: (i) fix Dγ and train Eω and Gθ to
minimize the reconstruction loss Eq. 3 (ii) fix Eω, Gθ, and train Dγ to minimize
(Eq. 5), and (iii) fix Eω, Dγ and train Gθ to minimize (Eq. 4).

Generator and Discriminator Objectives. When training the generator,
maximizing the conventional generator objective Ezσ(Dγ(Gθ(z))) [12] tends to
produce samples at high-density modes, and this leads to mode collapse easily.
Here, σ denotes the sigmoid function and E denotes the expectation. Instead, we
train the generator with our proposed “discriminator-score distance”. We align the
synthesized sample distribution to real sample distribution with the �1 distance.
The alignment is through the discriminator score, see Eq. 4. Ideally, the generator
synthesizes samples similar to the samples drawn from the real distribution, and
this also helps reduce missing mode issue.

min
θ

LG(θ) = |Exσ(Dγ(x)) − Ezσ(Dγ(Gθ(z)))| (4)
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The objective function of the discriminator is shown in Eq. 5. It is different from
original discriminator of GAN in two aspects. First, we indicate the reconstructed
samples as “real”, represented by the term LC = Ex log σ(Dγ(Gθ(Eω(x)))). Con-
sidering the reconstructed samples as “real” can systematically slow down the
convergence of discriminator, so that the gradient from discriminator is not sat-
urated too quickly. In particular, the convergence of the discriminator is coupled
with the convergence of AE. This is an important constraint. In contrast, if we
consider the reconstruction as “fake” in our model, this speeds up the discrim-
inator convergence, and the discriminator converges faster than both generator
and encoder. This leads to gradient saturation of Dγ . Second, we apply the gra-
dient penalty LP = (||∇x̂Dγ(x̂)||22 − 1)2 for the discriminator objective (Eq. 5),
where λp is penalty coefficient, and x̂ = εx + (1 − ε)G(z), ε is a uniform random
number ε ∈ U [0, 1]. This penalty was used to enforce Lipschitz constraint of
Wasserstein-1 distance [13]. In this work, we also find this useful for JS diver-
gence and stabilizing our model. It should be noted that using this gradient
penalty alone cannot solve the convergence issue, similar to WGANGP. The
problem is partially solved when combining this with our proposed generator
objective in Eq. 4, i.e., discriminator-score distance. However, the problem can-
not be completely solved, e.g. mode collapse on MNIST dataset with 2D latent
inputs as shown in Fig. 2c. Therefore, we apply the proposed latent-data distance
constraints as additional regularization term for AE: LW (ω, θ), to be discussed
in the next section.

min
γ

LD(ω, θ, γ) = −(Ex log σ(Dγ(x)) + Ez log(1 − σ(Dγ(Gθ(z))))

+ Ex log σ(Dγ(Gθ(Eω(x)))) − λpEx̂(||∇x̂Dγ(x̂)||22 − 1)2)
(5)

Regularizing Autoencoders by Latent-Data Distance Constraint. In
this section, we discuss the latent-data distance constraint LW (ω, θ) to regularize
AE in order to reduce mode collapse in the generator (the decoder in the AE). In
particular, we use noise input to constrain encoder’s outputs, and simultaneously
reconstructed samples to constrain the generator’s outputs. Mode collapse occurs
when the generator synthesizes low diversity of samples in the data space given
different latent inputs. Therefore, to reduce mode collapse, we aim to achieve:
if the distance of any two latent variables g(zi, zj) is small (large) in the latent
space, the corresponding distance f(xi, xj) in data space should be small (large),
and vice versa. We propose a latent-data distance regularization LW (ω, θ):

LW (ω, θ) = ||f(x, Gθ(z)) − λwg(Eω(x), z)||22 (6)

where f and g are distance functions computed in data and latent space. λw is
the scale factor due to the difference in dimensionality. It is not straight forward
to compare distances in spaces of different dimensionality. Therefore, instead
of using the direct distance functions, e.g. Euclidean, �1-norm, etc., we propose
to compare the matching score f(x, Gθ(z)) of real and fake distributions, and
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Fig. 3. The architecture of Dist-GAN includes Encoder (E), Generator (G) and Dis-
criminator (D). Reconstructed samples are considered as “real”. The input, recon-
structed, and generated samples as well as the input noise and encoded latent are all
used to form the latent-data distance constraint for AE (regularized AE).

the matching score g(Eω(x), z) of two latent distributions. We use means as the
matching scores. Specifically:

f(x, Gθ(z)) = Md(ExGθ(Eω(x)) − EzGθ(z)) (7)

g(Eω(x), z) = Md(ExEω(x) − Ezz) (8)

where Md computes the average of all dimensions of the input. Figure 4a illus-
trates 1D frequency density of 10000 random samples mapped by Md from [−1, 1]
uniform distribution of different dimensionality. We can see that outputs of Md

from high dimensional spaces have small values. Thus, we require λw in (6) to

account for the difference in dimensionality. Empirically, we found λw =
√

dz
dx

suitable, where dz and dx are dimensions of latent and data samples respec-
tively. Figure 4b shows the frequency density of a collapse mode case. We can
observe that the 1D density of generated samples is clearly different from that
of the real data. Figure 4c compares 1D frequency densities of 55K MNIST sam-
ples generated by different methods. Our Dist-GAN method can estimate better
1D density than DCGAN and WGANGP measured by KL divergence (kldiv)
between the densities of generated samples and real samples.

The entire algorithm is presented in Algorithm 1.

Fig. 4. (a) The 1D frequency density of outputs using Md from uniform distribution of
different dimensionality. (b) One example of the density when mode collapse occurs. (c)
The 1D density of real data and generated data obtained by different methods: DCGAN
(kldiv: 0.00979), WGANGP (kldiv: 0.00412), Dist-GAN2 (without data-latent distance
constraint of AE, kldiv: 0.01027), and Dist-GAN (kldiv: 0.00073).
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Algorithm 1. Dist-GAN
1: Initialize discriminators, encoder and generator Dγ , Eω, Gθ

2: repeat
3: xm ← Random minibatch of m data points from dataset.
4: zm ← Random m samples from noise distribution Pz

5: // Training encoder and generator using xm and zm by Eqn. 3
6: ω, θ ← minω,θ LR(ω, θ) + λrLW (ω, θ)
7: // Training discriminators according to Eqn. 5 on xm, zm

8: γ ← minγ LD(ω, θ, γ)
9: // Training the generator on xm, zm according to Eqn. 4.

10: θ ← minθ LG(θ)
11: until
12: return Eω, Gθ, Dγ

4 Experimental Results

4.1 Synthetic Data

All our experiments are conducted using the unsupervised setting. First, we
use synthetic data to evaluate how well our Dist-GAN can approximate the
data distribution. We use a synthetic dataset of 25 Gaussian modes in grid
layout similar to [10]. Our dataset contains 50 K training points in 2D, and we
draw 2 K generated samples for testing. For fair comparisons, we use equivalent
architectures and setup for all methods in the same experimental condition if
possible. The architecture and network size are similar to [22] on the 8-Gaussian
dataset, except that we use one more hidden layer. We use fully-connected layers
and Rectifier Linear Unit (ReLU) activation for input and hidden layers, sigmoid
for output layers. The network size of encoder, generator and discriminator are
presented in Table 1 of Supplementary Material, where din = 2, dout = 2, dh =
128 are dimensions of input, output and hidden layers respectively. Nh = 3 is the
number of hidden layers. The output dimension of the encoder is the dimension
of the latent variable. Our prior distribution is uniform [−1, 1]. We use Adam
optimizer with learning rate lr = 0.001, and the exponent decay rate of first
moment β1 = 0.8. The learning rate is decayed every 10K steps with a base of
0.9. The mini-batch size is 128. The training stops after 500 epochs. To have fair
comparison, we carefully fine-tune other methods (and use weight decay during
training if this achieves better results) to ensure they achieve their best results
on the synthetic data. For evaluation, a mode is missed if there are less than 20
generated samples registered into this mode, which is measured by its mean and
variance of 0.01 [19,22]. A method has mode collapse if there are missing modes.
In this experiment, we fix the parameters λr = 0.1 (Eq. 3), λp = 0.1 (Eq. 5),
λw = 1.0 (Eq. 6). For each method, we repeat eight runs and report the average.
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Fig. 5. From left to right figures: (a), (b), (c), (d). The number of registered modes
(a) and points (b) of our method with two different settings on the synthetic dataset.
We compare our Dist-GAN to the baseline GAN [12] and other methods on the same
dataset measured by the number of registered modes (classes) (c) and points (d).

First, we highlight the capability of our model to approximate the distribu-
tion Px of synthetic data. We carry out the ablation experiment to understand
the influence of each proposed component with different settings:

– Dist-GAN1: uses the “discriminator-score distance” for generator objective
(LG) and the AE loss LR but does not use data-latent distance constraint
term (LW ) and gradient penalty (LP ). This setting has three different versions
as using reconstructed samples (LC) as “real”, “fake” or “none” (not use it)
in the discriminator objective.

– Dist-GAN2: improves from Dist-GAN1 (regarding reconstructed samples as
“real”) by adding the gradient penalty LP .

– Dist-GAN: improves the Dist-GAN2 by adding the data-latent distance con-
straint LW . (See Table 3 in Supplementary Material for details).

The quantitative results are shown in Fig. 5. Figure 5a is the number of reg-
istered modes changing over the training. Dist-GAN1 misses a few modes while
Dist-GAN2 and Dist-GAN generates all 25 modes after about 50 epochs. Since
they almost do not miss any modes, it is reasonable to compare the number
of registered points as in Fig. 5b. Regarding reconstructed samples as “real”
achieves better results than regarding them as “fake” or “none”. It is reasonable
that Dist-GAN1 obtains similar results as the baseline GAN when not using the
reconstructed samples in discriminator objective (“none” option). Other results
show the improvement when adding the gradient penalty into the discriminator
(Dist-GAN2). Dist-GAN demonstrates the effectiveness of using the proposed
latent-data constraints, when comparing with Dist-GAN2.

To highlight the effectiveness of our proposed “discriminator-score distance”
for the generator, we use it to improve the baseline GAN [12], denoted by GAN1.
Then, we propose GAN2 to improve GAN1 by adding the gradient penalty. We
can observe that combination of our proposed generator objective and gradi-
ent penalty can improve stability of GAN. We compare our best setting (Dist-
GAN) to previous work. ALI [10] and DAN-2S [19] are recent works using
encoder/decoder in their model. VAE-GAN [18] introduces a similar model.
WGAN-GP [13] is one of the current state of the art. The numbers of covered
modes and registered points are presented in Fig. 5c and Fig. 5d respectively.
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The quantitative numbers of last epochs are shown in Table 2 of Supplemen-
tary Material. In this table, we report also Total Variation scores to measure
the mode balance. The result for each method is the average of eight runs. Our
method outperforms GAN [12], DAN-2S [19], ALI [10], and VAE/GAN [18] on
the number of covered modes. While WGAN-GP sometimes misses one mode
and diverges, our method (Dist-GAN) does not suffer from mode collapse in
all eight runs. Furthermore, we achieve a higher number of registered samples
than WGAN-GP and all others. Our method is also better than the rest with
Total Variation (TV) [19]. Figure 6 depicts the detail proportion of generated
samples of 25 modes. (More visualization of generated samples in Section 2 of
Supplementary Material).

4.2 MNIST-1K

For image datasets, we use Φ(x) instead x for the reconstruction loss and the
latent-data distance constraint in order to avoid the blur. We fix the parameters
λp = 1.0, and λr = 1.0 for all image datasets that work consistently well. The λw

is automatically computed from dimensions of features Φ(x) and latent samples.
Our model implementation for MNIST uses the published code of WGAN-GP
[13]. Figure 7 from left to right are the real samples, the generated samples and
the frequency of each digit generated by our method for standard MNIST. It
demonstrates that our method can approximate well the MNIST digit distri-
bution. Moreover, our generated samples look realistic with different styles and
strokes that resemble the real ones. In addition, we follow the procedure in [22]
to construct a more challenging 1000-class MNIST (MNIST-1K) dataset. It has
1000 modes from 000 to 999. We create a total of 25,600 images. We compare
methods by counting the number of covered modes (having at least one sample
[22]) and computing KL divergence. To be fair, we adopt the equivalent net-
work architecture (low-capacity generator and two crippled discriminators K/4
and K/2) as proposed by [22]. Table 1 presents the number of modes and KL
divergence of compared methods. Results show that our method outperforms

Fig. 6. The mode balance obtained by different methods.
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all others in the number of covered modes, especially with the low-capacity dis-
criminator (K/4 architecture), where our method has 150 modes more than the
second best. Our method reduces the gap between the two architectures (e.g.
about 60 modes), which is smaller than other methods. For both architectures,
we obtain better results for both KL divergence and the number of recovered
modes. All results support that our proposed Dist-GAN handles better mode
collapse, and is robust even in case of imbalance in generator and discriminator.

Fig. 7. The real and our generated samples in one mini-batch. And the number of gen-
erated samples per class obtained by our method on the MNIST dataset. We compare
our frequency of generated samples to the ground-truth via KL divergence: KL = 0.01.

Table 1. The comparison on MNIST-1K of methods. We follow the setup and network
architectures from Unrolled GAN.

Architecture GAN Unrolled GAN WGAN-GP Dist-GAN

K/4, # 30.6 ± 20.7 372.2 ± 20.7 640.1 ± 136.3 859.5 ± 68.7

K/4, KL 5.99 ± 0.04 4.66 ± 0.46 1.97 ± 0.70 1.04 ± 0.29

K/2, # 628.0 ± 140.9 817.4 ± 39.9 772.4 ± 146.5 917.9 ± 69.6

K/2, KL 2.58 ± 0.75 1.43 ± 0.12 1.35 ± 0.55 1.06 ± 0.23

5 CelebA, CIFAR-10 and STL-10 Datasets

Furthermore, we use CelebA dataset and compare with DCGAN [24] and
WGAN-GP [13]. Our implementation is based on the open source [1,2]. Figure 8
shows samples generated by DCGAN, WGANGP and our Dist-GAN. While
DCGAN is slightly collapsed at epoch 50, and WGAN-GP sometimes gener-
ates broken faces. Our method does not suffer from such issues and can gen-
erate recognizable and realistic faces. We also report results for the CIFAR-10
dataset using DCGAN architecture [24] of same published code [13]. The gen-
erated samples with our method trained on this dataset can be found in Sect. 4
of Supplementary Material. For quantitative results, we report the FID scores
[15] for both datasets. FID can detect intra-class mode dropping, and measure
the diversity and the quality of generated samples. We follow the experimental
procedure and model architecture in [20]. Our method outperforms others for
both CelebA and CIFAR-10, as shown in the first and second rows of Table 2.
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Fig. 8. Generated samples of DCGAN (50 epochs, results from [1]), WGAN-GP (50
epochs, results from [1]) and our Dist-GAN (50 epochs).

Here, the results of other GAN methods are from [20]. We also report FID score
of VAEGAN on these datasets. Our method is better than VAEGAN. Note that
we have also tried MDGAN, but it has serious mode collapsed for both these
datasets. Therefore, we do not report its result in our paper.

Lastly, we compare our model with recent SN-GAN [23] on CIFAR-10 and
STL-10 datasets with standard CNN architecture. Experimental setup is the same
as [23], and FID is the score for the comparison. Results are presented in the third
to fifth rows of Table 2. In addition to settings reported using synthetic dataset, we
have additional settings and ablation study for image datasets, which are reported
in Section 5 of Supplementary Material. The results confirm the stability of our
model, and our method outperforms SN-GAN on the CIFAR-10 dataset. Interest-
ingly, when we replace “log” by “hinge loss” functions in the discriminator as in
[23], our “hinge loss” version performs even better with FID = 22.95, compared
to FID = 25.5 of SN-GAN. It is worth noting that our model is trained with the
default parameters λp = 1.0 and λr = 1.0. Our generator requires about 200 K
iterations with the mini-batch size of 64. When we apply our “hinge loss” version
on STL-10 dataset similar to [23], our model can achieve the FID score 36.19 for
this dataset, which is also better than SN-GAN (FID = 43.2).

Table 2. Comparing FID score to other methods. First two rows (CelebA, CIFAR-10)
follow the experimental setup of [20], and the remaining rows follow the experimental
setup of [23] using standard CNN architectures.

NS GAN LSGAN WGANGP BEGAN VAEGAN SN-GAN Dist-GAN

CelebA 58.0 ± 2.7 53.6 ± 4.2 26.8 ± 1.2 38.1 ± 1.1 27.5 ± 1.9 - 23.7 ± 0.3

CIFAR-10 58.6 ± 2.1 67.1 ± 2.9 52.9 ± 1.3 71.4 ± 1.1 58.1 ± 3.2 - 45.6 ± 1.2

CIFAR-10 - - - - - 29.3 28.23

CIFAR-10

(hinge)

- - - - - 25.5 22.95

STL-10 (hinge) - - - - - 43.2 36.19
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6 Conclusion

We propose a robust AE-based GAN model with novel distance constraints,
called Dist-GAN, that can address the mode collapse and gradient vanishing
effectively. Our model is different from previous work: (i) We propose a new
generator objective using “discriminator-score distance”. (ii) We propose to cou-
ple the convergence of the discriminator with that of the AE by considering
reconstructed samples as “real” samples. (iii) We propose to regularize AE by
“latent-data distance constraint” in order to prevent the generator from falling
into mode collapse settings. Extensive experiments demonstrate that our method
can approximate multi-modal distributions. Our method reduces drastically the
mode collapse for MNIST-1K. Our model is stable and does not suffer from mode
collapse for MNIST, CelebA, CIFAR-10 and STL-10 datasets. Furthermore, we
achieve better FID scores than previous works. These demonstrate the effective-
ness of the proposed Dist-GAN. Future work applies our proposed Dist-GAN to
different computer vision tasks [14,16].
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