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Abstract. Demosaicking and denoising are among the most crucial
steps of modern digital camera pipelines and their joint treatment is
a highly ill-posed inverse problem where at-least two-thirds of the infor-
mation are missing and the rest are corrupted by noise. This poses a great
challenge in obtaining meaningful reconstructions and a special care for
the efficient treatment of the problem is required. While there are sev-
eral machine learning approaches that have been recently introduced to
deal with joint image demosaicking-denoising, in this work we propose a
novel deep learning architecture which is inspired by powerful classical
image regularization methods and large-scale convex optimization tech-
niques. Consequently, our derived network is more transparent and has
a clear interpretation compared to alternative competitive deep learning
approaches. Our extensive experiments demonstrate that our network
outperforms any previous approaches on both noisy and noise-free data.
This improvement in reconstruction quality is attributed to the princi-
pled way we design our network architecture, which also requires fewer
trainable parameters than the current state-of-the-art deep network solu-
tion. Finally, we show that our network has the ability to generalize well
even when it is trained on small datasets, while keeping the overall num-
ber of trainable parameters low.
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1 Introduction

Modern digital cameras perform a certain number of processing steps in order to
create high quality images from raw sensor data. The sequence of the required
processing steps is known as the imaging pipeline and the first two and most
crucial steps involve image denoising and demosaicking. Both of these problems
belong to the category of ill-posed problems while their joint treatment is very
challenging since two-thirds of the underlying data are missing and the rest
are perturbed by noise. It is clear that reconstruction errors during this early
stage of the camera pipeline will eventually lead to unsatisfying final results.
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Furthermore, due to the modular nature of the camera processing pipelines,
demosaicking and denoising were traditionally dealt in the past in a sequential
manner. In detail, demosaicking algorithms reconstruct the image from unreli-
able spatially-shifted sensor data which introduce non-linear pixel noise, casting
denoising an even harder problem. Since, demosaicking is an essential step of
the camera pipeline, it has been extensively studied. For a complete survey of
recent approaches, we refer to [1]. One of the main drawbacks of several of the
currently introduced methods that deal with the demosaicking problem, is that
they assume a specific Bayer pattern [1–6]. This is a rather strong assump-
tion and limits their applicability since there are many cameras available in
the market that employ different Color filter Array (CFA) patterns. Therefore,
demosaicking methods that are able to generalize to different CFA patterns are
preferred.

One simple method that works for any CFA pattern is bilinear interpola-
tion on the neighboring values for a given pixel for each channel. The prob-
lem with this approach is the produced zippering artifacts which occur along
high frequency signal changes, e.g., edges. Therefore, many approaches involve
edge-adaptive interpolation schemes which follow the direction of the gradient
of strong edges [1]. However, the real challenges of demosaicking extend in the
exploitation of both intra and inter-channel dependencies. The most common
assumption is that color differences between color channels are constant, so that
the end result leads to smooth images. Other approaches make use of the self-
similarity and redundancy properties of natural images [2–4,6]. Moreover, in
some cases a post-processing step is applied to remove certain type of arti-
facts [7]. Another successful class consists of methods that act upon the fre-
quency domain. Any Bayer CFA can be represented as the combination of a
luminance component at baseband and two modulated components [8]. Upon
this interpretation, Dubois [9–11] created a successful set of filter-banks using a
least-squares method that was able to generalize to arbitrary sensor patterns.

From the perspective of learning based approaches, the bibliography is short.
A common problem with the design of learning based demosaicking algorithms
is the lack of ground-truth images. In many approaches such as those in [12,13]
the authors used already processed images as references that are simulated
mosaicked again, i.e. they apply a mosaick mask on the already demosaicked
images, therefore obtaining non-realistic pairs for tuning trainable methods. In
a recent work Khasabi et. al. [14] provided a way to produce a dataset with
realistic reference images allowing for the design of machine learning demosaick-
ing algorithms. We use the produced Microsoft Demosaicking dataset (MSR)
[14] in order to train, evaluate and compare our system. The contained images
have to be demosaicked in the linear RGB (linRGB) color space before being
transformed via color transformation and gamma correction into standard RGB
(sRGB) space. Furthermore, two common CFA patterns are contained into the
dataset, namely Bayer and Fuji X Trans which enables the development and
evaluation of methods that are able to deal with different CFA patterns.
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Apart from the demosaicking problem, another problem that requires special
attention is the elimination of noise arising from the sensor and which distorts the
acquired raw data. Firstly, the sensor readings are corrupted with shot noise [15]
which is the result of random variation of the detected photons. Second, elec-
tronic inefficiencies during reading and converting electrical charge into a digital
count exhibit another type of noise, namely read noise. Under certain circum-
stances both noises can be approximated by noise following a heteroscedastic
Gaussian pdf [15]. Prior work from Kalevo and Rantanen [16], analyzed whether
denoising should occur before or after the demosaicking step. It was experimen-
tally confirmed that denoising is preferably done before demosaicking. However,
the case of joint denoising and demosaicking was not analyzed. In later work,
many researchers [17–19] showed that joint denoising and demosaicking yields
better results. Motivated by these works, we also pursue a joint approach for
denoising and demosaicking of raw sensor data.

In a very recent work Gharbi et. al. [20] exploit the advantages in the field
of deep learning to create a Convolutional Neural Network (CNN) that is able
to jointly denoise and demosaick images. Apart from the design of the afore-
mentioned network, a lot of effort was put by the authors to create a new large
demosaicking dataset, namely the MIT Demosaicking Dataset which consists of
2.6 million patches of images. These patches were mined from a large collection
of data following specific visual distortion metrics.

Our main contribution is a novel deep neural network for solving the joint
image demosaicking-denoising problem1. The network architecture is inspired
by classical image regularization approaches and a powerful optimization strat-
egy that has been successfully used in the past for dealing with general inverse
imaging problems. We demonstrate through extensive experimentation that our
approach leads to higher-quality reconstruction than other competing methods
in both linear RGB (linRGB) and standard RGB (sRGB) color spaces. More-
over, we further show that our derived network not only outperforms the current
CNN-based state-of-the art network [20], but it achieves this by using less train-
able parameters and by being trained only on a small fraction of the training
data.

2 Problem Formulation

To solve the joint demosaicking-denoising problem, one of the most frequently
used approaches in the literature relies on the following linear observation model

y = Mx + n, (1)

which relates the observed sensor raw data, y ∈ R
N , and the underlying image

x ∈ R
N that we aim to restore. Both x and y correspond to the vectorized

forms of the images assuming that they have been raster scanned using a lexico-
graphical order. Under this notation, M ∈ R

N×N is the degradation matrix that
1 The code for both training and inference will be made available from the authors’

website.
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models the spatial response of the imaging device, and in particular the CFA
pattern. According to this, M corresponds to a square diagonal binary matrix
where the zero elements in its diagonal indicate the spatial and channel locations
in the image where color information is missing. Apart from the missing color
values, the image measurements are also perturbed by noise which hereafter, we
will assume that is an i.i.d Gaussian noise n ∼ N (0, σ2). Note, that this is a
rather simplified assumption about the noise statistics distorting the measure-
ments. However, this model only serves as our starting point based on which
we will design our network architecture. In the sequel, our derived network will
be trained and evaluated on images that are distorted by noise which follows
statistics that better approximate real noisy conditions.

Recovering x from the measurements y belongs to the broad class of linear
inverse problems. For the problem under study, the operator M is clearly singu-
lar. This fact combined with the presence of noise perturbing the measurements
leads to an ill-posed problem where a unique solution does not exist. One pop-
ular way to deal with this, is to adopt a Bayesian approach and seek for the
Maximum A Posteriori (MAP) estimator

x� = arg max
x

log(p(x|y)) = arg max
x

log(p(y|x)) + log(p(x)), (2)

where log(p(y|x)) represents the log-likelihood of the observation y and log(p(x))
represents the log-prior of x. Problem (2) can be equivalently re-casted as the
minimization problem

x� = arg min
x

1
2σ2

‖y − Mx‖22 + φ(x) (3)

where the first term corresponds to the negative log-likelihood (assuming i.i.d
Gaussian noise of variance σ2) and the second term corresponds to the negative
log-prior. According to the above, the restoration of the underlying image x,
boils down to computing the minimizer of the objective function in Eq. (3),
which consists of two terms. This problem formulation has also direct links to
variational methods where the first term can be interpreted as the data-fidelity
that quantifies the proximity of the solution to the observation and the second
term can be seen as the regularizer, whose role is to promotes solutions that
satisfy certain favorable image properties.

In general, the minimization of the objective function

Q(x) =
1

2σ2
‖y − Mx‖22 + φ(x) (4)

is far from a trivial task, especially when the function φ(x) is not of a quadratic
form, which implies that the solution cannot simply be obtained by solving a
set of linear equations. From the above, it is clear that there are two important
challenges that need to be dealt with before we are in position of deriving a
satisfactory solution for our problem. The first one is to come up with an algo-
rithm that can efficiently minimize Q (x), while the second one is to select an
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appropriate form for φ (x), which will constrain the set of admissible solutions
by promoting only those that exhibit the desired properties.

In Sect. 3, we will focus on the first challenge, while in Sect. 4 we will discuss
how it is possible to avoid making any explicit decisions for the regularizer (or
equivalently the negative log-prior) by following a machine learning approach.
Such an approach will allow us to infer the form of φ (x), in an indirect way,
from training data.

3 Majorization-Minimization Framework

One of the main difficulties in the minimization of the objective function in
Eq. (4) is the coupling that exists between the singular degradation operator,
M, and the latent image x. To circumvent this difficulty there are several opti-
mization strategies available that we could rely on, with potential candidates
being splitting variables techniques such as the Alternating Direction Method
of Multipliers [21] and the Split Bregman approach [22]. However, one difficulty
that arises by using such methods is that they involve additional parameters
that need to be tuned so that a satisfactory convergence speed to the solution
is achieved. Unfortunately, there is not a simple and straightforward way to
choose these parameters. For this reason, in this work we will instead pursue
a majorization-minimization (MM) approach [23,24], which does not pose such
a requirement. Under this framework, as we will describe in detail, instead of
obtaining the solution by minimizing (4), we compute it iteratively via the suc-
cessive minimization of surrogate functions. The surrogate functions provide an
upper bound of the initial objective function [23] and they are simpler to deal
with than the original objective function.

Specifically, in the majorization-minimization (MM) framework, an iterative
algorithm for solving the minimization problem

x∗ = arg min
f

Q (x) (5)

takes the form
x(t+1) = arg min

x
Q̃(x;x(t)), (6)

where Q̃(x;x(t)) is the majorizer of the function Q(x) at a fixed point x(t),
satisfying the two conditions

Q̃(x;x(t)) > Q(x),∀x �= x(t) and Q̃(x(t);x(t)) = Q(x(t)). (7)

Here, the underlying idea is that instead of minimizing the actual objective
function Q(x), we fist upper-bound it by a suitable majorizer Q̃(x;x(t)), and
then minimize this majorizing function to produce the next iterate x(t+1). Given
the properties of the majorizer, iteratively minimizing Q̃(·;x(t)) also decreases
the objective function Q(·). In fact, it is not even required that the surrogate
function in each iteration is minimized, but it is sufficient to only find a x(t+1)

that decreases it.
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To derive a majorizer for Q (x) we opt for a majorizer of the data-fidelity
term (negative log-likelihood). In particular, we consider the following majorizer

d̃(x,x0) =
1

2σ2
‖y − Mx‖22 + d(x,x0), (8)

where d(x,x0) = 1
2σ2 (x− x0)T [αI−MTM](x− x0) is a function that measures

the distance between x and x0. Since M is a binary diagonal matrix, it is an
idempotent matrix, that is MTM = M, and thus d(x,x0) = 1

2σ2 (x− x0)T [αI−
M](x − x0). According to the conditions in (7), in order d̃(x,x0) to be a valid
majorizer, we need to ensure that d(x,x0) ≥ 0,∀x with equality iff x = x0. This
suggests that aI−M must be a positive definite matrix, which only holds when
α > ‖M‖2 = 1, i.e. α is bigger than the maximum eigenvalue of M. Based on
the above, the upper-bounded version of (4) is finally written as

Q̃(x,x0) =
1

2(σ/
√

a)2
‖x − z‖22 + φ(x) + c, (9)

where c is a constant and z = y + (I − M)x0.
Notice that following this approach, we have managed to completely decou-

ple the degradation operator M from x and we now need to deal with a simpler
problem. In fact, the resulting surrogate function in Eq. (9) can be interpreted as
the objective function of a denoising problem, with z being the noisy measure-
ments that are corrupted by noise whose variance is equal to σ2/a. This is a key
observation that we will heavily rely on in order to design our deep network archi-
tecture. In particular, it is now possible instead of selecting the form of φ (x) and
minimizing the surrogate function, to employ a denoising neural network that
will compute the solution of the current iteration. Our idea is similar in nature
to other recent image restoration approaches that have employed denoising net-
works as part of alternative iterative optimization strategies, such as RED [25]
and P 3 [26]. This direction for solving the joint denoising-demosaicking prob-
lem is very appealing since by using training data we can implicitly learn the
function φ (x) and also minimize the corresponding surrogate function using a
feed-forward network. This way we can completely avoid making any explicit
decision for the regularizer or relying on an iterative optimization strategy to
minimize the function in Eq. (9).

4 Residual Denoising Network (ResDNet)

Based on the discussion above, the most important part of our approach is the
design of a denoising network that will play the role of the solver for the surrogate
function in Eq. (9). The architecture of the proposed network is depicted in
Fig. 1. This is a residual network similar to DnCNN [27], where the output of
the network is subtracted from its input. Therefore, the network itself acts as a
noise estimator and its task is to estimate the noise realization that distorts the
input. Such network architectures have been shown to lead to better restoration
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Fig. 1. The architecture of the proposed ResDNet denoising network, which serves as
the back-bone of our overall system.

results than alternative approaches [27,28]. One distinctive difference between
our network and DnCNN, which also makes our network suitable to be used as
a part of the MM-approach, is that it accepts two inputs, namely the distorted
input and the variance of the noise. This way, as we will demonstrate in the
sequel, we are able to learn a single set of parameters for our network and
to employ the same network to inputs that are distorted by a wide range of
noise levels. While the blind version of DnCNN can also work for different noise
levels, as opposed to our network it features an internal mechanism to estimate
the noise variance. However, when the noise statistics deviate significantly from
the training conditions such a mechanism can fail and thus DnCNN can lead
to poor denoising results [28]. In fact, due to this reason in [29], where more
general restoration problems than denoising are studied, the authors of DnCNN
use a non-blind variant of their network as a part of their proposed restoration
approach. Nevertheless, the drawback of this approach is that it requires the
training of a deep network for each noise level. This can be rather impractical,
especially in cases where one would like to employ such networks on devices
with limited storage capacities. In our case, inspired by the recent work in [28]
we circumvent this limitation by explicitly providing as input to our network
the noise variance, which is then used to assist the network so as to provide an
accurate estimate of the noise distorting the input. Note that there are several
techniques available in the literature that can provide an estimate of the noise
variance, such as those described in [30,31], and thus this requirement does not
pose any significant challenges in our approach.

A ResDNet with depth D, consists of five fundamental blocks. The first block
is a convolutional layer with 64 filters whose kernel size is 5×5. The second one is
a non-linear block that consists of a parametrized rectified linear unit activation
function (PReLU), followed by a convolution with 64 filters of 3×3 kernels. The
PReLU function is defined as PReLU(x) = max(0,x) + κ ∗ min(0,x) where κ is
a vector whose size is equal to the number of input channels. In our network we
use D ∗ 2 distinct non-linear blocks which we connect via a shortcut connection
every second block in a similar manner to [32] as shown in Fig. 1. Next, the
output of the non-linear stage is processed by a transposed convolution layer
which reduces the number of channels from 64 to 3 and has a kernel size of 5×5.
Then, it follows a projection layer [28] which accepts as an additional input the
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noise variance and whose role is to normalize the noise realization estimate so
that it will have the correct variance, before this is subtracted from the input
of the network. Finally the result is clipped so that the intensities of the output
lie in the range [0, 255]. This last layer enforces our prior knowledge about the
expected range of valid pixel intensities.

Regarding implementation details, before each convolution layer the input
is padded to make sure that each feature map has the same spatial size as
the input image. However, unlike the common approach followed in most of
the deep learning systems for computer vision applications, we use reflexive
padding than zero padding. Another important difference to other networks
used for image restoration tasks [27,29] is that we don’t use batch normalization
after convolutions. Instead, we use the parametric convolution representation
that has been proposed in [28] and which is motivated by image regularization
related arguments. In particular, if v ∈ R

L represents the weights of a filter in a
convolutional layer, these are parametrized as

v =
s (u − ū)
‖u − ū‖2 , (10)

where s is a scalar trainable parameter, u ∈ R
L and ū denotes the mean value

of u. In other words, we are learning zero-mean valued filters whose �2-norm is
equal to s.

Furthermore, the projection layer, which is used just before the subtraction
operation with the network input, corresponds to the following �2 orthogonal
projection

PC (y) = ε
y

max(‖y‖2, ε) , (11)

where ε = eγθ, θ = σ
√

N − 1, N is the total number of pixels in the image
(including the color channels), σ is the standard deviation of the noise distorting
the input, and γ is a scalar trainable parameter. As we mentioned earlier, the
goal of this layer is to normalize the noise realization estimate so that it has the
desired variance before it is subtracted from the network input.

5 Demosaicking Network Architecture

The overall architecture of our approach is based upon the MM framework, pre-
sented in Sect. 3, and the proposed denoising network. As discussed, the MM is
an iterative algorithm Eq. (6) where the minimization of the majorizer in Eq. (9)
can be interpreted as a denoising problem. One way to design the demosaicking
network would be to unroll the MM algorithm as K discrete steps and then for
each step use a different denoising network to retrieve the solution of Eq. (9).
However, this approach can have two distinct drawbacks which will hinder its
performance. The first one, is that the usage of a different denoising neural net-
work for each step like in [29], demands a high overall number of parameters,
which is equal to K times the parameters of the employed denoiser, making
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Algorithm 1. The proposed demosaicking network described as an itera-
tive process. The ResDnet parameters remain the same in every iteration.
Input: M : CFA, y : input, K : iterations, w ∈ R

K : extrapolation weights,
σ ∈ R

K : noise vector
x0 = 0, x1 = y;
for i ← 1 to K do

u = x(i) + wi(x
(i) − x(i−1));

x(i+1) = ResDNet((I − M)u + y,σi);

end

the demosaicking network impractical for any real applications. To override this
drawback, we opt to use our ResDNet denoiser, which can be applied to a wide
range of noise levels, for all K steps of our demosaick network, using the same
set of parameters. By sharing the parameters of our denoiser across all the K
steps, the overall demosaicking approach maintains a low number of required
parameters.

The second drawback of the MM framework as described in Sect. 3 is the
slow convergence [33] that it can exhibit. Beck and Teboulle [33] introduced an
accelerated version of this MM approach which combines the solutions of two
consecutive steps with a certain extrapolation weight that is different for every
step. In this work, we adopt a similar strategy which we describe in Algorithm 1.
Furthermore, in our approach we go one step further and instead of using the
values originally suggested in [33] for the weights w ∈ R

K , we treat them as
trainable parameters and learn them directly from the data. These weights are
initialized with wi = i−1

i+2 ,∀1 ≤ i ≤ K.
The convergence of our framework can be further sped up by employing a

continuation strategy [34] where the main idea is to solve the problem in Eq. (9)
with a large value of σ and then gradually decrease it until the target value is
reached. Our approach is able to make use of the continuation strategy due to
the design of our ResDNet denoiser, which accepts as an additional argument
the noise variance. In detail, we initialize the trainable vector σ ∈ R

K with
values spaced evenly on a log scale from σmax to σmin and later on the vector
σ is further finetuned on the training dataset by back-propagation training.

In summary, our overall demosaicking network is described in Algorithm 1
where the set of trainable parameters θ consists of the parameters of the Res-
DNet denoiser, the extrapolation weights w and the noise level σ. All of the
aforementioned parameters are initialized as described in the current section
and Sect. 4 and are trained on specific demosaick datasets. In order to speed
up the learning process, the employed ResDNet denoiser is pre-trained for a
denoising task where multiple noise levels are considered.

Finally, while our demosaick network shares a similar philosophy with meth-
ods such as RED [25], P 3 [26] and IRCNN [29], it exhibits some important and
distinct differences. In particular, the aforementioned strategies make use of cer-
tain optimization schemes to decompose their original problem into subproblems



326 F. Kokkinos and S. Lefkimmiatis

that are solvable by a denoiser. For example, the authors of P 3 [26] decompose
the original problem Eq. (1) via ADMM [21] optimization algorithm and solve
instead a linear system of equations and a denoising problem, where the authors
of RED [25] go one step further and make use of the Lagrangian on par with a
denoiser. Both approaches are similar to ours, however their formulation involves
a tunable variable λ that weights the participation of the regularizer on the over-
all optimization procedure. Thus, in order to obtain an accurate reconstruction
in reasonable time, the user must manually tune the variable λ which is not a
trivial task. On the other hand, our method does not involve any tunable vari-
ables by the user. Furthermore, the approaches P 3, RED and IRCNN are based
upon static denoisers like Non Local Means [35], BM3D [36] and DCNN [27],
meanwhile we opt to use a universal denoiser, like ResDnet, that can be fur-
ther trained on any available training data. Finally, our approach goes one step
further and we use a trainable version of an iterative optimization strategy for
the task of the joint denoising-demosaicking in the form of a feed-forward neural
network (Fig. 2).

6 Network Training

6.1 Image Denoising

The denoising network ResDnet that we use as part of our overall network is
pre-trained on the Berkeley segmentation dataset (BSDS) [37], which consists of
500 color images. These images were split in two sets, 400 were used to form a
train set and the rest 100 formed a validation set. All the images were randomly
cropped into patches of size 180 × 180 pixels. The patches were perturbed with
noise σ ∈ [0, 15] and the network was optimized to minimize the Mean Square
Error. We set the network depth D = 5, all weights are initialized as in He et al.
[38] and the optimization is carried out using ADAM [39] which is a stochastic
gradient descent algorithm which adapts the learning rate per parameter. The
training procedure starts with an initial learning rate equal to 10−2.

6.2 Joint Denoising and Demosaicking

Using the pre-trained denoiser Sect. 6.1, our novel framework is further trained
in an end-to-end fashion to minimize the averaged L1 loss over a minibatch of
size d,

L(θ) =
1
N

d∑

i=1

‖yi − f(xi)‖1, (12)

where yi ∈ R
N and xi ∈ R

N are the rasterized groundtruth and input images,
while f (·) is the output of our network. The minimization of the loss function
is carried via the Backpropagation Through Time (BPTT) [40] algorithm since
the weights of the network remain the same for all iterations.

During all our experiments, we used a small batch size of d = 4 images, the
total steps of the network were fixed to K = 10 and we set for the initialization of
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vector σ the values σmax = 15 and σmin = 1. The small batch size is mandatory
during training because all intermediate results have to be stored for the BPTT,
thus the memory consumption increases linearly to iteration steps and batch
size. Furthermore, the optimization is carried again via Adam optimizer and the
training starts from a learning rate of 10−2 which we decrease by a factor of 10
every 30 epochs. Finally, for all trainable parameters we apply �2 weight decay of
10−8. The full training procedure takes 3 hours for MSR Demosaicking Dataset
and 5 days for a small subset of the MIT Demosaicking Dataset on a modern
NVIDIA GTX 1080Ti GPU.

Table 1. Comparison of our system to state-of-the-art techniques on the demosaick-
only scenario in terms of PSNR performance. The Kodak dataset is resized to 512 × 768
following the methodology of evaluation in [1]. ∗Our system for the MIT dataset was
trained on a small subset of 40,000 out of 2.6 million images.

Kodak McM Vdp Moire

Non-ML Methods:

Bilinear 32.9 32.5 25.2 27.6

Adobe Camera Raw 9 33.9 32.2 27.8 29.8

Buades [4] 37.3 35.5 29.7 31.7

Zhang (NLM) [2] 37.9 36.3 30.1 31.9

Getreuer [41] 38.1 36.1 30.8 32.5

Heide [5] 40.0 38.6 27.1 34.9

Trained on MSR Dataset:

Klatzer [19] 35.3 30.8 28.0 30.3

Ours 39.2 34.1 29.2 29.7

Trained on MIT Dataset:

Gharbi [20] 41.2 39.5 34.3 37.0

Ours* 41.5 39.7 34.5 37.0

7 Experiments

Initially, we compare our system to other alternative techniques on the
demosaick-only scenario. Our network is trained on the MSR Demosaick dataset
[14] and it is evaluated on the McMaster [2], Kodak, Moire and VDP dataset
[20], where all the results are reported in Table 1. The MSR Demosaick dataset
consists of 200 train images which contain both the linearized 16-bit mosaicked
input images and the corresponding linRGB groundtruths that we also augment
with horizontal and vertical flipping. For all experiments, in order to quantify the
quality of the reconstructions we report the Peak signal-to-noise-ratio (PSNR)
metric.
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Apart from the MSR dataset, we also train our system on a small subset of
40,000 images from MIT dataset due to the small batch size constraint. Clearly
our system is capable of achieving equal and in many cases better performance
than the current the state-of-the art network [20] which was trained on the full
MIT dataset, i.e. 2.6 million images. We believe that training our network on
the complete MIT dataset, it will produce even better results for the noise-free
scenario. Furthermore, the aforementioned dataset contains only noise-free sam-
ples, therefore we don’t report any results in Table 2 and we mark the respective
results by using N/A instead. We also note that in [20], the authors in order to
use the MIT dataset to train their network for the joint demosaicking denoising
scenario, pertubed the data by i.i.d Gaussian noise. As a result, their system’s
performance under the presence of more realistic noise was significantly reduced,
which can be clearly seen from Table 2. The main reason for this is that their
noise assumption does not account for the shot noise of the camera but only for
the read noise.

Table 2. PSNR performance by different methods in both linear and sRGB spaces.
The results of methods that cannot perform denoising are not included for the noisy
scenario. Our system for the MIT dataset case was trained on a small subset of 40,000
out of 2.6 million images. The color space in the parentheses indicates the particular
color space of the employed training dataset.

Noise-free Noisy

linRGB sRGB linRGB sRGB

Non-ML Methods:

Bilinear 30.9 24.9 - -

Zhang(NLM) [2] 38.4 32.1 - -

Getreuer [41] 39.4 32.9 - -

Heide [5] 40.0 33.8 - -

Trained on MSR Dataset:

Khasabi [14] 39.4 32.6 37.8 31.5

Klatzer [19] 40.9 34.6 38.8 32.6

Bigdeli [42] - - 38.7 -

Ours 41.0 34.6 39.2 33.3

Trained on MIT Dataset:

Gharbi (sRGB)[20] 41.6 35.3 38.4 32.5

Gharbi (linRGB) 42.7 35.9 38.6 32.6

Ours* (linRGB) 42.6 35.9 N/A N/A

Similarly with the noise free case, we train our system on 200 training images
from the MSR dataset which are contaminated with simulated sensor noise [15].
The model was optimized in the linRGB space and the performance was eval-
uated on both linRGB and sRGB space, as proposed in [14]. It is clear that in
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the noise free scenario, training on million of images corresponds to improved
performance, however this doesn’t seem to be the case on the noisy scenario
as presented in Table 2. Our approach, even though it is based on deep learn-
ing techniques, is capable of generalizing better than the state-of-the-art system
while being trained on a small dataset of 200 images (Fig. 3). In detail, the
proposed system has a total 380,356 trainable parameters which is considerably
smaller than the current state-of-the art [20] with 559,776 trainable parameters.

Our demosaicking network is also capable of handling non-Bayer patterns
equally well, as shown in Table 3. In particular, we considered demosaicking using
the Fuji X-Trans CFA pattern, which is a 6× 6 grid with the green being the
dominant sampled color. We trained from scratch our network on the same train-
set of MSR Demosaick Dataset but now we applied the Fuji X-Trans mosaick. In

Table 3. Evaluation on noise-free linear data with the non-Bayer mosaick pattern Fuji
XTrans.

Noise-free

linear sRGB

Trained on MSR Dataset:

Khashabi [14] 36.9 30.6

Klatzer [19] 39.6 33.1

Ours 39.9 33.7

Trained on MIT Dataset:

Gharbi [20] 39.7 33.2

Fig. 2. Progression along the steps of our demosaick network. The first image which
corresponds to Step 1 represents a rough approximation of the end result while the
second (Step 3) and third image (Step 10) are more refined. This plot depicts the
continuation scheme of our approach.
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comparison to other systems, we manage to surpass state of the art performance
on both linRGB and sRGB space even when comparing with systems trained on
million of images.

On a modern GPU (Nvidia GTX 1080Ti), the whole demosaicking network
requires 0.05 sec for a color image of size 220 × 132 and it scales linearly to
images of different sizes. Since our model solely consists of matrix operations, it
could also be easily transfered to application specific integrated circuit (ASIC)
in order to achieve a substantial execution time speedup and be integrated to
cameras.

Fig. 3. Comparison of our network with other competing techniques on images from
the noisy MSR Dataset. From these results is clear that our method is capable of
removing the noise while keeping fine details.On the contrary, the rest of the methods
either fail to denoise or they oversmooth the images.

8 Conclusion

In this work, we presented a novel deep learning system that produces high-
quality images for the joint denoising and demosaicking problem. Our demosaick
network yields superior results both quantitative and qualitative compared to
the current state-of-the-art network. Meanwhile, our approach is able to gen-
eralize well even when trained on small datasets, while the number of parame-
ters is kept low in comparison to other competing solutions. As an interesting
future research direction, we plan to explore the applicability of our method on
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other image restoration problems like image deblurring, inpainting and super-
resolution where the degradation operator is unknown or varies from image to
image.
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