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Abstract. In this paper we propose a novel metric learning framework
called Nullspace Kernel Maximum Margin Metric Learning (NK3ML)
which efficiently addresses the small sample size (SSS) problem inher-
ent in person re-identification and offers a significant performance gain
over existing state-of-the-art methods. Taking advantage of the very high
dimensionality of the feature space, the metric is learned using a maxi-
mum margin criterion (MMC) over a discriminative nullspace where all
training sample points of a given class map onto a single point, minimiz-
ing the within class scatter. A kernel version of MMC is used to obtain a
better between class separation. Extensive experiments on four challeng-
ing benchmark datasets for person re-identification demonstrate that the
proposed algorithm outperforms all existing methods. We obtain 99.8%
rank-1 accuracy on the most widely accepted and challenging dataset
VIPeR, compared to the previous state of the art being only 63.92%.
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1 Introduction

Person re-identification (re-ID) is the task of matching the image of pedestrians
across spatially non overlapping cameras, even if the pedestrian identities are
unseen before. It is a very challenging task due to large variations in illumina-
tion, viewpoint, occlusion, background and pose changes. Supervised methods
for re-ID generally include two stages: computing a robust feature descriptor and
learning an efficient distance metric. Various feature descriptors like SDALF [10],
LOMO [23] and GOG [31] have improved the efficiency to represent a person. But
feature descriptors are unlikely to be completely invariant to large variations in
the data collection process and hence the second stage for person re-identification
focusing on metric learning is very important. They learn a discriminative metric
space to minimize the intra-person distance while maximizing the inter-person
distance. It has been shown that learning a good distance metric can drastically
improve the matching accuracy in re-ID. Many efficient metric learning methods
have been developed for re-ID in the last few years, for e.g., XQDA [23], KISSME
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[19], LFDA [36]. However, most of these methods suffer from the small sample
size (SSS) problem inherent in re-ID since the feature dimension is often very
high.

Recent deep learning based methods address feature computation and met-
ric learning jointly for an improved performance. However, their performance
depends on the availability of manually labeled large training data, which is not
possible in the context of re-ID. Hence we refrain from discussing deep learning
based methods in this paper, and concentrate on the following problem: given a
set of image features, can we design a good discriminant criterion for improved
classification accuracy for cases when the number of training samples per class
is very minimal and the testing identities are unseen during training. Our appli-
cation domain is person re-identification.

In this paper we propose a novel metric learning framework called Nullspace
Kernel Maximum Margin Metric Learning (NK3ML) which efficiently addresses
the SSS problem and provide better performance compared to the state-of-the-
art approaches for re-ID. The discriminative metric space is learned using a
maximum margin criterion over a discriminative nullspace. In the learned metric
space, the samples of distinct classes are separated with maximum margin while
keeping the samples of same class collapsed to a single point (i.e., zero intra-class
variance) to maximize the separability in terms of Fisher criterion.

1.1 Related Methods

Most existing person re-identification methods try to build robust feature
descriptors and learn discriminative distance metrics. For feature descriptors,
several works have been proposed to capture the invariant and discriminative
properties of human images [10,12,18,23,26,31,52,59]. Specifically, GOG [31]
and LOMO [23] descriptors have shown impressive robustness against illumina-
tion, pose and viewpoint changes.

For recognition purposes, many metric learning methods have been proposed
recently [6,15,19,23,36,51,54,61,62]. Most of the metric learning methods in
re-ID originated elsewhere and are applied with suitable modification for over-
coming the additional challenges in re-identification. Köstinger et al. proposed an
efficient metric called KISSME [19] using log likelihood ratio test of two Gaussian
distributions. Hirzer et al. [15] used a relaxed positive semi definite constraint
of the Mahalanobis metric. Zheng et al. proposed PRDC [62] where the metric
is learned to maximize the probability of a pair of true match having a smaller
distance than that of a wrong match pair. As an improvement for KISSME [19],
Liao et al. proposed XQDA [23] to learn a more discriminative distance metric
and a low-dimensional subspace simultaneously. In [36], Pedagadi et al. success-
fully applied Local Fisher Discriminant Analysis (LFDA) [44] which is a variant
of Fisher discriminant analysis to preserve the local structure.

Most metric learning methods based on Fisher-type criterion suffer from the
small sample size (SSS) problem [14,61]. The dimensionality of various efficient
feature descriptors like LOMO [23] and GOG [31] are in ten thousands and too
high compared to the number of samples typically available for training. This
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makes the within class scatter matrix singular. Some methods use matrix regu-
larization [23,25,31,36,51] or unsupervised dimensionality reduction [19,36] to
overcome the singularity which makes them less discriminative and suboptimal.
Also these methods typically have a number of free parameters to tune.

Recently, Null Foley-Sammon Transform (NFST) [3,14,61] has gained
increasing attention in computer vision applications. NFST was proposed in [61]
to address the SSS problem in re-ID. They find a transformation which collapses
the intra class training samples into a single point. By restricting the between
class variance to be non zero, they maximize the Fisher discriminant criterion
without the need of using any regularization or unsupervised dimensionality
reduction.

In this paper, we first identify a serious limitation of NFST, i.e. though
NFST minimizes the intra-class distance to zero for all training data, it fails
to maximize the inter class distance and has serious consequences creating sub-
optimality in generalizing the discrimination for test data samples when the
test sample does not map to the corresponding singular points. Secondly, we
propose a novel metric learning framework called Nullspace Kernel Maximum
Margin Metric Learning (NK3ML). The method learns a discriminative metric
subspace to maximize the inter-class distance as well as minimize the intra-class
distance to zero. NK3ML efficiently addresses the suboptimality of NFST in
generalizing the discrimination to test data samples also. In particular, NK3ML
first take advantage of NFST to find a low dimensional discriminative nullspace
to collapse the intra class samples into a single point. Later NK3ML utilizes a
secondary metric learning framework to learn a discriminant subspace using the
nullspace to maximally separate the inter-class distance. NK3ML also uses a non-
linear mapping of the discriminative nullspace into an infinite dimensional space
using an appropriate kernel to further increase the maximum attainable margin
between the inter class samples. The proposed NK3ML does not require regular-
ization nor unsupervised dimensionality reduction and efficiently addresses the
SSS problem as well as the suboptimality of NFST in generalizing the discrimi-
nation for test data samples. The proposed NK3ML has a closed from solution
and has no free parameters to tune.

We first explain NFST in Sect. 2. Later we present NK3ML in Sect. 3 and
the experimental results in Sect. 4.

2 Null Foley-Sammon Transform

2.1 Foley-Sammon Transform

The objective of Foley-Sammon Transform (FST) [34,38] is to learn optimal
discriminant vectors w ∈ R

d that maximize the Fisher criterion JF (w) under
orthonormal constraints:

JF (w) =
wTSbw
wTSww

. (1)

Sw represents the within class scatter matrix and Sb the between class scatter
matrix. x ∈ R

d are the data samples with classes C1, . . . , Cc where c is the total
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number of classes. Let n be the total number of samples and ni the number
of samples in class Ci. FST tries to maximize the between class distance and
minimize the within class distance simultaneously by maximizing the Fisher
criterion.

The optimal discriminant vectors of FST are generated using the following
steps. The first discriminant vector w1 of FST is the unit vector that maximizes
JF (w1). If Sw is nonsingular, the solution becomes a conventional eigenvalue
problem: S−1

w Sbw = λw, and can be solved by the normalized eigenvector of
S−1
w Sb corresponding to its largest eigenvalue. The ith discriminant vector wi

of FST is calculated by the following optimization problem with orthonormality
constraints:

maximize
||wi||=1,wT

i wj=0
{JF (wi)} j = 1, . . . , i − 1. (2)

A major drawback of FST is that it cannot be directly applied when Sw becomes
singular in small sample size (SSS) problems. The SSS problem occures when
n < d. Common solutions include adding regularization term to Sw or reducing
the dimensionality using PCA, which makes them suboptimal.

2.2 Null Foley-Sammon Transform

The suboptimality due to SSS problem in FST is overcome in an efficient way
using Null Foley-Sammon Transform (NFST). The objective of NFST is to find
orthonormal discriminant vectors satisfying the following set of constraints:

wTSww = 0, wTSbw > 0. (3)

Each discriminant vector w should satisfy zero within-class scatter and positive
between-class scatter. This leads to JF (w) → ∞ and thus NFST tries to attain
the best separability in terms of Fisher criterion. Such a vector w is called
Null Projecting Direction (NPD). The zero within-class scatter ensures that the
transformation using NPDs collapse the intra-class training samples into a single
point.

Obtaining Null Projecting Directions: We explain how to obtain the Null
Projecting Direction (NPD) of NFST. The total class scatter matrix St is defined
as St = Sb + Sw. We also have St = 1

nPtPT
t , where Pt consists of zero mean

data x1 − m, . . . ,xn − m as its columns. Let Zt and Zw be the null space of St

and Sw respectively. Let Z⊥
t represent orthogonal complement of Zt. Note the

lemmas [14].

Lemma 1: Let A be a positive semidefinite matrix. Then wTAw = 0 iff Aw = 0.

Lemma 2: If w is an NPD, then w ∈ (Z⊥
t ∩ Zw).

Lemma 3: For small sample size (SSS) case, there exists exactly c − 1 NPDs, c
being the number of classes.
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In order to obtain the NPDs, we first obtain vectors from the space Z⊥
t . From

this space, we next obtain vectors that also satisfy w ∈ Zw. A set of orthonormal
vectors can be obtained from the resultant vectors which form the NPDs.

Based on the lemmas, Zt can be solved as:

Zt = {w | Stw = 0} = {w | wTStw = 0}
= {w | (PT

t w)T (PT
t w) = 0} = {w | PT

t w = 0}.
(4)

Thus Zt is the null space of PT
t . So Z⊥

t is the row space of PT
t , which is the

column space of Pt. Therefore Z⊥
t is the subspace spanned by zero mean data.

Z⊥
t can be represented using an orthonormal basis Q = (θ1, . . . , θn−1), where n is

the total number of samples. The basis Q can be obtained using Gram-Schmidt
orthonormalization procedure. Any vector in Z⊥

t can hence be represented as:

w = β1θ1 + . . . + βn−1θn−1 = Qβ. (5)

A vector w, satisfying Eq. (5) for any β, belongs to Z⊥
t . Now we have to find

those specific β which ensures w ∈ Zw. They can be found by substituting (5)
in the condition for w ∈ Zw as follows:

0 = Sww = wTSww = (Qβ)TSw(Qβ)

= βT (QTSwQ)β = QTSwQβ.
(6)

Hence β can be solved by finding the null space of QTSwQ. The set of solutions
{β} can be chosen orthonormal. Since the dimension of w ∈ (Z⊥

t ∩ Zw) is c − 1
[14], we get c − 1 solutions for β. The c − 1 NPDs can now be computed using
(5). Since Q and {β} are orthonormal, the resulting NPDs are also orthonormal.
The projection matrix WN ∈ R

d×(c−1) of NFST now constitutes of the c − 1
NPDs as its columns.

Fig. 1. Illustration of the suboptimality in NFST. Each color corresponds to distinct
classes. (Color figure online)

3 Nullspace Kernel Maximum Margin Metric Learning

Methods based on Fisher criterion, in general, learn the discriminant vectors
using the training samples so that the vectors generalize well for the test data
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also in terms of separability of classes. NFST [3,14] was proposed in [61] to
address the SSS problem in re-ID. They find a transformation by collapsing the
intra-class samples into a single point. We identify a serious limitation of NFST.
Maximizing JF (w) in Eq. (1) by making the denominator to zero, does not allow
to make use of the information contained in the numerator. As illustrated in
Fig. 1, the mapped singular points in the NFST projected space for two different
classes may be quite close. Thus, when a test data is projected into this NFST
nullspace, it no longer maps to the same singular point. Rather, it maps to a
point close to the above point. But this projected point may be closer to the
singular point for the other class and misclassification takes place. Under the
NFST formulation, one has no control on this aspect as one makes wTSww = 0,
but wTSbw may also be very small instead of being large, and the classification
performance may be very poor.

Fig. 2. Illustration of our method NK3ML. Each color corresponds to distinct classes.
(Color figure online)

In this paper we propose a metric learning framework, namely, Nullspace
Kernel Maximum Margin Metric Learning (NK3ML) to improve the limitation
of NFST and better handle the classification of high dimensional data. As shown
in Fig. 2, NK3ML first take advantage of NFST to find a low dimensional dis-
criminative nullspace to collapse the intra-class samples into a single point. Later
it uses a modified version of Maximum Margin Criterion (MMC) [20] to learn a
discriminant subspace using the nullspace to maximally separate the inter-class
distance. Further, to obtain the benefit of kernel based techniques, instead of
using the MMC, we obtain the Normalized Kernel Maximum margin criterion
(NKMMC) which is efficient and robust to learn the discriminant subspace to
maximize the distances among the classes. NK3ML can efficiently address the
suboptimality of NFST in enhancing the discrimination to test data samples also.

3.1 Maximum Margin Criterion

Maximum margin criterion (MMC) [20,21] is an efficient way to learn a discrimi-
nant subspace which maximize the distances between classes. For the separability
of classes C1, . . . , Cc, the maximum margin criterion is defined as
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J =
1
2

c∑

i=1

c∑

j=1

pipjd(Ci, Cj), (7)

where the inter-class margin (or distance) of class Ci and Cj is defined as

d(Ci, Cj) = d(mi,mj) − s(Ci) − s(Cj), (8)

and d(mi,mj) represents the squared Euclidean distance between mean vectors
mi and mj of classes Ci and Cj , respectively. s(Ci) is the scatter of class Ci,
estimated as s(Ci) = tr(Si) where Si is the within class scatter matrix of class
Ci. The inter-class margin can be solved to get d(Ci, Cj) = tr (Sb−Sw). A set of r
unit linear discriminant vectors {vk ∈ R

d|k = 1, . . . , r} is learned such that they
maximize J in the projected subspace. If V ∈ R

d×r is the projection matrix, the
MMC criterion becomes J(V) = tr (VT (Sb −Sw)V). The optimization problem
can be equivalently written as:

maximize
vk

r∑
k=1

vT
k (Sb − Sw)vk,

subject to vT
k vk = 1 , k = 1, . . . , r.

(9)

The optimal solutions are obtained by finding the normalized eigenvectors of
Sb − Sw corresponding to its first r largest eigenvectors.

3.2 Kernel Maximum Margin Criterion

Kernels methods are well known techniques to learn non-linear discriminant
vectors. They use an appropriate non-linear function Φ(z) to map the input data
z to a higher dimensional feature space F and find discriminant vectors vk ∈ F .
Given n training data samples and a kernel function k(zi, zj) = 〈Φ(zi),Φ(zj)〉,
we can calculate the kernel matrix K ∈ R

n×n. The matrix Ki ∈ R
n×ni for the

ith class with ni samples is (Ki)pq := k(zp, z
(i)
q ). As every discriminant vector

vk lies in the span of the mapped data samples, it can be expressed in the form
vk =

∑n
j=1(αk)jΦ(zj), where (αk)j is the j th element of the vector αk ∈ R

n,
which constitutes the expansion coefficients of vk. The optimization problem
proposed for Kernel Maximum Margin Criterion (KMMC) [20] is:

maximize
αk

r∑
k=1

αT
k (M − N)αk,

subject to αT
k αk = 1,

(10)

where N :=
∑c

i=1
1
nKi(Ini

− 1
ni

1ni
1T
ni

)KT
i , Ini

is (ni × ni) identity matrix;
1ni

is ni dimensional vector of ones and M =
∑c

i=1
1
ni

(m̃i − m̃)(m̃i − m̃)T ;
m̃ := 1

n

∑c
i=1 nim̃i and (m̃i)j := 1

ni

∑
z∈Ci

k(z, zj). The optimal solutions are
the normalized eigenvectors of (M − N), corresponding to its first r largest eigen-
values.
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3.3 NK3ML

The kernalized optimization problem given in (10) obtained by KMMC [20]
does not enforce normalization of discriminant vectors in the feature space, but
rather uses normalization constraint on eigenvector expansion coefficient vector
αk. In NK3ML, we require the discriminant vectors obtained by KMMC to be
normalized, i.e., vT

k vk = 1. The normalized discriminant vectors are important to
preserve the shape of the distribution of data. Hence we derive Normalized Kernel
Maximum Margin Criterion (NKMMC) as follows. We rewrite the discriminant
vector vk as:

vk =
n∑

j=1

(αk)jΦ(zj) =
[
Φ(z1) Φ(z2) . . . Φ(zn)

]
αk. (11)

Then normalization constraint becomes

( n∑

j=1

(αk)jΦ(zj)
)T( n∑

j=1

(αk)jΦ(zj)
)

= 1

⇒ αT
k Kαk = 1. (12)

where K is the kernel matrix. The optimization problem in (10) can now be
reformulated to enforce normalized discriminant vectors as follows.

maximize
αk

r∑
k=1

αT
k (M − N)αk,

subject to αT
k Kαk = 1.

(13)

We introduce a Lagrangian to solve the above problem.

L(αk, λk) =
r∑

k=1

αT
k (M − N)αk + λk(αT

k Kαk − 1), (14)

where λk is the Lagrangian multiplier. The Lagrangian L has to be maximized
with respect to αk and the multipliers λk. The derivatives of L with respect to
αk should vanish at the stationary point.

∂L(αk, λk)
∂αk

= (M − N − λkK)αk = 0 ∀ k = 1, . . . , r

⇒ (M − N)αk = λkKαk.

(15)

This is a generalized eigenvalue problem. λk’s are the generalized eigenvalues and
αk’s the generalized eigenvectors of (M − N) and K. The objective function at
this stationary point is given as:

r∑

k=1

αT
k (M − N)αk =

r∑

k=1

λkα
T
k Kαk =

r∑

k=1

λk. (16)
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Hence the objective function in NKMMC is maximized by the generalized eigen-
vectors corresponding to the first r generalized eigenvalues of (M − N) and K.
We choose all the eigenvectors with positive eigenvalues, since they ensure max-
imum inter-class margin, i.e., the samples of different classes are well separated
in the direction of these eigenvectors. It should be noted that our NKMMC has a
different solution from that of original KMMC [20], since KMMC uses standard
eigenvectors of M − N.

NFST is first used to learn the discriminant vectors using the training data
{x}. The discriminants of NFST form the projection matrix WN . Each training
data sample x ∈ R

d is projected as

z = WT
Nx. (17)

Each projected data sample z ∈ R
c−1 now lies in the discriminative nullspace of

NFST. Now we use all the projected data {z} for learning the secondary distance
metric using NKMMC.

Any general feature vector x̃ ∈ R
d can be projected onto the discriminant

vector vk of NK3ML in two steps:
Step 1 : Project x̃ onto the nullspace of NFST to get z̃:

z̃ = WT
N x̃. (18)

Step 2 : Project the z̃ onto the discriminant vector vk of NKMMC:

vT
k Φ(z̃) =

( n∑

j=1

(αk)jΦ(zj)
)T

Φ(z̃) =
n∑

j=1

(αk)jk(zj , z̃). (19)

The proposed NK3ML does not require any regularization or unsupervised
dimensionality reduction and can efficiently address the SSS problem as well
as the suboptimality of NFST in generalizing the discrimination for test data
samples. The NK3ML has a closed form solution and no free parameters to
tune. The only issue to be decided is what kernel to be used. In effect what the
proposed method does is to project the data into the NFST nullspace, where the
dimensionality of the feature space is reduced to force all points belonging to a
given class to a single point. In the second stage, the dimensionality is increased
by using an appropriate kernel in conjunction with NKMMC, thereby allowing
us to enhance the between class distance. This provides a better margin while
classifying the test samples.

4 Experimental Results

Parameter Settings: There are no free parameters to tune in NK3ML, unlike
most state-of-the-art methods which have to carefully tune their parameters to
attain their best results. In all the experiments, we use the RBF kernel whose
kernel width is set to be the root mean squared pairwise distance among the
samples.
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Table 1. Comparison of NK3ML with baselines
on GRID and PRID450S datasets

Methods
GRID PRID450S

Rank1 Rank10 Rank1 Rank10

WHOS + NK3ML 21.20 55.60 50.67 88.09
WHOS + NFST 18.64 52.32 42.58 77.07
WHOS + KNFST 21.12 54.32 45.87 85.78
WHOS + XQDA 18.72 52.56 43.38 77.91

LOMO + NK3ML 18.24 43.76 60.62 91.96
LOMO + NFST 17.04 42.64 58.84 89.42
LOMO + KNFST 14.88 41.28 59.47 91.96
LOMO + XQDA 16.56 41.84 59.78 90.09

GOG + NK3ML 26.96 57.52 68.04 95.07
GOG + NFST 24.88 58.00 67.60 94.18
GOG + KNFST 24.88 53.28 64.80 94.00
GOG + XQDA 24.80 58.40 68.00 94.36

Fig. 3. Sample images of
PRID450S dataset. Images
with the same column corre-
sponds to the same identities.

Datasets: The proposed NK3ML is evaluated on four popular benchmark
datasets: PRID450S [37], GRID [27], CUHK01 [22] and VIPeR [12], respec-
tively contains 450, 250, 971, and 632 identities captured in two disjoint camera
views. CUHK01 contains two images for each person in one camera view and all
other datasets contain just one image. Quite naturally, these datasets constitute
the extreme examples of SSS. Following the conventional experimental setup
[1,5,23,31,35,52], each dataset is randomly divided into training and test sets,
each having half of the identities. During testing, the probe images are matched
against the gallery. In the test sets of all datasets, except GRID, the number of
probe images and gallery images are equal. The test set of GRID has additional
775 gallery images that do not belong to the 250 identities. The procedure is
repeated 10 times and the average rank scores are reported.

Features: Most existing methods use a fixed feature descriptor for all datasets.
Such an approach is less efficient to represent the intrinsic characteristics of
each dataset. Hence in NK3ML, we use specific set of feature descriptors for
each dataset. We choose from the standard feature descriptors GOG [31] and
WHOS [26]. We also use an improved version of LOMO [23] descriptor, which
we call LOMO*. We generate it by concatenating the LOMO features generated
using YUV and RGB color spaces separately.

Method of Comparison: We use only the available data in each dataset for
training. No separate pre-processing of the features or images (such as domain
adaptation/body parts detection), or post-processing of the classifier has been
used in the study. There has been some efforts on using even the test data for re-
ranking of re-ID results [1,2,63] to boost up the accuracy. But these techniques
being not suitable for any real time applications, we refrain from using such
supplementary methods in our proposal.
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Table 2. Comparison with state-of-the-art results on (a) GRID and (b) PRID450S
dataset. The best and second best scores are shown in red and blue, respectively. The
methods with a * signifies pre/post-processing based methods

(a) GRID dataset

Methods Rank1 Rank10 Rank20

MtMCML[28] 14.08 45.84 59.84
KNFST[61] 14.88 41.28 50.88
PolyMap[6] 16.30 46.00 57.60
LOMO+XQDA[23] 16.56 41.84 52.40
MLAPG[24] 16.64 41.20 52.96
KEPLER[30] 18.40 50.24 61.44
DR-KISS[45] 20.60 51.40 62.60
SSSVM[54] 22.40 51.28 61.20
SCSP[5] 24.24 54.08 65.20
GOG+XQDA[31] 24.80 58.40 68.88
NK3ML(Ours) 27.20 60.96 71.04

*SSDAL[43] 22.40 48.00 58.40
*SSM[1] 27.20 61.12 70.56
*OL-MANS[64] 30.16 49.20 59.36

(b) PRID450S dataset

Methods Rank1 Rank10 Rank20

WARCA[16] 24.58 - -
SCNCD[52] 41.60 79.40 87.80
CSL[39] 44.40 82.20 89.80
TMA[29] 52.89 85.78 93.33
KNFST[61] 59.47 91.96 96.53
LOMO+XQDA[23] 59.78 90.09 95.29
SSSVM[54] 60.49 88.58 93.60
GOG+XQDA[31] 68.00 94.36 97.64
NK3ML(Ours) 73.42 96.31 98.58

*Semantic[41] 44.90 77.50 86.70
*SSM[1] 72.98 96.76 99.11

4.1 Comparison with Baselines

In Table 1, we compare the performances of NK3ML with the baseline metric
learning methods. As NK3ML is proposed as an improvement to address the
limitations of NFST, we first compare the performance of NK3ML with NFST.
For fair comparison with NFST, we also use its kernalized version KNFST [61].
KNFST is also the state-of-the-art metric learning method applied for LOMO
descriptor. For uniformity, all metric learning methods are evaluated using the
same standard feature descriptors LOMO [23], WHOS [26] and GOG [31]. We
also compare with Cross-view Quadratic Discriminant Analysis (XQDA) [31]
which is the state of the art metric learning method for GOG descriptor. XQDA
is also successfully applied with LOMO in many cases [23]. We use GRID and
PRID450S datasets for comparison with the baselines. GRID is a pretty diffi-
cult person re-identification dataset having poor image quality with large varia-
tions in pose and illuminations, which makes it very challenging to obtain good
matching accuracies. PRID450S is also a challenging dataset due to the par-
tial occlusion, background interference and viewpoint changes. From the results
in Table 1, it can be seen that NK3ML provides significant performance gains
against all the baselines for all the standard feature descriptors (Fig. 3).

Comparison with NFST: NK3ML provides a good performance gain against
NFST. In particular for PRID450S dataset, when compared using WHOS,
NK3ML provides an improvement of 8.09% at rank-1 and 11.02% at rank-10.
Similar gain can also be seen while using LOMO and GOG features for both
GRID and PRID450S datasets.
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Table 3. Comparison with state-of-the-art results on CUHK01 dataset using (a) single-
shot and (b) multi-shot settings. ** corresponds to deep learning based methods

(a) single-shot

Methods Rank1 Rank10 Rank20

MLFL[59] 34.30 65.00 75.00
LOMO+XQDA[23] 50.00 83.40 89.51
KNFST[61] 52.80 84.97 91.07
CAMEL[53] 57.30 - -
GOG+XQDA[31] 57.89 86.25 92.14
WARCA[16] 58.34 - -
NK3ML(Ours) 67.09 91.85 95.92

*Semantic[41] 32.70 64.40 76.30
*MetricEnsemble[35] 53.40 84.40 90.50
**TPC[8] 53.70 91.00 96.30
**Quadruplet[7] 62.55 89.71 -
*DLPAR[56] 72.30 94.90 97.20

(b) multi-shot

Methods Rank1 Rank10 Rank20

l1-Graph[17] 50.10 - -
LOMO+XQDA[23] 61.98 89.30 93.62
CAMEL[53] 62.70 - -
MLAPG[24] 64.24 90.84 94.92
SSSVM[54] 65.97 - -
KNFST[61] 66.07 91.56 95.64
GOG+XQDA[31] 67.28 91.77 95.93
NK3ML(Ours) 76.77 95.58 98.02

**DGD[50] 66.60 - -
*OLMANS[64] 68.44 92.67 95.88
*SHaPE[2] 76.00 - -
*Spindle[55] 79.90 97.10 98.60

Comparison with KNFST: In spite of KNFST being the state-of-the-art
metric learning method for LOMO descriptor, NK3ML outperforms KNFST
with a significant difference. In GRID dataset, NK3ML gains 3.36% in rank-1
and 2.48% in rank-10. Similar improvements are seen for other features also for
both datasets.

Comparison with XQDA: For GOG descriptor, XQDA is the state of the art
metric learning method. At rank-1, NK3ML gains 2.16% in GRID. Similarly, it
gains 7.29% at rank-1 in PRID450S using WHOS descriptor.

Based on the above comparisons, it may be concluded that NK3ML attains a
much better margin over NFST as expected from the theory. Also NK3ML out-
performs KNFST and XQDA for all aforementioned standard feature descriptors.

4.2 Comparison with State-of-the-Art

In the performance comparison of NK3ML with the state-of-the-art methods,
we also report the accuracies of pre/post processing methods on separate rows
for completeness. As mentioned previously, direct comparisons of our results
with pre/post processing methods are not advisable. However, even if such a
comparison is made, we still have accuracies that are best or comparable to
the best existing techniques on most of the evaluated datasets. Moreover, our
approach is general enough to be easily integrated with the existing pre/post
processing methods to further increase their accuracy.

Experiments on GRID Dataset: We use GOG and LOMO* as the feature
descriptor for GRID. Table 2a shows the performance comparison of NK3ML.
GOG + XQDA [31] reports the best performance of 24.8% at rank-1 till date.
NK3ML achieves an accuracy of 27.20% at rank-1, outperforming GOG+XQDA
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by 2.40%. At rank-1, NK3ML also outperforms all the post processing methods
except OL-MANS [64], which uses the test data and train data together to
learn a better similarity function. However, the penalty for misclassification at
rank-1, if any, severely affects the rank-N performance for OL-MANS. NK3ML
outperforms OL-MANS by 11.76% at rank-10 and 11.68% at rank-20.

Experiments on PRID450S Dataset: GOG and LOMO* are used as the
feature descriptor for PRID450S. NK3ML provides the best performances at all
ranks, as shown in Table 2b. Especially, it provides an improvement margin of
5.42% in rank-1 compared to the second best method GOG+XQDA [31]. At
rank-1, NK3ML also outperforms all the post processing based methods. SSM
[1] incorporates XQDA as the metric learning method. As analyzed in Sect. 4.1,
since NK3ML outperforms XQDA, it can be anticipated that even the re-ranking
methods like SSM can benefit from NK3ML.

Table 4. Comparison with state-of-the-art results on VIPeR dataset. RN means Rank-
N accuracy

Methods Ref R1 R10 R20

ELF[12] ECCV2008 12.0 44.0 61.0
PCCA[32] CVPR2012 19.3 64.9 80.3
KISSME[19] CVPR2012 19.6 62.2 77.0
LFDA[36] CVPR2013 24.2 67.1 -
eSDC[58] CVPR2013 26.7 62.4 76.4
SalMatch[57] ICCV2013 30.2 - -
MLFL[59] CVPR2014 29.1 66.0 79.9
rPCCA[51] ECCV2014 22.0 71.0 85.3
kLFDA[51] ECCV2014 32.3 79.7 90.9
SCNCD[52] ECCV2014 37.8 81.2 90.4
PolyMap[6] CVPR2015 36.8 83.7 91.7
LOMO+XQDA[23] CVPR2015 40.0 80.5 91.1
*Semantic[41] CVPR2015 41.6 86.2 95.1
QALF[60] CVPR2015 30.2 62.4 73.8
CSL[39] ICCV2015 34.8 82.3 91.8
MLAPG[24] ICCV2015 40.7 82.3 92.4
*DCIA[11] ICCV2015 63.9 87.5 -
**DGD[50] CVPR2016 38.6 - -
KNFST[61] CVPR2016 42.3 82.9 92.1

Methods Ref R1 R10 R20

SSSVM[54] CVPR2016 42.1 84.3 91.9
**TPC[8] CVPR2016 47.8 84.8 91.1
GOG+XQDA[31] CVPR2016 49.7 88.7 94.5
SCSP[5] CVPR2016 53.5 91.5 96.7
**SCNN[46] ECCV2016 37.8 66.9 -
**Shi et al.[40] ECCV2016 40.9 - -
l1-graph[17] ECCV2016 41.5 - -
**S-LSTM[47] ECCV2016 42.4 79.4 -
*SSDAL[43] ECCV2016 43.5 81.5 89.0
*TMA[29] ECCV2016 48.2 87.7 93.5
*SSM[1] CVPR2017 53.7 91.5 96.1
*Spindle[55] CVPR2017 53.8 83.2 92.1
CAMEL[53] ICCV2017 30.9 - -
*MuDeep ICCV2017 43.0 85.8 -
*OLMANS[64] ICCV2017 45.0 85.0 93.6
*DLPAR[56] ICCV2017 48.7 85.1 93.0
*PDC[42] ICCV2017 51.3 84.2 91.5
*SHAPE[2] ICCV2017 62.0 - -

NK3ML Ours 99.8 100 100

Experiments on CUHK01 Dataset: We use GOG and LOMO* as the fea-
tures for CUHK01. Each person of the dataset has two images in each camera
view. Hence we report comparison with both single-shot and multi-shot set-
tings in Tables 3a and b. NK3ML provides the state-of-the-art performances
in all ranks. For single-shot setting, it outperforms the current best method
GOG+XQDA [31] with a high margin of 9.20%. Similarly for multi-shot set-
ting, NK3ML improves the accuracy by 9.49% for rank-1 over GOG+XQDA.
At rank-1, NK3ML outperforms almost all of the pre/post processing based
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methods also, except DLPAR [56] in single-shot setting, and Spindle [55] and
SHaPE [2] for multi-shot setting. However, note that Spindle and DLPAR uses
other camera domain information for training, and SHaPE is a re-ranking tech-
nique to aggregate scores from multiple metric learning methods. Also note that
NK3ML even outperforms the deep learning based methods (see Table 4 also),
emphasizing the limitation of deep learning based methods in re-ID systems with
minimal training data.

Experiments on VIPeR Dataset: Concatenated GOG, LOMO* and WHOS
are used as the features for VIPeR. It is the most widely accepted benchmark for
person re-ID. It is a very challenging dataset as it contains images captured from
outdoor environment with large variations in background, illumination and view-
point. An enormous number of algorithms have reported results on VIPeR, with
most of them reporting an accuracy below 50% at rank-1, as shown in Table 4.
Even with the deep learning and pre/post processing re-ID methods, the best
reported result for rank-1 is only 63.92% by DCIA [11]. On the contrary, NK3ML
provides unprecedented improvement over these methods and attains a 99.8%
rank-1 accuracy. The superior performance of NK3ML is due to its capability to
enhance the discriminability even for the test data by simultaneously providing
the maximal separation between the classes as well as minimizing the within
class distance to the least value of zero.

Table 5. Comparison of execution time (in seconds) on VIPeR dataset

Methods NK3ML NFST KNFST XQDA MLAPG kLFDA MFA rPCCA

Training 1.64 1.47 0.37 1.35 12.10 4.10 3.68 23.98
Testing 0.37 0.34 0.33 0.34 0.13 4.13 3.99 3.74

4.3 Computational Requirements

We compare the execution time of NK3ML with other metric learning methods
including NFST [61], KNFST [61], XQDA [23,31], MLAPG [24], kLFDA [51],
MFA [51] and rPCCA [51] on VIPeR dataset. The details are shown in Table 5.
The training time is calculated for the 632 samples in the training set, and the
testing time is calculated for all the 316 queries in the test set. The training and
testing time are averaged over 10 random trials. All methods are implemented
in MATLAB on a PC with an Intel i7-6700 CPU@3.40 GHz and 32 GB memory.
The testing time for NK3ML is 0.37 s for the set of 316 query images (0.0012 s
per query), which is adequate for real time applications.

4.4 Application in Another Domain

In order to evaluate the applicability of NK3ML on other object verification
problems also, we conduct experiments using LEAR ToyCars [33] dataset. It
contains a total of 256 images of 14 distinct cars and trucks. The images have
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Fig. 4. ToyCars dataset (a) Sample images (b) ROC curves and EER comparisons.

wide variations in pose, illumination and background. The objective is to verify
if a given pair of images are similar or not, even if they are unseen before.
The training set has 7 distinct objects, provided as 1185 similar pairs and 7330
dissimilar pairs. The remaining 7 objects are used in the test set with 1044
similar pairs and 6337 dissimilar pairs. We use the feature representation from
[19], which uses LBP with HSV and Lab histograms.

We compare the performance of NK3ML with the state-of-the-art metric
learning methods including KISSME [19], ITML [9], LDML [13], LMNN [48,49],
LFDA [36,44] and SVM [4]. Note that NK3ML and LMNN need the true class
labels (not the similar/dissimilar pairs) for training. The proposed NK3ML
learned a six dimensional subspace. For fair comparisons, we use the same fea-
tures and learn an equal dimensional subspace for all the methods. We plot the
Receiver Operator Characteristic (ROC) curves of the methods in Fig. 4, with
the Equal Error Rate (EER) shown in parenthesis. NK3ML outperforms all other
methods with a good margin. This experiment re-emphasizes that NK3ML is effi-
cient to generalize well for unseen objects. Moreover, it indicates that NK3ML
has the potential for other object verification problems also, apart from person
re-identification.

5 Conclusions

In this work we presented a novel metric learning framework to efficiently address
the small training sample size problem inherent in re-ID systems due to high
dimensional data. We identify the suboptimality of NFST in generalizing to the
test data. We provide a solution that minimizes the intra-class distance of train-
ing samples trivially to zero, as well as maximizes the inter-class distance to a
much higher margin so that the learned discriminant vectors are effective in terms
of generalization of the classifier performance for the test data also. Experiments
on various challenging benchmark datasets show that our method outperforms
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the state-of-the-art metric learning approaches. Especially, our method attains
near human level perfection in the most widely accepted dataset VIPeR. We
evaluate our method on another object verification problem also and validate its
efficiency to generalize well to unseen data.
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