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Abstract. Human activity recognition is typically addressed by detect-
ing key concepts like global and local motion, features related to object
classes present in the scene, as well as features related to the global con-
text. The next open challenges in activity recognition require a level of
understanding that pushes beyond this and call for models with capa-
bilities for fine distinction and detailed comprehension of interactions
between actors and objects in a scene. We propose a model capable of
learning to reason about semantically meaningful spatio-temporal inter-
actions in videos. The key to our approach is a choice of performing
this reasoning at the object level through the integration of state of the
art object detection networks. This allows the model to learn detailed
spatial interactions that exist at a semantic, object-interaction relevant
level. We evaluate our method on three standard datasets (Twenty-BN
Something-Something, VLOG and EPIC Kitchens) and achieve state of
the art results on all of them. Finally, we show visualizations of the inter-
actions learned by the model, which illustrate object classes and their
interactions corresponding to different activity classes.

Keywords: Video understanding - Human-object interaction

1 Introduction

The field of video understanding is extremely diverse, ranging from extracting
highly detailed information captured by specifically designed motion capture
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Fig. 1. Humans can understand what happened in a video (“the leftmost carrot was
chopped by the person”) given only a pair of frames. Along these lines, the goal of this
work is to explore the capabilities of higher-level reasoning in neural models operating
at the semantic level of objects and interactions.

systems [30] to making general sense of videos from the Web [1]. As in the domain
of image recognition, there exist a number of large-scale video datasets [6,11—
13,21,24], which allow the training of high-capacity deep learning models from
massive amounts of data. These models enable detection of key cues present
in videos, such as global and local motion, various object categories and global
scene-level information, and often achieve impressive performance in recognizing
high-level, abstract concepts in the wild.

However, recent attention has been directed toward a more thorough under-
standing of human-focused activity in diverse internet videos. These efforts range
from atomic human actions [13] to fine-grained object interactions [12] to every-
day, commonly occurring human-object interactions [11]. This returns us to a
human-centric viewpoint of activity recognition where it is not only the presence
of certain objects/scenes that dictate the activity present, but the manner, order,
and effects of human interaction with these scene elements that are necessary
for understanding. In a sense, this is akin to the problems in current 3D human
activity recognition datasets [30], but requires the more challenging reasoning
and understanding of diverse environments common to internet video collections.

Humans are able to infer what happened in a video given only a few sample
frames. This faculty is called reasoning and is a key component of human intel-
ligence. As an example we can consider the pair of images in Fig. 1, which shows
a complex situation involving articulated objects (human, carrots and knife),
the change of location and composition of objects. For humans it is straight-
forward to draw a conclusion on what happened (a carrot was chopped by the
human). Humans have this extraordinary ability of performing visual reason-
ing on very complicated tasks while it remains unattainable for contemporary
computer vision algorithms [10,34].

There have been a number of attempts to equip neural models with reasoning
abilities by training them to solve Visual Question Answering (VQA) problems.
Among proposed solutions are prior-less data normalization [25], structuring
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networks to model relationships [29,40] as well as more complex attention based
mechanisms [17]. At the same time, it was shown that high performance on exist-
ing VQA datasets can be achieved by simply discovering biases in the data [19].

We extend these efforts to object level reasoning in videos. Since a video is
a temporal sequence, we leverage time as an explicit causal signal to identify
causal object relations. Our approach is related to the concept of the “arrow
of the time” [26] involving the “one-way direction” or “asymmetry” of time. In
Fig. 1 the knife was used before the carrot switched over to the chopped-up state
on the right side. For a video classification problem, we want to identify a causal
event A happening in a video that affects its label B. But instead of identifying
this causal event directly from pixels we want to identify it from an object level
perspective.

Following this hypothesis we propose to make a bridge between object detec-
tion and activity recognition. Object detection allows us to extract low-level
information from a scene with all the present object instances and their seman-
tic meanings. However, detailed activity understanding requires reasoning over
these semantic structures, determining which objects were involved in interac-
tions, of what nature, and what were the results of these. To compound problems,
the semantic structure of a scene may change during a video (e.g. a new object
can appear, a person may make a move from one point to another one of the
scene).

We propose an Object Relation Network (ORN), a neural network mod-
ule for reasoning between detected semantic object instances through space and
time. The ORN has potential to address these issues and conduct relational
reasoning over object interactions for the purpose of activity recognition. A set
of object detection masks ranging over different object categories and temporal
occurrences is input to the ORN. The ORN is able to infer pairwise relationships
between objects detected at varying different moments in time.

Code and object masks predictions will be publicly available!.

2 Related Work

Action Recognition. Pre-deep learning approaches in action recognition
focused on handcrafted spatio-temporal features including space-time interest
points like SIFT-3D, HOG3D, IDT and aggregated them using bag-of-words
techniques. Some hand-crafted representations, like dense trajectories [39], still
give competitive performance and are frequently combined with deep learning.

In the recent past, work has shifted to deep learning. Early attempts adapt
2D convolutional networks to videos through temporal pooling and 3D convolu-
tions [2,37]. 3D convolutions are now widely adopted for activity recognition with
the introduction of feature transfer by inflating pre-trained 2D convolutional ker-
nels from image classification models trained on ImageNet/ILSVRC [28] through
3D kernels [6]. The downside of 3D kernels is their computational complexity

! https://github.com /fabienbaradel /object_level visual_reasoning.
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and the large number of learnable parameters, leading to the introduction of
2.5D kernels, i.e. separable filters in the form of a 2D spatial kernel followed by
a temporal kernel [41]. An alternative to temporal convolutions are Recurrent
Neural Networks (RNNs) in their various gated forms (GRUs, LSTMs) [8,16].

Karpathy et al. [18] presented a wide study on different ways of connecting
information in spatial and temporal dimensions through convolutions and pool-
ing. On very general datasets with coarse activity classes they have showed that
there was a small margin between classifying individual frames and classifying
videos with more sophisticated temporal aggregation.

Simoyan et al. [32] proposed a widely adopted two-stream architecture for
action recognition which extracts two different streams, one processing raw RGB
input and one processing pre-computed optical flow images.

In slightly narrower settings, prior information on the video content can allow
more fine-grained models. Articulated pose is widely used in cases where humans
are guaranteed to be present [30]. Pose estimation and activity recognition as a
joint (multi-task) problem has recently shown to improve both tasks [23].

Attention models are a way to structure deep networks in an often generic
way. They are able to iteratively focus attention to specific parts in the data with-
out requiring prior knowledge about part or object positions. In activity recog-
nition, they have gained some traction in recent years, either as soft-attention
on articulated pose (joints) [33], on feature map cells [31,36], on time [42] or on
parts in raw RGB input through differentiable crops [3].

When raw video data is globally fed into deep neural networks, they focus on
extracting spatio-temporal features and perform aggregations. It has been shown
that these techniques fail on challenging fine-grained datasets, which require
learning long temporal dependencies and human-object interactions. A concen-
trated effort has been made to create large scale datasets to overcome these
issues [11-13,21].

Relational Reasoning. Relational reasoning is a well studied field for many
applications ranging from visual reasoning [29] to reasoning about physical sys-
tems [4]. Battaglia et al. [4] introduce a fully-differentiable network physics
engine called Interaction Network (IN). IN learns to predict several physical
systems such as gravitational systems, rigid body dynamics, and mass-spring
systems. It shows impressive results; however, it learns from a virtual environ-
ment, which provides access to virtually unlimited training examples. Following
the same perspective, Santoro et al. [29] introduced Relation Network (RN),
a plug-in module for reasoning in deep networks. RN shows human-level per-
formance in Visual Question Answering (VQA) by inferring pairwise “object”
relations. However, in contrast to our work, the term “object” in [29] does not
refer to semantically meaningful entities, but to discrete cells in feature maps.
The number of interactions therefore grows with feature map resolutions, which
makes it difficult to scale. Furthermore, a recent study [19] has shown that some
of these results are subject to dataset bias and do not generalize well to small
changes in the settings of the dataset.
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In the same line, a recent work [35] has shown promising results on discov-
ering objects and their interactions in an unsupervised manner using training
examples from virtual environments. In [38], attention and relational modules
are combined on a graph structure. From a different perspective, [25] show that
relational reasoning can be learned for visual reasoning in a data driven way with-
out any prior using conditional batch normalization with a feature-wise affine
transformation based on conditioning information. In an opposite approach, a
strong structural prior is learned in the form of a complex attention mecha-
nism: in [17], an external memory module combined with attention processes
over input images and text questions, performing iterative reasoning for VQA.

While most of the discussed work has been designed for VQA and for predic-
tions on physical systems and environments, extensions have been proposed for
video understanding. Reasoning in videos on a mask or segmentation level has
been attempted for video prediction [22], where the goal was to leverage seman-
tic information to be able predict further into the future. Zhou et al. [5] have
recently shown state-of-the-art performance on challenging datasets by extend-
ing Relation Network to video classification. Their chosen entities are frames,
on which they employ RN to reason on a temporal level only through pairwise
frame relations. The approach is promising, but restricted to temporal contextual
information without an understanding on a local object level, which is provided
by our approach.

3 Object-Level Visual Reasoning in Space and Time

Our goal is to extract multiple types of cues from a video sequence: interac-
tions between predicted objects and their semantic classes, as well as local and
global motion in the scene. We formulate this objective as a neural architecture
with two heads: an activity head and an object head. Figure 2 gives a functional
overview of the model. Both heads share common features up to a certain layer
shown in red in the figure. The activity head, shown in orange in the figure,
is a CNN-based architecture employing convolutional layers, including spatio-
temporal convolutions, able to extract global motion features. However, it is not
able to extract information from an object level perspective. We leverage the
object head to perform reasoning on the relationships between predicted object
instances.

Our main contribution is a new structured module called Object Relation
Network (ORN), which is able to perform spatio-temporal reasoning between
detected object instances in the video. ORN is able to reason by modeling how
objects move, appear and disappear and how they interact between two frames.

In this section, we will first describe our main contribution, the ORN network.
We then provide details about object instance features, about the activity head,
and finally about the final recognition task. In what follows, lowercase letters
denote 1D vectors while uppercase letters are used for 2D and 3D matrices or
higher order tensors. We assume that the input of our system is a video of T
frames denoted by Xi.7 = (X;)]_; where X, is the RGB image at timestep t.
The goal is to learn a mapping from X;.7 to activity classes y.
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3.1 Object Relation Network

ORN (Object Relation Network) is a module for reasoning between semantic
objects through space and time. It captures object moves, arrivals and interac-
tions in an efficient manner. We suppose that for each frame ¢, we have a set
of objects k with associated features of. Objects and features are detected and
computed by the object head described in Sect. 3.2.

activity features

spatio-temporal - global spatial
activity head pooling

activity loss
4 nx2D sets of
Pl object features

- activity loss
visual reasoning RNN

A module
pairwise

A temporal sampling

object class loss E

nx2D sets of
object masks

Fig. 2. A functional overview of the model. A global convolutional model extracts
features and splits into two heads trained to predict, respectively activity classes and
object classes. The latter are predicted by pooling over object instance masks, which
are predicted by an additional convolutional model. The object instances are passed
through a visual reasoning module. (Color figure online)

Reasoning about activities in videos is inherently temporal, as activities fol-
low the arrow of time [26], i.e. the causality of the time dimension imposes that
past actions have consequences in the future but not vice-versa. We handle this
by sampling: running a process over time ¢, and for each instant ¢, sampling
a second frame t' with ¢ < ¢. Our network reasons on objects which interact

between pairs of frames and their corresponding sets of objects Oy = {of,}szl

and O; = {of}szl. The goal is to learn a general function defined on the set of
all input objects from the combined set of both frames:

g, =g(o},...,0f Jof, ..., o). (1)

The objects in this set are unordered, aside for the frame they belong to.
Inspired by relational networks [29], we chose to directly model inter-frame
interactions between pairs of objects (7, k) and leave modeling of higher-order
interactions to the output space of the mappings hy and the global mapping fy:

g =) hol(o},0) (2)
g,k

It is interesting to note that hg(-) could have been evaluated over arbitrary
cliques, like singletons and triplets—this has been evaluated in the experimental
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section. In order to better directly model long-range interactions, we make the
global mapping f,(:, ) recurrent, which leads to the following form:

rr = fo(8Ti-1) 3)

where r; represents the recurrent object reasoning state at time ¢ and g, is the
global inter-frame interaction inferred at time t such as described in Eq.2. In
practice, this is implemented as a GRU, but for simplicity we omitted the gates
in Eq. (3). The pairwise mappings hy(-,-) are implemented as an MLP. Figure 3
provides a visual explanation of the object head’s operating through time.

visual reasoning l visual reasoning l

module module
S e = e~ R S
¢ — |

ri—1

random frame t’ € [0...¢ — 2] random frame t” € [0...t — 1]
L6 L

g ¢ RNN gtt RNN

Fig. 3. ORN in the object head operating on detected instances of objects.

Our proposed ORN differs from [29] in three main points:

Objects have a semantic definition — we model relationships with respect
to semantically meaningful entities (object instances) instead of feature map
cells which do not have a semantically meaningful spatial extent. We will show
in the experimental section that this is a key difference.

Objects are selected from different frames — we infer object pairwise
relations only between objects present in two different sets. This is a key design
choice which allows our model to reason about changes in object relationships
over time.

Long range reasoning — integration of the object relations over time is recur-
rent by using a RNN for f,(-). Since reasoning from a full sequence cannot be
done by inferring the relations between two frames, fy(-) allows long range rea-
soning on sequences of variable length.

3.2 Object Instance Features

The object features O; = {0,’?}2{21 for each frame ¢ used for the ORN module
described above are computed and collected from local regions predicted by
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a mask predictor. Independently for each frame X; of the input data block,
we predict object instances as binary masks Bf and associated object class
predictions cf, a distribution over C' classes. We use Mask-RCNN [14], which
is able to detect objects in a frame using region proposal networks [27] and
produces a high quality segmentation mask for each object instance.

The objective is to collect features for each object instance, which jointly
describe its appearance, the change in its appearance over time, and its shape,
i.e. the shape of the binary mask. In theory, appearance could also be described
by pooling the feature representation learned by the mask predictor (Mask R-
CNN). However, in practice we choose to pool features from the dedicated object
head such as shown in Fig.2, which also include motion through the spatio-
temporal convolutions shared with the activity head:

u® = ROI-Pooling(U,, BY) (4)

where Uy is the feature map output by the object head, u¥ is a D-dimensional
vector of appearance and appearance change of object k.

Shape information from the binary mask Bf is extracted through the follow-
ing mapping function: b¥ = 9s(BF), where g4(-) is a MLP. Information about
object k£ in image X; is given by a concatenation of appearance, shape, and
object class: of = [bF uF cF .

3.3 Global Motion and Context

Current approaches in video understanding focus on modeling the video from
a high-level perspective. By a stack of spatio-temporal convolution and pooling
they focus on learning global scene context information. Effective activity recog-
nition requires integration of both of these sources: global information about the
entire video content in addition to relational reasoning for making fine distinc-
tions regarding object interactions and properties.

In our method, local low-level reasoning is provided through object head and
the ORN module such as described above in Sect. 3.1. We complement this rep-
resentation by high-level context information described by V; which are feature
outputs from the activity head (orange block in Fig. 2).

We use spatial global average pooling over V; to output T' D-dimensional
feature vectors denoted by v, where v; corresponds to the context information
of the video at timestep t.

We model the dynamics of the context information through time by employ-
ing a RNN f,(-) given by:

st = fy(Ve,8t-1) (5)
where s is the hidden state of f,(-) and gives cues about the evolution of the
context though time.

3.4 Recognition

Given an input video sequence Xi.r, the two different streams corresponding
to the activity head and the object head result in the two representations h
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and r, respectively where h = ", hy and r = >, r;. Each representation is
the hidden state of the respective GRU, which were described in the preceding
subsections. Recall that h provides the global motion context while r provides
the object reasoning state output by the ORN module. We perform independent
linear classification for each representation:

y'!=Wh (6)
y:=17r (7

where y',y? correspond to the logits from the activity head and the object head,
respectively, and W and Z are trainable weights (including biases). The final
prediction is done by averaging logits y! and y? followed by softmax activation.

4 Network Architectures and Feature Dimensions

The input RGB images X, are of size R3*W># where W and H correspond
to the width and height and are of size 224 each. The object and activity
heads (orange and green in Fig. 2) are a joint convolutional neural network with
Resnet50 architecture pre-trained on ImageNet/ILSVRC [28], with Convl and
Conv5 blocks being inflated to 2.5D convolutions [41] (3D convolutions with a
separable temporal dimension). This choice has been optimized on the validation
set, as explained in Sect. 6 and shown in Table 5.

The last convd layers have been split into two different heads (activity head
and object head). The intermediate feature representations U; and V; are of
dimensions 2048 x T'x 7 x 7 and 2048 x T' x 14 x 14, respectively. We provide a
higher spatial resolution for the feature maps Uy of the object head to get more
precise local descriptors. This can be done by changing the stride of the initial
convd layers from 2 to 1. Temporal convolutions have been configured to keep
the same time temporal dimension through the network.

Global spatial pooling of activity features results in a 2048 dimensional fea-
ture vector fed into a GRU with 512 dimensional hidden state s;. ROI-Pooling
of object features results in 2048 dimensional feature vectors uf. The encoder of
the binary mask is a MLP with one hidden layer of size 100 and outputs a mask
embedding bf of dimension 100. The number of object classes is 80, which leads
in total to a 2229 dimensional object feature vector of.

The non-linearity hg(-) is implemented as an MLP with 2 hidden layers each
with 512 units and produces an 512 dimensional output space. fy(-) is imple-
mented as a GRU with a 256 dimension hidden state r;. We use ReLLU as the
activation function after each layer for each network.

5 Training

We train the model with two different losses:

~1 ~2
c=o (1) IS ®)
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where £1 and Lo are the cross-entropy loss. The first term corresponds to super-
vised activity class losses comparing two different activity class predictions to
the class ground truth: yl is the prediction of the activity head, whereas yQ is
the prediction of the object head, as given by Egs. (6) and (7), respectively.

The second term is a loss which pushes the features U of the object towards
representations of the semantic object classes. The goal is to obtain features
related to, both, motion (through the layers shared with the activity head), as
well as object classes. As ground-truth object classes are not available, we define
the loss as the cross-entropy between the class label ¢/ predicted by the mask
predictor and a dedicated linear class prediction éf based on features u¥, which,
as we recall, are Rol-pooled from U:

¢/ =R uy 9)

where R trainable parameters (biases integrated) learned end-to-end together
with the other parameters of the model.

We found that first training the object head only and then the full network
was performing better. A ResNet50 network pretrained on ImageNet is modified
by inflating some of its filters to 2.5 convolutions (3D convolutions with the time
dimension separated), as described in Sect. 4; then by fine-tuning.

We train the model using the Adam optimizer [20] with an initial learning
rate of 107 on 30 epochs and use early-stopping criterion on the validation set
for hyper-parameter optimization. Training takes ~50 min per epoch on 4 Titan
XP GPUs with clips of 8 frames.

6 Experimental Results

We evaluated the method on three standard datasets, which represent difficult
fine-grained activity recognition tasks: the Something-Something dataset, the
VLOG dataset and the recently released EPIC Kitchens dataset.

Something-Something (SS) is a recent video classification dataset with
108,000 example videos and 157 classes [12]. It shows humans performing differ-
ent actions with different objects, actions and objects being combined in different
ways. Solving SS requires common sense reasoning and the state-of-the-art meth-
ods in activity recognition tend to fail, which makes this dataset challenging.

VLOG is a multi-label binary classification of human-object interactions
recently released with 114,000 videos and 30 classes [11]. Classes correspond
to objects, and labels of a class are 1 if a person has touched a certain object
during the video, otherwise they are 0. It has recently been shown, that state-
of-the-art video based methods [6] are outperformed on VLOG by image based
methods like ResNet-50 [15], although these video methods outperform image
based ResNet-50 on large-scale video datasets like the Kinetics dataset [6]. This
suggests a gap between traditional datasets like Kinetics and the fine-grained
dataset VLOG, making it particularly difficult.
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Table 1. Results on Hand/Semantic Object Interaction Classification (Average preci-
sion in % on the test set) on VLOG dataset. R50 and I3D implemented by [11].
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table
towel

R50 [15] 40.5 29.7 68.9 65.8 64.5 58.2 33.1 22.1 19.0 23.9 54.0 45.5 28.6 49.2 28.7 49.6 19.4 37.5 62.9 48.8 23.0 36.9 39.2 125 55.9 58.8 31.1 57.4 26.8 39.6 22.9
13D [6] 39.7 24.9 71.7 71.4 625 57.1 27.1 19.2 33.9 20.7 50.6 45.8 24.7 54.7 19.1 50.8 19.3 41.9 54.0 27.5 21.4 37.4 42.9 12.6 42.5 60.4 33.9 46.0 23.5 59.6 34.7
Ours  44.7 30.2 72.3 70.7 64.9 59.8 38.2 24.6 26.3 22.4 64.5 47.2 35.4 57.9 25.2 48.5 24.5 40.2 72.0 54.1 26.5 39.9 48.6 15.2 53.5 60.7 36.8 52.8 27.9 64.0 37.6

EPIC Kitchens (EPIC) is an egocentric video dataset recently released
containing 55 hours recording of daily activities [7]. This is the largest in first-
person vision and the activities performed are non-scripted, which makes the
dataset very challenging and close to real world data. The dataset is densely
annotated and several tasks exist such as object detection, action recognition and
action prediction. We focus on action recognition with 39’594 action segments
in total and 125 actions classes (i.e. verbs). Since the test set is not available
yet we conducted our experiments on the training set (28’561 videos). We use
the videos recorded by person 01 to person 25 for training (22’675 videos) and
define the validation set as the remaining videos (5’886 videos).

For all datasets we rescale the input video resolution to 256 x 256. While
training, we crop space-time blocks of 224 x 224 spatial resolution and L frames,
with L = 8 for the SS dataset and L = 4 for VLOG and EPIC. We do not perform
any other data augmentation. While training we extract L frames from the entire
video by splitting the video into L sub-sequences and randomly sampling one
frame per sub-sequence. The output sequence of size L is called a clip. A clip
aims to represent the full video with less frames. For testing we aggregate results
of 10 clips. We use lintel [9] for decoding video on the fly.

The ablation study is done by using the train set as training data and we
report the result on the validation set. We compare against other state-of-the-
art approaches on the test set. For the ablation studies, we slightly decreased
the computational complexity of the model: the base network (including activity
and object heads) is a ResNet-18 instead of ResNet-50, a single clip of 4 frames
is extracted from a video at test time.

Comparison with Other Approaches. Table 1 shows the performance of the
proposed approach on the VLOG dataset. We outperform the state of the art
on this challenging dataset by a margin of ~24.2 points (44.7% accuracy against
40.5% by [15]). As mentioned above, traditional video approaches tend to fail
on this challenging fine-grained dataset, providing inferior results. Table 3 shows
performance on SS where we outperform the state of the art given by very recent
methods (42.3 points). On EPIC we re-implement standard baselines and report
results on the validation set (Table4) since the test set is not available. Our full
method reports an accuracy of 40.89 and outperforms baselines by a large margin
(~+6.4 and ~+7.9 points respectively for against CNN-2D and I3D based on a
ResNet-18).
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Table 2. Ablation study with ResNet-18 backbone. Results in %: Top-1 accuracy for
EPIC and SS datasets, and mAP for VLOG dataset.

Method Object type | EPIC VLOG SS
obj. head | 2 heads | obj. head | 2 heads | obj. head | 2 heads

Baseline - - 38.33 |- 35.08 |- 381.81
ORN pixel 23.71 38.83 14.40 35.18 2.51 31.43
ORN CcOoCo 29.94 40.89 |27.14 37.49 |10.26 32.12
ORN-mlp COCO 28.15 39.41 25.40 36.35 - -
ORN COCO-visual | 28.45 38.92 22.92 35.49 - -
ORN COCO-shape | 21.92 37.16 7.18 35.39 — -
ORN COCO-class |21.96 37.75 13.40 35.94 - —
ORN COCO-intra |29.25 38.10 26.78 36.28 - -
ORN clique-1 | COCO 28.25 40.18 26.48 36.71 — -
ORN clique-3 | COCO 22.61 37.67 27.05 36.04 |- -

Effect of Object-Level Reasoning. Table 2 shows the importance of reasoning
on the performance of the method. The baseline corresponds to the performance
obtained by the activity head trained alone (inflated ResNet, in the ResNet-18
version for this table). No object level reasoning is present in this baseline. The
proposed approach (third line) including an object head and the ORN module
gains 0.8, 2.5 and 2.4 points compared to our baseline respectively on SS, on
EPIC and on VLOG. This indicates that the reasoning module is able to extract
complementary features compared to the activity head.

Using semantically defined objects proved to be important and led to a gain of
2 points on EPIC and 2.3 points on VLOG for the full model (6/12.7 points using
the object head only) compared to an extension of Santoro et al. [29] operating
on pixel level. This indicates importance of object level reasoning. The gain on
SS is smaller (0.7 point with the full model and 7.8 points with the object head
only) and can be explained by the difference in spatial resolution of the videos.
Object detections and predictions of the binary masks are done using the initial
video resolution. The mean video resolution for VLOG is 660x 1183 and for EPIC
is 640 x 480 against 100 x 157 for SS. Mask-RCNN has been trained on images of
resolution 800 x 800 and thus performs best on higher resolutions. The quality of
the object detector is important for leveraging object level understanding then
for the rest of the ablation study we focus on EPIC and VLOG datasets.

The function f, in Eq.(3) is an important design choice in our model. In
our proposed model, fy is recurrent over time to ensure that the ORN mod-
ule captures long range reasoning over time, as shown in Eq. (3). Removing the
recurrence in this equation leads to an MLP instead of a (gated) RNN, as eval-
uated in row 4 of Table 2. Performance decreases by 1.1 point on VLOG and 1.4
points on EPIC. The larger gap for EPIC compared to VLOG and can arguably
be explained by the fact that in SS actions cover the whole video, while solving
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Table 3. Experimental results on the Table 4. Experimental results on the
Something-Something dataset (classifi- EPIC Kitchens dataset (accuracy in %
cation accuracy in % on the test set). on the validation set — methods with *
have been re-implemented).

Methods Topl

C3D + Avg [12] | 21.50 Methods | Topl

13D [12] 27.63 R18 [15]* |32.05

MultiScale TRN [5] | 33.60 I3D-18 [6]" | 34.20

Ours 35.97 Ours 40.89

Table 5. Effect of the CNN architecture (choice of kernel inflations) on a single head
ResNet-18 network. Accuracy in % on the validation set of Something-Something is
shown. 2.5D kernels are separable kernels: 2D followed by a 1D temporal.

Convl Conv2 Conv3 Conv4 Convb Aggreg SS
2D [3D|2.5D|2D|3D |2.5D|2D 3D |2.5D |2D|3D |2.5D|2D |3D |2.5D | GAP|RNN
Vo= |- Vo= |- Vo= |- Vo= |- Vo= = v - 15.73
Vo= |- Vo= |- Vo= |- Vo= |- Vo= |- - v 15.88
- v |- - v |- - v |- - v |- - v |- v - 31.42
- |- |V - |- |V - |- v - |- - |- v - 27.58
v o= |- v o= |- Vo= |- Vo= |- - |V |- v - 31.28
Vo= |- Vo= |- Vo= |- - |V |- - |V |- v - 32.06
Vo= = Vo= = - |V |- - |V |- - |V |- v - 32.25
Vo= |- v o= |- Vo= |- Vo= |- - |- v v - 31.31
v o= |- v o= |- Vo= |- - |- |V - |- |V v - 32.79
Vo= |- Vo= |- - |- Vv - |- |V - |- |V v - 33.77
- |V |- Vo= |- Vo= |- Vo= |- Vo= |- v - 28.71
- |V |- - |V |- Vo= |- Vo= |- Vo= |- v - 31.42
- |- v o= |- v o= |- v o= = v - = v — 20.05
- |- |V - |- |V Vo= = Vo= = Vo= = v - 22.52

VLOG requires detecting the right moment when the human-object interaction
occurs and thus long range reasoning plays a less important role.

Visual features extracted from object regions are the most discriminative,
however object shapes and labels also provide complementary information.
Finally, the last part of Table 2 evaluates the effect of the cliques size for model-
ing the interactions between objects and show that pairwise cliques outperform
cliques of size 1 and 3.

CNN Architecture and Kernel Inflations. The convolutional architecture
of the model was optimized over the validation set of the SS dataset, as shown
in Table5. The architecture itself (in terms of numbers of layers, filters etc.)
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Fig.4. Example of object pairwise interactions learned by our model on VLOG for
four different classes. Objects co-occurrences are at the top and learned pairwise objects
interactions are at the bottom. Line thickness indicates learned importance of a given
relation. Interactions have been normalized by the object co-occurrences.

Fig. 5. Examples of failure cases — (a) small sized objects (on the left). Our model
detects a cell phone and a person but fails to detect hand-cell-phone contact; (b)
confusion between semantically similar objects (on the right). The model falsly predicts
hand-cup contact instead of hand-glass-contact even though the wine glass is detected.

is determined by pre-training on image classification. We optimized the choice
of filter inflations from 2D to 2.5D or 3D for several convolutional blocks. This
has been optimized for the single head model and using a ResNet-18 variant
to speed up computation. Adding temporal convolutions increases performance
up to 100% w.r.t. to pure 2D baselines. This indicates, without surprise, that
motion is a strong cue. Inflating kernels to 2.5D on the input side and on the
output side provided best performances, suggesting that temporal integration
is required at a very low level (motion estimation) as well as on a very high
level, close to reasoning. Our study also corroborates recent research in activity
recognition, indicating that 2.5D kernels provide a good trade-off between high-
capacity and learnable numbers of parameters. Finally temporal integration via
RNN outperforms global average pooling over space and time.

Visualizing the Learned Object Interactions. Figure 4 shows visualizations
of the pairwise object relationships the model learned from data, in particular
from the VLOG dataset. Each graph is computed for a given activity class, we
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provide more information about the computation in the Supplementary Materi-
als. Figure 5 shows failure cases.

7 Conclusion

We presented a method for activity recognition in videos which leverages object
instance detections for visual reasoning on object interactions over time. The
choice of reasoning over semantically well-defined objects is key to our app-
roach and outperforms state of the art methods which reason on grid-levels,
such as cells of convolutional feature maps. Temporal dependencies and causal
relationships are dealt with by integrating relationships between different time
instants. We evaluated the method on three difficult datasets, on which standard
approaches do not perform well, and report state-of-the-art results.

Acknowledgements. This work was funded by grant Deepvision (ANR-15-CE23-
0029, STPGP-479356-15), a joint French/Canadian call by ANR & NSERC.
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