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Abstract. We propose a method to forecast a vehicle’s ego-motion as
a distribution over spatiotemporal paths, conditioned on features (e.g.,
from LIDAR and images) embedded in an overhead map. The method
learns a policy inducing a distribution over simulated trajectories that is
both “diverse” (produces most of the likely paths) and “precise” (mostly
produces likely paths). This balance is achieved through minimization
of a symmetrized cross-entropy between the distribution and demonstra-
tion data. By viewing the simulated-outcome distribution as the push-
forward of a simple distribution under a simulation operator, we obtain
expressions for the cross-entropy metrics that can be efficiently evalu-
ated and differentiated, enabling stochastic-gradient optimization. We
propose concrete policy architectures for this model, discuss our evalua-
tion metrics relative to previously-used degenerate metrics, and demon-
strate the superiority of our method relative to state-of-the-art methods
in both the Kitti dataset and a similar but novel and larger real-world
dataset explicitly designed for the vehicle forecasting domain.

Keywords: Trajectory forecasting · Imitation learning
Generative modeling · Self-driving vehicles

1 Introduction

We consider forecasting a vehicle’s trajectory (i.e., predicting future paths).
Forecasts can be used to foresee and avoid dangerous scenarios, plan safe paths,
and model driver behavior. Context from the environment informs prediction,
e.g. a map populated with features from imagery and LIDAR. We would like
to learn a context-conditioned distribution over spatiotemporal trajectories to
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represent the many possible outcomes of the vehicle’s future. With this distribu-
tion, we can perform inference tasks such as sampling a set of plausible paths,
or assigning a likelihood to a particular observed path. Sampling suggests routes
and visualizes the model; assigning likelihood helps measure the model’s quality.

Fig. 1. Left: Natural image input. Middle: generated trajectories (red circles) and
true, expert future (blue squares) overlaid on LIDAR map. Right: Generated trajec-
tories respect approximate prior, here a “cost function,” overlaid as a heatmap. Mak-
ing the expert paths likely corresponds to minπ H(p, qπ). Only producing likely paths
corresponds to steering the trajectories away from unlikely territory via minπ H(qπ, p̃).
Doing both, i.e. producing most of the likely paths while mostly producing likely paths
corresponds to minπ H(p, qπ) + βH(qπ, p̃). (Color figure online)

Our key motivation is to learn a trajectory forecasting model that is simul-
taneously “diverse”—covering all the modes of the data distribution—and “pre-
cise” in the sense that it rarely generates bad trajectories, such as trajectories
that intersect obstacles. Covering the modes ensures the model can generate
samples similar to human behavior. High “precision” ensures the model rarely
generates samples very different from human behavior, which is important when
samples are used for a downstream task. Figure 1 contrasts a model trained to
cover modes, versus a model trained to cover modes and generate good sam-
ples, which generates less samples that hit perceived obstacles. To these ends,
we define our model qπ as the trajectory distribution induced by rolling out
(simulating) a stochastic one-step policy π for T steps to produce a trajectory
sample x, and we propose choosing π to minimize the following symmetrized
cross-entropy objective, where φ denotes the scene context:

min
π

Ex∼p − log qπ(x|φ)
︸ ︷︷ ︸

H(p,qπ)

+β Ex∼qπ
− log p̃(x|φ)

︸ ︷︷ ︸

H(qπ,p̃)

. (1)

The H(p, qπ) term encourages the model qπ to cover all the modes of the distribu-
tion of true driver behavior p, by heavily penalizing q for assigning a low density
to any observed example from p. However, H(p, qπ) is insensitive to samples from
q, so optimizing it alone can yield a model that generates some “low-quality”
samples. The H(qπ, p̃) term penalizes qπ for generating “low-quality” samples
(where an approximate data density p̃ is low). However, H(qπ, p̃) is insensitive
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to mode loss of p̃. Therefore, we optimize them simultaneously to collect the
complementary benefits and mitigate the complementary shortcomings of each
term. This motivation is illustrated in Fig. 2. As the true density function, p,
is unavailable, we cannot evaluate H(qπ, p). Instead, we substitute a learned
approximation, p̃, that is simple and visually interpretable as a “cost map.”

In this work, we advocate using the symmetrized cross-entropy metrics for
both training and evaluation of trajectory forecasting methods. This is made
feasible by viewing the distribution qπ as the pushforward of a base distribu-
tion under the function gπ that rolls-out (simulates) a stochastic policy π (see
Fig. 3b). This idea (also known as the reparameterization trick, [9,22]) enables
optimization of model-sample quality metrics such as H(qπ, p̃) with SGD. Our
representation also admits efficient accurate computation of H(p, qπ), even when
the policy is a very complex function of context and past state, such as a CNN.

Fig. 2. Illustration of the complementarity of cross-entropies H(p, qπ) (top) and
H(qπ, p) (bottom). Dashed lines show past vehicle path. Light blue lines delineate
samples from the data (expert) distribution p. Samples from the model qπ are depicted
as red lines. Green areas represent obstacles (areas with low p). The left figure shows
cross-entropy values for a reference model. Other figures show poor models and their
effects on each metric. ε is a very small nonnegative number. (Color figure online)

We present the following novel contributions: (1) recognize and address the
diversity-precision trade-off of generative forecasting models and formulating a
symmetrized cross-entropy training objective to address it; (2) propose to train
a policy to induce a roll-out distribution minimizing this objective; (3) use the
pushforward parameterization to render inference and learning in this model
efficient; (4) refine an existing deep imitation learning method (GAIL) based on
our parameterization; (5) illuminate deficiencies of previously-used trajectory
forecasting metrics; (6) outperform state-of-the-art forecasting and imitation
learning methods, including our improvements to GAIL; (7) present CaliFore-
casting, a novel large scale dataset designed specifically for vehicle ego-motion
forecasting.

2 Related Work

Trajectory Forecasting prior work spans two primary domains: trajectories of
vehicles, and trajectories of people. The method of [26] predicts future trajecto-
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ries of wide-receivers from surveillance video. In [5,23,28,50] future pedestrian
trajectories are predicted from surveillance video. Deterministic vehicle predic-
tions are produced in [18], and deterministic pedestrian trajectories are produced
in [3,30,34]. However, non-determinism is a key aspect of forecasting: the future
is generally uncertain, with many plausible outcomes. While several approaches
forecast distributions over trajectories [12,25], global sample quality and likeli-
hood have not been considered or measured, hindering performance evaluation.

Activity Forecasting is distinct from trajectory forecasting, as it pre-
dicts categorical activities. In [17,24,35,36], future activities are predicted via
classification-based approaches. In [33], a first-person camera wearer’s future
goals are forecasted with Inverse Reinforcement Learning (IRL). IRL has been
applied to predict and control robot, taxi, and pedestrian behavior [23,31,52].

Imitation Learning can be used to frame our problem: learn a model to mimic
an agent’s behavior from a set of demonstrations [2]. One subtle difference is that
in forecasting, we are not required to actually execute our plans in the real world.
IRL is a form of imitation learning in which a reward function is learned to model
demonstrated behavior. In the IRL method of [49], a cost map representation is
used to plan vehicle trajectories. However, no time-profile is represented in the
predictions, preventing use of time-profiled metrics and modeling. GAIL [16,27]
is also a form of IRL, yet its adversarial framework and policy optimization are
difficult to tune and lead to slow convergence. By adding the assumption of model
dynamics, we derive a new differentiable GAIL training approach, supplanting
the noisy, inefficient policy gradient search procedure. We show this easier-to-
train approach achieves better performance in our domain.

Image Forecasting methods generate full image or video representations of
predictions, endowing their samples with interpretability. In [43–45], unsuper-
vised model are learned to generate sequences and representations of future
images. In [46], surveillance image predictions of vehicles are formed by smooth-
ing a patch across the image. [42,47] also predict future video frames with an
intermediate pose prediction. In [10], predictions inform a robot’s behavior, and
in [40], policy representations for imitation and reinforcement learning are guided
by a future observation forecasting objective. In [7], image boundaries are pre-
dicted. One drawback to image-based forecasting methods is difficulty in mea-
surement, a drawback shared by many popular generative models.

Generative models have surged in popularity [9,13,14,16,25,44,51]. However,
one major difficulty is performance evaluation. Most popular models are quanti-
fied through heuristics that attempt to measures the “quality” of model samples
[25]. In image generation, the Inception score is a popular heuristic [38]. These
fail to measure the learned distribution’s likelihood, the gold standard of evalu-
ating probabilistic models. Notable exceptions include [9,20], which also leverage
invertible pushforward models to perform exact likelihood inference.

3 Approach

We approach the forecasting problem from an imitation learning perspective,
learning a policy (state-to-action mapping) π that mimics the actions of an expert



798 N. Rhinehart et al.

Fig. 3. (a) Consider making trajectories inside the yellow region on the road likelier
by increasing log qπ(x) for the demonstration x ∼ p inside the region. This is achieved
by making an infinitesimal region around g−1

π (x) more likely under q0 by moving the
region (yellow parallelogram, size proportional to |detJgπ |−1) towards a mode of q0
(here, the center of a Gaussian), and making the region bigger. Increasing log p̃(x) for
some sample x ∼ qπ is equivalent to sampling a (red) point z from q0 and adjusting π
so as to increase log p̃(q0(z)). (b) Pushing forward a base distribution to a trajectory
distribution. (Color figure online)

in varying contexts. We are given a set of training episodes (a short car path
trajectory) {(x, φ)n}N

n=1. Each episode (x, φ)n has x ∈ R
T×2 as a sequence of

T two-dimensional future vehicle locations and φ as an associated set of side
information. In our implementation, φ contains the past path of the car and a
feature grid derived from LIDAR and semantic segmentation class scores. The
grid is centered on the vehicle’s position at t = 0 and is aligned with its heading.

Repeatedly applying the policy π from a start state with the context φ results
in a distribution qπ(x|φ) over trajectories x, since our policy is stochastic. Simi-
larly, the training set is drawn from a data distribution p(x|φ). We therefore train
π so as to minimize a divergence between qπ and p. This divergence consists of a
weighted combination of the cross-entropies H(p, qπ) and H(qπ, p̃). We precisely
describe forms of p̃ in Sect. 3.1, for now, conceptualize it as a distribution that
assigns low likelihood to trajectories passing through obstacles. In the following,
Φ denotes the distribution of ground-truth features:

min
π

Eφ∼Φ

[−Ex∼p(·|φ) log qπ(x|φ) − βEx∼qπ(·|φ) log p̃(x|φ)
]

. (2)

The motivation for this objective is illustrated in Fig. 2. The two factors are
complementary. H(p, qπ) is intuitively similar to recall in binary classification, in
that it is very sensitive to the model’s ability to produce all of the examples in
the dataset, but is relatively insensitive to whether the model produces examples
that are unlikely under the data. H(qπ, p̃) is intuitively similar to precision in
that it is very sensitive to whether the model produces samples likely under p̃,
but is insensitive to qπ’s likelihood to produce all samples in the dataset.
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3.1 Pushforward Distribution Modeling

Optimizing Eq. (2) presents at least two challenges: we must be able to evaluate
qπ(x|φ) at arbitrary x in order to compute H(p, qπ), and we must be able to
differentiate the expression Ex∼qπ(·|φ) log p̃(x|φ). We address these issues by con-
structing a learnable bijection, gπ between samples from qπ and samples from
a simple noise distribution q0, as illustrated in Fig. 3b; in our construction, the
bijection is interpreted as a simulator mapping noise to simulated outcomes.
This assumption allows us to evaluate the required expressions and derivatives
via the change-of-variables formula and the reparameterization trick.

Specifically, let gπ(z;φ) : R
T×2 → R

T×2 be a simulator mapping noise
sequences z ∼ q0 and scene context φ to forecasted outcomes x. Then the dis-
tribution of forecasted outcomes qπ(x|φ) is fully determined by q0 and gπ: this
distribution, qπ, is known as the pushforward of q0 under gπ in measure theory.
If gπ is differentiable and invertible (z = g−1

π (x;φ)), then qπ is obtained by the
change-of-variables formula for multivariate integration:

qπ(x|φ) = q0
(

g−1
π (x;φ)

)∣

∣det Jgπ
(g−1

π (x;φ))
∣

∣
−1

, (3)

where Jgπ
(g−1

π (x;φ)) is the Jacobian of gπ evaluated at g−1
π (x;φ). This resolves

both of the aforementioned issues: we can evaluate qπ and we can rewrite
Ex∼qπ

log p̃(x) as Ez∼q0 log p̃(gπ(z;φ)), since gπ(z;φ) ∼ qπ. The latter allows
us to move derivatives w.r.t. π inside the expectation, as q0 does not depend on
π. Figure 3a illustrates how this aids learning. Equation (2) can then be rewritten
as:

min
π

− E
φ∼Φ

E
x∼p(·|φ)

log
q0(g−1

π (x;φ))
∣

∣det Jgπ
(g−1

π (x;φ))
∣

∣

− β E
z∼q0

log p̃(gπ(z;φ)|φ). (4)

We note ours is not the only way to represent qπ and optimize Eq. (2). As long
as qπ is analytically differentiable in the parameters, we may also apply REIN-
FORCE [48] to obtain the required parameter derivatives. However, empirical
evidence and some theoretical analysis suggests that the reparameterization-
based gradient estimator typically yields lower-variance gradient estimates than
REINFORCE [11]. This is consistent with the results we obtained in Sect. 4.

An Invertible, Differentiable Simulator. In order to exploit the pushfor-
ward density formula (3), we must ensure gπ is invertible and differentiable.
Inspired by [9,21], we define gπ as an autoregressive map, representing the evo-
lution of a controlled, discrete-time stochastic dynamical system with additive
noise. Denoting [x1, . . . , xt−1] as x1:t−1, and [x1:t−1, φ] as ψt, the system is:

xt � μπ
t (ψt; θ) + σπ

t (ψt; θ)zt, (5)

where μπ
t (ψt; θ) ∈ R

2 and σπ
t (ψt; θ) ∈ R

2×2 represent the stochastic one-step pol-
icy, and θ its parameters. The context, φ, is given in the form of a past trajectory
xpast = x−Hpast+1:0 ∈ R

2Hpast , and overhead feature map M ∈ R
Hmap×Wmap×C :
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φ = (xpast,M). Note that the case σπ = 0 would correspond to simply evolving
the state by repeatedly applying μπ—though this case is not allowed, as then gπ

would not be invertible. However, as long as σπ
t is invertible for all x, then gπ is

invertible, and it is differentiable in x as long as μπ and σπ are differentiable in
x. Since xτ1 is not a function of xτ2 for τ1 < τ2, the determinant of the Jacobian
of this map is easily computed, because it is triangular (see supplement). Thus,
we can easily compute terms in Eq. 4 via the following:

[g−1
π (x)]t = zt = σπ

t (ψt; θ)−1(xt − μπ
t (ψt; θ)), (6)

log
∣

∣det Jgπ
(g−1

π (x;φ))
∣

∣ =
∑

t

log
∣

∣det
(

σπ
t (ψt; θ)

)∣

∣. (7)

We note that qπ can also be computed via the chain rule of probability. For
instance, if zt ∼ is standard normal, then the marginal distributions are

qπ(xt|ψt) = N (xt;μ = μπ
t (ψt; θ), Σ = σπ

t (ψt; θ)σπ
t (ψt; θ)�). (8)

However, since it is still necessary to compute gπ in order to optimize H(qπ, p̃),
we find it simplifies the implementation to compute qπ in terms of gπ.

Prior Approximation of the Data Distribution. Evaluating H(qπ, p)
directly is unfortunately impossible, since we cannot evaluate the data distribu-
tion p’s PDF. We therefore propose approximating it with a very simple density
estimator p̃ ≈ p trained independently and then fixed while training qπ. Simplic-
ity reduces sample-induced variance in fitting p̃—crucial, because if p̃ severely
underestimates p in some region R due to sampling error, then H(qπ, p̃) will
erroneously assign a large penalty to samples from qπ landing in R.

We consider two options for p̃—first, simply using a kernel density estima-
tor with a relatively large bandwidth. Since we have only one training sample
per episode, this reduces to a single-kernel model. Choosing an isotropic Gaus-
sian kernel, H(qπ, p̃) becomes Ex̂∼qπ(·|φ)‖x− x̂‖2/σ2, where (x, φ) constitutes an
episode from the data. The net objective (2) in this case corresponds to H(p, qπ)
plus a mean squared distance penalty between model samples and data samples.

The second possibility is making an i.i.d. approximation; i.e., parameterizing
p̃ as p̃(x | φ) =

∏

t p̃c(xt | φ). We proceed by discretizing xt in a large finite region
centered at the vehicle’s start location; p̃c then corresponds to a categorical
distribution with L classes representing the L possible locations. Training the
i.i.d. model can then be reduced to training p̃c via logistic regression:

min
p̃

−Ex∼p log p̃(x) = max
θ

Ex∼p

∑

t

−Cθ(xt, φ) − log
L

∑

y=1

exp −Cθ(y, φ), (9)

where Cθ = − log p̃c can be thought of as a spatial cost function with parameters
θ. We found it useful to decompose Cθ(y) as a sum C0

θ (y) + C1
θ (y, φ), where

C0
θ ∈ R

L is thought of as a non-contextual location prior, and C1
θ (y, φ) has the

form of a convolutional neural network acting on the spatial feature grid in φ
and producing a grid of scores ∈ R

L. Figure 4 shows example learned C1
θ (·, φ).
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3.2 Policy Modeling

We turn to designing learnable functions μπ
t and σπ

t . Across our three models,
we use the following expansion: μπ

t (ψt) = 2xt − xt−1 + μ̂π
t (ψt). The first terms

correspond to a constant velocity step (xt + (xt − xt−1)), and let us interpret μ̂π
t

as a deterministic acceleration. Altogether, the update equation (Eq. 5) mimics
Verlet integration [41], used to integrate Newton’s equations of motion.

“Linear”: The simplest model uses μ̂π
t , St linear in ψt:

μ̂π
t (ψt) = Aht + b0, St(ψt) = Bht + b1, (10)

with A ∈ R
2×2H , ht = xt−H:t−1 ∈ R

2H , B ∈ R
4×2H , bi ∈ R

2H , and St(ψt) ∈
R

2×2. To produce σπ
t ∈ PD, we use the matrix exponential [29]: σπ

t = expm(St +
S�

t ), which we found to optimize more efficiently than σπ
t = StS

�
t .

Fig. 4. The prior penalizes positions corresponding to obstacles (white: high cost, black:
low cost). The demonstrated expert trajectory is shown in each scene.

“Field”: The Linear model ignores M : it has no environment perception. We
designed a CNN model that takes in M and outputs O ∈ R

Hmap×Wmap×6. The 6
channels in O are used to form the 6 components of μπ

t and St in the following
way. To ensure differentiability, the values in O are bilinearly interpolated at the
current rollout position, xt in the spatial dimensions (Hmap and Wmap) of O.

“RNN”: The Linear and Field models reason with different contextual inputs:
Linear uses the past, and CNN uses the feature map M . We developed a joint
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model to reason with both. M is passed through a CNN similar to Field’s. The
past is encoded with a GRU-RNN. Both featurizations inform a GRU-RNN that
produces μπ

t , St. See Fig. 5 and the supplementary material for details.

3.3 GAIL and Differentiable GAIL

As a deep generative approach to imitation learning, our method is comparable
to Generative Adversarial Imitation Learning (GAIL [16]). GAIL is model-free:
it is agnostic to model dynamics. However, this flexibility requires an expensive
model-free policy gradient method, whereas the approach we have proposed is
fully differentiable. The model-free approach is significantly disadvantaged in
sample complexity [19,32] in theory and practice. By assuming the dynamics
are known and differentiable, as described in Sect. 3.1, we can also derive a
version of GAIL that does not require model-free RL, since we can apply the
reparameterization trick to differentiate the generator objective with respect to
the policy parameters. A similar idea was explored for general imitation learning
in [6]. We refer to this method as R2P2 GAIL. As our experiments show, R2P2
GAIL significantly outperforms standard GAIL, and our main model (R2P2)
significantly outperforms and is easier to train than both GAIL and R2P2 GAIL.

Fig. 5. RNN and CNN Policy models. The Field model produces a map of values to
use for producing μπ, σπ through interpolation. The RNN model uses the same base as
the Field model as well as information from the past trajectory to decode a featurized
context representation and previous state to next μπ, σπ.

4 Experiments

We implemented R2P2 and baselines with the primary aim of testing the follow-
ing hypotheses. (1) The ability to exactly evaluate the model PDF should help
R2P2 obtain better solutions than methods that do not use exact PDF inference
(which includes GAIL). (2) The optimization of H(p, qθ) should be correlated
with the model’s ability to cover the training data, in analogy to recall in binary
classification. (3) Including H(qθ, p̃) in our objective should improve sample qual-
ity relative to methods without this term, as it serves a purpose analogous to
precision in binary classification. (4) R2P2 GAIL will outperform GAIL through
its more efficient optimization scheme.
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4.1 The CaliForecasting Dataset

Current public datasets such as Kitti are suboptimal for the purpose of val-
idating these hypotheses. Kitti is relatively small and was not designed with
forecasting in mind. It contains relatively few episodes of subjectively interest-
ing, nonlinear behavior. For this reason, we collected a novel dataset specifically
designed for the ego-motion forecasting task, which we make public. The data
is similar to Kitti in sensor modalities, but the data was collected so as to
maximize the number of intersections, turning, and other subjectively interest-
ing episodes. The data was collected with a sensor platform consisting of a Ford
Transit Connect van with two Point Grey Flea3 cameras mounted on the roof
in a wide-baseline configuration, in addition to a roof-mounted Velodyne VLP16
LIDAR unit and an IMU. The initial version of the dataset consists of three con-
tinuous driving sequences, each about one hour long, collected in mostly subur-
ban areas of northern California (USA). The data was post-processed to produce
a collection of episodes in the previously described format. The overhead feature
map was populated by pretraining a semantic segmentation network [39], eval-
uating it on the sequences, correlating them with the LIDAR point cloud, and
binning the resulting semantic segmentation scores in addition to a height-above-
ground plane feature. With a subsampling scheme of 2 Hz, CaliForecasting
consists of over 10,000 training, 1,200 validation and 1,200 testing examples.
The Kitti splits, in comparison, are about 3,100 training, 140 validation, and
slightly less than 500 test examples with a subsampling scheme of 1 Hz.

Fig. 6. Possible objectives and their attributes. minθ H(p, qθ) encourages data cover-
age, minθ H(qθ, p̃) penalizes bad samples. Measuring mean squared error is misleading
when the data is multimodal, and measuring mean squared error of the best sample
fails to measure quality of samples far from the demonstrations.

4.2 Metrics and Baselines

Metrics Our primary metrics are the cross-entropy distribution metrics H(p, qθ)
and H(qθ, p̃). Note that H(p, qθ) is lower-bounded by the entropy of p, H(p),
by Gibbs’ inequality. Subtracting this quantity (computing KL) would be ideal;
unfortunately, since H(p) is unknown, we simply report H(p, qθ). We also note
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that cross-entropy is not coordinate-invariant: we use path coordinates in an
ego-centric frame that is a rotation and translation away from UTM coordinates
(in meters) and report cross-entropy values for path distributions in this frame.

A subtle related issue is that H(p, qθ) may be unbounded below since H(p)
may be arbitrarily negative. This phenomenon arises when the support of p
is restricted to a submanifold—for example, if for x ∼ p and x1 − x2 = b, the
distribution q(x) ∝ exp(−‖x1−x2−b‖2

/ε2+‖x‖2
/2) achieves arbitrarily low values of

H(p, qθ). We resolve this by slightly perturbing training and testing samples from
p: i.e. instead of computing H(p, qθ), we compute −Eη∼N (0,εI)Ex∼p log q(x + η)
for ε = 0.001. This is lower-bounded by H(N (0, εI)), which resolves the issue.

We include two commonly used sample metrics [3,8,15,25,37], despite the
shortcomings illustrated in Fig. 6. We measure the quality of the “best” sam-
ple from K samples from qθ: X̂, relative to the demonstrated sample x via
EX̂k∼qθ

minx̂∈X̂k
‖x − x̂‖2 (known as “minMSD”). This metric fails to measure

the quality of all of the samples, and thus can be exploited by an approach
that predicts samples that are mostly poor. Additionally, we measure the mean
distance to the demonstration of all samples in X̂: 1

K

∑K
k=1 ‖x− x̂k‖2 (known as

“meanMSD”). This metric is misleading if the data is multimodal, as the metric
rewards predicting the mean, as opposed to covering multiple outcomes. Due to
the deficiencies of these common sample-based metrics for measuring the quality
of multimodal predictions, we advocate supplementing sample-based metrics with
the complementary cross-entropy metrics used in this work.

Baselines. We construct a simple a unimodal baseline: given the context, the
distribution of trajectories is given as a sequence of Gaussian distributions. This
is called the Gaussian Direct Cross-Entropy (DCE-G). As discussed in
Sect. 3.3, we apply Generative Adversarial Imitation Learning (GAIL),
along with our modified GAIL framework, R2P2 GAIL. We constructed several
variants of GAIL: with and without the (improved) Wasserstein-GAN [4,14]
parameterization, with and without our novel R2P2 GAIL formulation, and
using the standard MLP discriminator, versus a CNN-based discriminator with a
similar architecture to the Field model (details in supplementary). Conditional
Variational Autoencoders (CVAEs) are a popular approach for modeling
generative distributions conditioned on context. We follow the CVAE construc-
tion of [25] in our implementation. One key distinguishing factor is that CVAEs
cannot perform exact inference by construction: given an arbitrary sample, a
CVAE cannot produce a PDF value. Quantification of CVAE performance is
thus required to be approximation-based, or sample-based. Our approaches are
implemented in Tensorflow [1]. Architectural details are given in the supplement.

4.3 Cross Trimodal Experiments

Our first set of experiments is designed to test the multimodal modeling capa-
bility of each approach in an easy domain. The contextual information is fixed –
a single four-way intersection, along with three demonstrated outcomes: turning
left, turning right, and going straight. Figure 7 shows qualitative and quantitative
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Fig. 7. Cross Trimodal Evaluation. Top: Qualitative results. Bottom: Quantitative
results. A ∗ indicates R2P2, and a † indicates using a WGAN Discriminator.

results. We see that several approaches fail to model multimodality well in this
scenario. RNN. The models that can perform exact inference (all except CVAE)
cover the modes with different success, as measured by Test −H(p, qθ). We
observe the models minimizing H(p, qθ) cover the data well, supporting hypoth-
esis 2 (coverage hypothesis), and outperform both GAIL approaches, supporting
hypothesis 1 (exact inference hypothesis). We observer R2P2 GAIL outperforms
GAIL in this scenario, supporting hypothesis 4 (optimization hypothesis). We
also note the failure of DCE-G: its unimodal model is too restrictive for covering
the diverse demonstrated behavior.

Table 1. CaliForecasting and Kitti evaluation, K = 12

CaliForecasting approach Test −H(p, qθ) Test minMSD Test meanMSD Test −H(qθ, p̃)

DCE-G −1.604 ± 0.02 4.953 ± 0.18 11.66 ± 0.27 −129.2 ± 0.43

GAIL-WG [16] 27.43 ± 0.03 9.117 ± 0.27 36.77 ± 2.50 −221.5 ± 2.40

CVAE [25] ≈ 10.1 ± 0.9 1.680 ± 0.12 9.961 ± 0.25 −122.2 ± 0.48

R2P2 GAIL-WG 45.55 ± 0.07 5.529 ± 0.33 25.12 ± 0.80 −152.1 ± 1.00

R2P2 GAIL-WG CNN 43.55 ± 0.08 4.937 ± 0.26 26.59 ± 0.96 −154.3 ± 1.20

R2P2 Linear 64.02 ± 0.11 2.339 ± 0.14 10.51 ± 0.39 −144.5 ± 1.00

R2P2 Linear β = 0.1 61.57 ± 0.10 2.387 ± 0.13 11.27 ± 0.44 −134.1 ± 0.76

R2P2 Field 54.56 ± 0.11 2.171 ± 0.13 11.59 ± 0.39 −142.5 ± 0.75

R2P2 Field β = 0.1 53.88 ± 0.11 2.162 ± 0.11 10.87 ± 0.39 −132.8 ± 0.54

R2P2 RNN 70.20 ± 0.11 1.530 ± 0.12 11.25 ± 0.29 −125.0 ± 0.53

R2P2 RNN β = 0.1 66.89 ± 0.12 1.860 ± 0.14 10.68 ± 0.30 −119.0 ± 0.44

R2P2 RNN γ = 1.0 65.12 ± 0.12 1.661 ± 0.11 8.542 ± 0.22 −124.8 ± 0.48

Kitti approach Test −H(p, qθ) Test minMSD Test meanMSD Test −H(qθ, p̃)

DCE-G −1.884 ± 0.03 6.217 ± 0.30 15.20 ± 0.62 −137.0 ± 0.72

GAIL-WG [16] 39.53 ± 0.11 5.517 ± 0.34 20.08 ± 2.00 −188.8 ± 1.76

CVAE [25] ≈ 9.22 ± 0.9 1.436 ± 0.15 9.593 ± 0.52 −133.8 ± 1.21

R2P2 GAIL-WG 47.45 ± 0.16 4.062 ± 0.25 13.80 ± 1.10 −168.9 ± 1.50

R2P2 GAIL-WG CNN 42.49 ± 0.12 4.601 ± 0.30 19.87 ± 1.34 −164.2 ± 1.43

R2P2 Linear 62.39 ± 0.14 2.438 ± 0.16 16.16 ± 1.26 −163.4 ± 1.50

R2P2 Linear β = 0.1 63.82 ± 0.16 2.587 ± 0.15 28.33 ± 1.40 −151.1 ± 1.40

R2P2 Field 64.71 ± 0.18 1.717 ± 0.13 10.34 ± 0.59 −139.2 ± 1.10

R2P2 Field β = 0.1 62.79 ± 0.29 1.639 ± 0.13 10.92 ± 0.59 −126.9 ± 0.77

R2P2 RNN 67.70 ± 0.20 1.574 ± 0.15 10.46 ± 0.57 −131.6 ± 0.91

R2P2 RNN β = 0.3 65.80 ± 0.21 1.282 ± 0.09 9.352 ± 0.55 −130.8 ± 0.87
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Fig. 8. CaliForecasting Results. Comparison of R2P2 RNN (middle-left), CVAE
(middle-right), and R2P2 GAIL (right). Trajectory samples are overlaid on overhead
LIDAR map, colored by height. Bottom two rows: Comparison of β = 0 (top) and
β = 0.1 (bottom), overlaid on p̃ cost map. The cost map improves sample quality.
(Color figure online)

Fig. 9. Comparison of using β on CaliForecasting test data. Top row: With β = 0,
some trajectories are forecasted into obvious obstacles. Bottom row: With β �= 0, many
forecasted trajectories do not hit obstacles.
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4.4 CaliForecasting Experiments and KITTI Experiments

We conducted larger-scale experiments designed to test our hypotheses. First,
we trained p̃ on each dataset by the procedure described in Sect. 3.1. As dis-
cussed, our goal was to develop a simple model to minimize overfitting: we
used a 3-layer Fully Convolutional NN. In the resulting spatial “cost” maps,
we observe the model’s ability to perceive obstacles in its assignment of low cost
to on-road regions, and high-cost to clearly visible obstacles (e.g Fig. 4). We
performed hyperparameter search for each method, and report the mean and its
standard error of test set metrics corresponding to each method’s best valida-
tion loss in Table 1. These results provide us with a rich set of observations. Of
the three baselines, none catastrophically failed, with CVAE most often gener-
ating the cleanest samples. Across datasets and metrics, our approach achieves
performance superior to the three baselines and our improved GAIL approach.
By minimizing H(p, qθ), our approach results in higher Test −H(p, qθ) than all
GAIL approaches, supporting the coverage and optimization hypotheses. We
find that by incorporating our prior with nonzero β, hypothesis 3 is supported:
our model architectures can improve the quality of its samples as measured by
the Test −H(qθ, p̃). We observe that our GAIL optimization approach yields
higher Test −H(p, qθ), supporting hypothesis 4. We plot means and its standard
error of the minMSD metrics as a function of K in Fig. 10 for all 3 datasets.

Fig. 10. Test mink MSD vs. K on Cross, CaliForecasting, and Kitti.

We also find that qualitatively, our approach usually generates the best sam-
ples with diversity along multiple paths and precision in its tendency to avoid
obstacles. Figure 8 illustrates results on our dataset for our method, CVAE, and
our improved GAIL approach. Figure 9 illustrates qualitative examples for how
incorporating nonzero β can improve sample quality.

5 Conclusions

This work has raised the previously under-appreciated issue of balancing diver-
sity and precision in probabilistic trajectory forecasting. We have proposed a
training a policy to induce a simulated-outcome distribution that minimizes a
symmetrized cross-entropy objective. The key technical step that made this pos-
sible was a parameterizing the model distribution as the pushforward of a simple
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base distribution under the simulation operator. The relationship of this method
to deep generative models was noted, and we showed that part of our full model
enhances an existing deep imitation learning method. Empirically, we demon-
strated that the pushforward parameterization enables reliable optimization of
the objective, and that the optimized model has the desired characteristics of
both covering the training data and generating high-quality samples. Finally, we
introduced a novel large-scale, real-world dataset designed specifically for the
vehicle ego-motion forecasting problem.

Acknowledgment. This work was sponsored in part by JST CREST (JPMJCR14E1)
and IARPA (D17PC00340).
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