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Abstract. Facial action unit (AU) detection and face alignment are
two highly correlated tasks since facial landmarks can provide precise
AU locations to facilitate the extraction of meaningful local features for
AU detection. Most existing AU detection works often treat face align-
ment as a preprocessing and handle the two tasks independently. In this
paper, we propose a novel end-to-end deep learning framework for joint
AU detection and face alignment, which has not been explored before.
In particular, multi-scale shared features are learned firstly, and high-
level features of face alignment are fed into AU detection. Moreover, to
extract precise local features, we propose an adaptive attention learn-
ing module to refine the attention map of each AU adaptively. Finally,
the assembled local features are integrated with face alignment features
and global features for AU detection. Experiments on BP4D and DISFA
benchmarks demonstrate that our framework significantly outperforms
the state-of-the-art methods for AU detection.

Keywords: Joint learning · Facial AU detection · Face alignment
Adaptive attention learning

1 Introduction

Facial action unit (AU) detection and face alignment are two important face
analysis tasks in the fields of computer vision and affective computing [13]. In
most of face related tasks, face alignment is usually employed to localize cer-
tain distinctive facial locations, namely landmarks, to define the facial shape or
expression appearance. Facial action units (AUs) refer to a unique set of basic
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facial muscle actions at certain facial locations defined by Facial Action Coding
System (FACS) [5], which is one of the most comprehensive and objective sys-
tems for describing facial expressions. Considering facial AU detection and face
alignment are coherently related to each other, they should be beneficial for each
other if putting them in a joint framework. However, in literature it is rare to
see such joint study of the two tasks.

Although most of the previous studies [3,31] on facial AU detection only
make use of face detection, facial landmarks have been adopted in the recent
works since they can provide more precise AU locations and lead to better AU
detection performance. For example, Li et al. [10] proposed a deep learning based
approach named EAC-Net for facial AU detection by enhancing and cropping the
regions of interest (ROIs) with facial landmark information. However, they just
treat face alignment as a pre-processing to determine the region of interest (ROI)
of each AU with a fixed size and a fixed attention distribution. Wu et al. [23]
tried to exploit face alignment and facial AU detection simultaneously with the
cascade regression framework, which is a pioneering work for the joint study of
the two tasks. However, this cascade regression method only uses handcrafted
features and is not based on the prevailing deep learning technology, which limits
its performance.

In this paper, we propose a novel deep learning based joint AU detection
and face alignment framework called JAA-Net to exploit the strong correlations
of the two tasks. In particular, multi-scale shared features for the two tasks
are learned firstly, and high-level features of face alignment are extracted and
fed into AU detection. Moreover, to extract precise local features, we propose an
adaptive attention learning module to refine the attention map of each AU adap-
tively, which is initially specified by the predicted facial landmarks. Finally, the
assembled local features are integrated with face alignment features and global
facial features for AU detection. The entire framework is end-to-end without any
post-processing operation, and all the modules are optimized jointly.

The contributions of this paper are threefold. First, we propose an end-to-end
multi-task deep learning framework for joint facial AU detection and face align-
ment. To the best of our knowledge, jointly modeling these two tasks with deep
neural networks has not been done before. Second, with the aid of face align-
ment results, an adaptive attention network is learned to determine the attention
distribution of the ROI of each AU. Third, we conduct extensive experiments
on two benchmark datasets, where our proposed joint framework significantly
outperforms the state-of-the-art, particularly on AU detection.

2 Related Work

Our proposed framework is closely related to existing landmark aided facial AU
detection methods as well as face alignment with multi-task learning methods,
since we combine both AU detection models and face alignment models.

Landmark Aided Facial AU Detection: The first step in most of the previ-
ous facial AU recognition works is to detect the face with the help of face detec-
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tion or face alignment methods [1,10,13]. In particular, considering it is robust
to measure the landmark-based geometry changes, Benitez-Quiroz et al. [1] pro-
posed an approach to fuse the geometry and local texture information for AU
detection, in which the geometry information is obtained by measuring the nor-
malized facial landmark distances and the angles of Delaunay mask formed by
the landmarks. Valstar et al. [21] analyzed Gabor wavelet features near 20 facial
landmarks, and these features were then selected and classified by Adaboost
and SVM classifiers for AU detection. Zhao et al. [29,30] proposed a joint patch
and multi-label learning (JPML) method for facial AU detection by taking into
account both patch learning and multi-label learning, in which the local regions
of AUs are defined as patches centered around the facial landmarks obtained
using IntraFace [20]. Recently, Li et al. [10] proposed the EAC-Net for facial
AU detection by enhancing and cropping the ROIs with roughly extracted facial
landmark information.

All these researches demonstrate the effectiveness of utilizing facial land-
marks on feature extraction for AU detection task. However, they all treat face
alignment as a single and independent task and make use of the existing well-
designed facial landmark detectors.

Face Alignment with Multi-task Learning: The correlation of facial expres-
sion recognition and face alignment has been leveraged in several face alignment
works. For example, recently, Wu et al. [22] combined the tasks of face align-
ment, head pose estimation, and expression related facial deformation analysis
using a cascade regression framework. Zhang et al. [27,28] proposed a Tasks-
Constrained Deep Convolutional Network (TCDCN) to optimize the shared fea-
ture map between face alignment and other heterogeneous but subtly correlated
tasks, e.g. head pose estimation and the inference of facial attributes including
expression. Ranjan et al. [17] proposed a deep multi-task learning framework
named HyperFace for simultaneous face detection, face alignment, pose estima-
tion, and gender recognition. All these works demonstrate that related tasks
such as facial expression recognition are conducive to face alignment.

However, in TCDCN and HyperFace, face alignment and other tasks are just
simply integrated with the first several layers shared. In contrast, besides sharing
feature layers, our proposed JAA-Net also feeds high-level representations of
face alignment into AU detection, and utilizes the estimated landmarks for the
initialization of the adaptive attention learning.

Joint Facial AU Detection and Face Alignment: Although facial AU recog-
nition and face alignment are related tasks, their interaction is usually one way
in the aforementioned methods, i.e. facial landmarks are used to extract fea-
tures for AU recognition. Li et al. [11] proposed a hierarchical framework with
Dynamic Bayesian Network to capture the joint local relationship between facial
landmark tracking and facial AU recognition. However, this framework requires
an offline facial activity model construction and an online facial motion mea-
surement and inference, and only local dependencies between facial landmarks
and AUs are considered. Inspired by [11], Wu et al. [23] tried to exploit global
AU relationship, global facial shape patterns, and global dependencies between
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AUs and landmarks with a cascade regression framework, which is a pioneering
work for the joint process of the two tasks.

In contrast with these conventional methods using handcrafted local appear-
ance features, we employ an end-to-end deep framework for joint learning of
facial AU detection and face alignment. Moreover, we develop a deep adaptive
attention learning method to explore the feature distributions of different AUs
in different ROIs specified by the predicted facial landmarks.

3 JAA-Net for Facial AU Detection and Face Alignment

The framework of our proposed JAA-Net is shown in Fig. 1, which consists of
four modules (in different colors): hierarchical and multi-scale region learning,
face alignment, global feature learning, and adaptive attention learning. Firstly,
the hierarchical and multi-scale region learning is designed as the foundation
of JAA-Net, which extracts features of each local region with different scales.
Secondly, the face alignment module is designed to estimate the locations of facial
landmarks, which will be further utilized to generate the initial attention maps
for AU detection. The global feature learning module is to capture the structure
and texture features of the whole face. Finally, the adaptive attention learning
is designed as the central part for AU detection with a multi-branch network,
which learns the attention map of each AU adaptively so as to capture local AU
features at different locations. The three modules, face alignment, global feature
learning, and adaptive attention learning, are optimized jointly, which share the
layers of the hierarchical and multi-scale region learning.

As illustrated in Fig. 1, by taking a color face of l × l × 3 as input, JAA-Net
aims to achieve AU detection and face alignment simultaneously, and refine the
attention maps of AUs adaptively. We define the overall loss of JAA-Net as

E = Eau + λ1Ealign + λ2Er, (1)

Fig. 1. The proposed JAA-Net framework, where “C” and “×” denote concatenation
and element-wise multiplication, respectively
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where Eau and Ealign denote the losses of AU detection and face alignment,
respectively, Er measures the difference before and after the attention refine-
ment, which is a constraint to maintain the consistency, and λ1 and λ2 are
trade-off parameters.

3.1 Hierarchical and Multi-scale Region Learning

Considering different AUs in different local facial regions have various structure
and texture information, each local region should be processed with indepen-
dent filters. Instead of employing plain convolutional layers with weights shared
across the entire spatial domain, the filter weights of the region layer proposed
by DRML [31] are shared only within each local facial patch and different local
patches use different filter weights, as shown in Fig. 2(b). However, all the local
patches have identical sizes, which is unable to adapt multi-scale AUs. To address
this issue, we propose the hierarchical and multi-scale region layer to learn fea-
tures of each local region with different scales, as illustrated in Fig. 2(a). Let
Rhm(l1, l2, c1), R(l1, l2, c1), and P (l1, l2, c1) respectively denote the blocks of our
proposed hierarchical and multi-scale region layer, the region layer [31], and the
plain stacked convolutional layers, where the expression of l1 × l2 × c1 indicates
that the height, width, and channel of a layer are l1, l2, and c1 respectively.
The expression of 3 × 3/1/1 in Fig. 2 means that the height, width, stride, and
padding of the filter for each convolutional layer are 3, 3, 1, and 1, respectively.

Fig. 2. Architectures of different blocks for region learning, where “C” and “+” denote
concatenation and element-wise sum, respectively

As shown in Fig. 2(a), one block of our proposed hierarchical and multi-
scale region layer contains one convolutional layer and another three hierarchical
convolutional layers with different sizes of weight sharing regions. Specifically,
the uniformly divided 8 × 8, 4 × 4, and 2 × 2 patches of the second, third,
and fourth convolutional layers are the results of convolution on corresponding
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patches in the previous layer, respectively. By concatenating the outputs of the
second, third, and fourth convolutional layers, we extract hierarchical and multi-
scale features with the same number of channels as the first convolutional layer.
In addition, a residual structure is also utilized to sum the hierarchical and
multi-scale maps with those of the first convolutional layer element-wisely for
learning over-complete features and avoiding the vanishing gradient problem.
Different from the region layer of DRML, our proposed hierarchical and multi-
scale region layer uses multi-scale partitions, which are beneficial for covering all
kinds of AUs in the ROIs of different sizes with less parameters.

In JAA-Net, the module of the hierarchical and multi-scale region learning
is composed by Rhm(l, l, c) and Rhm(l/2, l/2, 2c), each of which is followed by a
max-pooling layer. The output of this module is named as “pool2”, which will
be fed into the rest three modules. In JAA-Net, the size of the filter for each
max-pooling layer is 2 × 2/2/0, and each convolutional layer is operated with
Batch Normalization (BN) [7] and Rectified Linear Unit (ReLU) [16].

3.2 Face Alignment

The face alignment module includes three successive convolutional layers of
P (l/4,l/4,3c), P (l/8,l/8,4c), and P (l/16,l/16,5c), each of which connects with a
max-pooling layer. As shown in Fig. 1, the output of this module is fed into a
landmark prediction network with two fully-connected layers with the dimension
of d and 2nalign, respectively, where nalign is the number of facial landmarks.
We define the face alignment loss as

Ealign =
1

2d2o

nalign∑

j=1

[(y2j−1 − ŷ2j−1)2 + (y2j − ŷ2j)2], (2)

where y2j−1 and y2j denote the ground-truth x-coordinate and y-coordinate of
the j-th facial landmark, ŷ2j−1 and ŷ2j are the corresponding predicted results,
and do is the ground-truth inter-ocular distance for normalization [18].

3.3 Adaptive Attention Learning

Figure 3 shows the architecture of the proposed adaptive attention learning. It
consists of two steps: AU attention refinement and local AU feature learning,
where the first step is to refine the attention map of a certain AU with a branch
respectively and the second step is to learn and extract local AU features.

The inputs and outputs of the AU attention refinement step are initialization
and refined results of attention maps, respectively. Each AU has an attention
map corresponding to the whole face with size l/4× l/4×1, where the attention
distributions of predefined ROI and remaining regions are both refined. The
predefined ROI of each AU has two AU centers due to the symmetry, each of
which is the central point of a subregion. In particular, the locations of AU
centers are predefined by the estimated facial landmarks using the rule proposed



Joint Facial Action Unit Detection and Face Alignment 731

Fig. 3. Architecture of the proposed adaptive attention learning. “×” and “+” denote
element-wise multiplication and sum operations, respectively

by [10]. For the i-th AU, if the k-th point of the attention map is in a subregion
of the predefined ROI, its attention weight is initialized as

vik = max{1 − dikξ

(l/4)ζ
, 0}, i = 1, · · · , nau, (3)

where dik is the Manhattan distance of this point to the AU center of the sub-
region, ζ is the ratio between the width of the subregion and the attention map,
ξ ≥ 0 is a coefficient, and nau is the number of AUs. Equation (3) essentially
suggests that the attention weights are decaying when the ROI points are mov-
ing away from the AU center. The maximization operation in Eq. (3) is to ensure
vik ∈ [0, 1]. If a point belongs to the overlap of two subregions, it is set to be the
maximum value of all its associated initial attention weights. Note that, when
ξ = 0, the attention weights of points in the subregions become 1. The attention
weight of any point beyond the subregions is initialized to be 0.

Considering that padding is used in each convolutional layer of the hierarchi-
cal and multi-scale region learning module, the output “pool2” could do harm to
the local AU feature learning. To eliminate the influence of padding, we propose
a padding removal process C(S(M,α), β), where S(M,α) is a function scaling
a feature map M with the scaling coefficient α using bilinear interpolation [2],
and C(M,β) is a function cropping a feature map M around its center with the
ratio β to preserve its original width. The padding removal process first zooms
the feature map with α > 1 and then crops it. Specifically, the initial attention
maps and “pool2” are performed with C(S(·, (l/4 + 6)/(l/4)), (l/4)/(l/4 + 6)),
where the resulting output of “pool2” is named “new pool2” as shown in
Fig. 3. To avoid the effect of the padding of the convolutional layers in the AU
attention refinement step, the initial attention maps are further zoomed with
S(·, (l/4 + 8)/(l/4)). Following three convolutional layers with the filter size of
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3 × 3/1/0, the fourth convolutional layer outputs the refined AU attention map.
Note that except for the convolutional layers in this attention refinement step,
the filters for all the convolutional layers in JAA-Net are set as 3 × 3/1/1.

To avoid the refined attention maps deviating from the initial attention maps,
we introduce the following constraint for AU attention refinement:

Er = −
nau∑

i=1

nam∑

k=1

[vik log v̂ik + (1 − vik) log(1 − v̂ik)], (4)

where v̂ik is the refined attention weight of the k-th point for the i-th AU, and
nam = l/4 × l/4 is the number of points in each attention map. Equation (4)
essentially measures the sigmoid cross entropy between the refined attention
maps and the initial attention maps.

The parameters of the AU attention refinement step are learned via the back-
propagated gradients from Er as well as the AU detection loss Eau, where the
latter plays a critical role. To enhance the supervision from the AU detection,
we propose a back-propagation enhancement method, formulated as

∂Eau

∂V̂i

← λ3
∂Eau

∂V̂i

, (5)

where V̂i = {v̂ik}nam

k=1 , and λ3 ≥ 1 is the enhancement coefficient. By enhancing
the gradients from Eau, the attention maps are performed stronger adaptive
refinement.

Finally, after multiplying “new pool2” with each attention map to extract
local AU features, each branch of the local AU feature learning is performed with
a network consisting of three max-pooling layers, each of which follows a stack
of two convolutional layers with the same size. The local features with respect
to the ROI of each AU are learned, and the output feature maps of all AUs are
summed element-wisely, where the assembled local feature representations will
then contribute to the final AU detection.

3.4 Facial AU Detection

As illustrated in Fig. 1, the output feature maps of the three modules of face
alignment, global feature learning, and adaptive attention learning are concate-
nated together and fed into a network of two fully-connected layers with the
dimension of d and 2nau, respectively. In this way, landmark related features,
global facial features, and local AU features are integrated together for facial
AU detection. Finally, a softmax layer is utilized to predict the probability of
occurrence of each AU. Note that the module of global feature learning has the
same structure as the face alignment module.

Facial AU detection can be regarded as a multi-label binary classification
problem with the following weighted multi-label softmax loss:

Esoftmax = − 1
nau

nau∑

i=1

wi[pi log p̂i + (1 − pi) log(1 − p̂i)], (6)
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where pi denotes the ground-truth probability of occurrence for the i-th AU,
which is 1 if occurrence and 0 otherwise, and p̂i denotes the corresponding pre-
dicted probability of occurrence. The weight wi introduced in Eq. (6) is to alle-
viate the data imbalance problem. For most facial AU detection benchmarks,
the occurrence rates of AUs are imbalanced [12,13]. Since AUs are not mutually
independent, imbalanced training data has a bad influence on this multi-label
learning task. Particularly, we set wi = (1/ri)nau∑nau

i=1 (1/ri)
, where ri is the occurrence

rate of the i-th AU in the training set.
In some cases, some AUs appear rarely in training samples, for which the

softmax loss often makes the network prediction strongly biased towards absence.
To overcome this limitation, we further introduce a weighted multi-label Dice
coefficient loss [15]:

Edice =
1

nau

nau∑

i=1

wi(1 − 2pip̂i + ε

p2i + p̂2i + ε
), (7)

where ε is the smooth term. Dice coefficient is also known as F1-score: F1 =
2pr/(p + r), the most popular metric for facial AU detection, where p and r
denote precision and recall respectively. With the help of the weighted Dice
coefficient loss, we also take into account the consistency between the learning
process and the evaluation metric. Finally, the AU detection loss is defined as

Eau = Esoftmax + Edice. (8)

4 Experiments

4.1 Datasets and Settings

Datasets: Our JAA-Net is evaluated on two widely used datasets for facial AU
detection, i.e. DISFA [14] and BP4D [26], in which both AU labels and facial
landmarks are provided.

– BP4D contains 41 participants with 23 females and 18 males, each of which
is involved in 8 sessions captured with both 2D and 3D videos. There are
about 140, 000 frames with AU labels of occurrence or absence. Each frame
is also annotated with 49 landmarks detected by SDM [24]. Similar to the
settings of [10,31], 12 AUs are evaluated using subject exclusive 3-fold cross
validation with the same subject partition rule, where two folds are used for
training and the remaining one is used for testing.

– DISFA consists of 27 videos recorded from 12 women and 15 men, each of
which has 4, 845 frames. Each frame is annotated with AU intensities from 0
to 5 and 66 landmarks detected by AAM [4]. To be consistent with BP4D, we
use 49 landmarks, a subset of 66 landmarks. Following the settings of [10,31],
our network is initialized with the well-trained model from BP4D, and is
further fine-tuned to 8 AUs using subject exclusive 3-fold cross validation on
DISFA. The frames with intensities equal or greater than 2 are considered as
positive, while others are treated as negative.
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Implementation Details: For each face image, we perform similarity trans-
formation including rotation, uniform scaling, and translation to obtain a
200 × 200 × 3 color face. This transformation is shape-preserving and brings
no change to the expression. In order to enhance the diversity of training data,
transformed faces are randomly cropped into 176×176 and horizontally flipped.
Our JAA-Net is trained using Caffe [8] with stochastic gradient descent (SGD),
a mini-batch size of 9, a momentum of 0.9, a weight decay of 0.0005, and ε = 1.
The learning rate is multiplied by a factor of 0.3 at every 2 epoches. The structure
parameters of JAA-Net are chosen as l = 176, c = 8, d = 512, nalign = 49, and
nau is 12 for BP4D and 8 for DISFA. ζ = 0.14 and ξ = 0.56 are used in Eq. (3)
for generating approximate Gaussian attention distributions for subregions of
predefined ROIs of AUs.

The hyperparameters λ1, λ2, and λ3 are obtained by cross validation. In our
experiments, we set λ2 = 10−7 and λ3 = 2. JAA-Net is firstly trained with
all the modules optimized with 8 epoches, an initial learning rate of 0.01 for
BP4D and 0.001 for DISFA, and λ1 = 0.5. Next, we fix the parameters of the
three modules of hierarchical and multi-scale region learning, global AU feature
learning, and adaptive attention learning, and train the module of face alignment
with λ1 = 1. Finally, only the modules of global AU feature learning and adaptive
attention learning are trained while fixing the parameters of the other modules.
The number of epoches and the initial learning rate for both of the last two
steps are set to 2 and 0.001, respectively. Although the two tasks of facial AU
detection and face alignment are optimized stepwise, the gradients of the losses
for the two tasks are back-propagated mutually in each step.
Evaluation Metrics: The evaluation metrics for the two tasks are chosen as
follows.

– Facial AU Detection: Similar to the previous methods [9,10,31], the frame-
based F1-score (F1-frame, %) is reported. To conduct a more comprehensive
comparison, we also evaluate the performance with accuracy (%) used by
EAC-Net [10]. In addition, we compute the average results over all AUs (Avg).
In the following sections, we omit % in all the results for simplicity.

– Face Alignment: We report the mean error normalized by inter-ocular dis-
tance, and treat the mean error larger than 10% as a failure. In other words,
we evaluate different methods on the two popular metrics [19,28]: mean error
(%) and failure rate (%), where % is also omitted in the results.

4.2 Comparison with State-of-the-Art Methods

We compare our method JAA-Net against state-of-the-art single-image based
AU detection works under the same 3-fold cross validation setting. These meth-
ods include both traditional methods, LSVM [6], JPML [30], APL [32], and
CPM [25], and deep learning methods, DRML [31], EAC-Net [10], and ROI [9].
Note that LSTM-extended version of ROI [9] is not compared due to its input
of a sequence of images instead of a single image. For a fair comparison, we use
the results of LSVM, JPML, APL, and CPM reported in [3,10,31].
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Table 1. F1-frame and accuracy for 12 AUs on BP4D. Since CPM and ROI do not
report the accuracy results, we just show their F1-frame results

AU F1-Frame Accuracy

LSVM JPML DRML CPM EAC-Net ROI JAA-Net LSVM JPML DRML EAC-Net JAA-Net

1 23.2 32.6 36.4 43.4 39.0 36.2 47.2 20.7 40.7 55.7 68.9 74.7

2 22.8 25.6 41.8 40.7 35.2 31.6 44.0 17.7 42.1 54.5 73.9 80.8

4 23.1 37.4 43.0 43.3 48.6 43.4 54.9 22.9 46.2 58.8 78.1 80.4

6 27.2 42.3 55.0 59.2 76.1 77.1 77.5 20.3 40.0 56.6 78.5 78.9

7 47.1 50.5 67.0 61.3 72.9 73.7 74.6 44.8 50.0 61.0 69.0 71.0

10 77.2 72.2 66.3 62.1 81.9 85.0 84.0 73.4 75.2 53.6 77.6 80.2

12 63.7 74.1 65.8 68.5 86.2 87.0 86.9 55.3 60.5 60.8 84.6 85.4

14 64.3 65.7 54.1 52.5 58.8 62.6 61.9 46.8 53.6 57.0 60.6 64.8

15 18.4 38.1 33.2 36.7 37.5 45.7 43.6 18.3 50.1 56.2 78.1 83.1

17 33.0 40.0 48.0 54.3 59.1 58.0 60.3 36.4 42.5 50.0 70.6 73.5

23 19.4 30.4 31.7 39.5 35.9 38.3 42.7 19.2 51.9 53.9 81.0 82.3

24 20.7 42.3 30.0 37.8 35.8 37.4 41.9 11.7 53.2 53.9 82.4 85.4

Avg 35.3 45.9 48.3 50.0 55.9 56.4 60.0 32.2 50.5 56.0 75.2 78.4

Table 1 reports the F1-frame and accuracy results of different methods on
BP4D. It can be seen that our JAA-Net outperforms all these previous works on
the challenging BP4D dataset. JAA-Net is superior to all the conventional meth-
ods, which demonstrates the strength of deep learning based methods. Compared
to the state-of-the-art ROI and EAC-Net methods, JAA-Net brings significant
relative increments of 6.38% and 7.33% respectively for average F1-frame. In
addition, our method obtains high accuracy without sacrificing F1-frame, which
is attributed to the integration of the softmax loss and the Dice coefficient loss.

Table 2. F1-frame and accuracy for 8 AUs on DISFA

AU F1-Frame Accuracy

LSVM APL DRML EAC-Net JAA-Net LSVM APL DRML EAC-Net JAA-Net

1 10.8 11.4 17.3 41.5 43.7 21.6 32.7 53.3 85.6 93.4

2 10.0 12.0 17.7 26.4 46.2 15.8 27.8 53.2 84.9 96.1

4 21.8 30.1 37.4 66.4 56.0 17.2 37.9 60.0 79.1 86.9

6 15.7 12.4 29.0 50.7 41.4 8.7 13.6 54.9 69.1 91.4

9 11.5 10.1 10.7 80.5 44.7 15.0 64.4 51.5 88.1 95.8

12 70.4 65.9 37.7 89.3 69.6 93.8 94.2 54.6 90.0 91.2

25 12.0 21.4 38.5 88.9 88.3 3.4 50.4 45.6 80.5 93.4

26 22.1 26.9 20.1 15.6 58.4 20.1 47.1 45.3 64.8 93.2

Avg 21.8 23.8 26.7 48.5 56.0 27.5 46.0 52.3 80.6 92.7

Experimental results on DISFA dataset are shown in Table 2, from which it
can be observed that our JAA-Net outperforms all the state-of-the-art works
with even more significant improvements. Specifically, JAA-Net increases the
average F1-frame and accuracy relatively by 15.46% and 15.01% over EAC-Net,
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respectively. Due to the serious data imbalance issue in DISFA, performances of
different AUs fluctuate severely in most of the previous methods. For instance,
the accuracy of AU 12 is far higher than that of other AUs for LSVM and
APL. Although EAC-Net processes the imbalance problem explicitly, its detec-
tion result for AU 26 is much worse than others. In contrast, our method weights
the loss of each AU, which contributes to the balanced and high detection pre-
cision of each AU.

4.3 Ablation Study

To investigate the effectiveness of each component in our framework, Table 3
presents the average F1-frame for different variants of JAA-Net on BP4D bench-
mark, where “w/o” is the abbreviation of “without”. Each variant is composed
by different components of our framework.

Table 3. Average F1-frame for different variants of JAA-Net on BP4D. R: Region
layer [31]. HMR: Hierarchical and multi-scale region layer. S: Multi-label softmax
loss. D: Multi-label Dice coefficient loss. W: Weighting the loss of each AU. FA: Face
alignment module. GF: Global feature learning module. LF: Local AU feature learn-
ing. AR: AU attention refinement. BE: Back-propagation enhancement. GA: Approx-
imate Gaussian attention distributions for subregions of predefined ROIs. UA: Uniform
attention distributions for subregions of predefined ROIs with ξ = 0

Method R HMR S D W FA GF LF AR BE GA UA Avg

R-Net
√ √ √

54.9

HMR-Net
√ √ √

55.8

HMR-Net+D
√ √ √ √

56.6

HMR-Net+DW
√ √ √ √ √

57.4

HMR-Net+DWA
√ √ √ √ √ √

58.0

JAA-Net
√ √ √ √ √ √ √ √ √ √

60.0

JAA-Net w/o AR
√ √ √ √ √ √ √ √ √

57.4

JAA-Net w/o BE
√ √ √ √ √ √ √ √ √

59.1

JAA-Net w/o GA
√ √ √ √ √ √ √ √ √ √

57.3

Hierarchical and Multi-scale Region Learning: Comparing the results of
HMR-Net with R-Net, we can observe that our proposed hierarchical and multi-
scale region layer improves the performance of AU detection, since it can adapt
multi-scale AUs and obtain larger receptive fields than the region layer [31]. In
addition to the stronger feature learning ability, the hierarchical and multi-scale
region layer utilizes less parameters. Specifically, except for the common first
convolutional layer, the parameters of R(l1, l2, c1) is (3×3×4c1+1)×4c1×8×8 =
9216c21 +256c1, while the parameters of Rhm(l1, l2, c1) is (3×3×4c1 +1)×2c1 ×
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8×8+(3×3×2c1 +1)×c1×4×4+(3×3×c1 +1)×c1×2×2 = 4932c21 +148c1,
where adding 1 corresponds to the biases of convolutional filters.
Integration of Softmax Loss and Dice Coefficient Loss: By integrating
the softmax loss with the Dice coefficient loss, HMR-Net+D achieves higher F1-
frame result than HMR-Net. This profits from the Dice coefficient loss which
optimizes the network from the perspective of F1-score. Softmax loss is very
effective for classification, but facial AU detection is a binary classification prob-
lem which focuses on both precision and recall.
Weighting of Loss: After weighting the loss of each AU, HMR-Net+DW
attains higher average F1-frame than HMR-Net+D. Benefiting from the weight-
ing to address the data imbalance issue, our method obtains more significant
and balanced performance.
Contribution of Face Alignment to AU Detection: Compared to HMR-
Net+DW, HMR-Net+DWA achieves better result by directly adding the face
alignment task. When integrating the two tasks deeper by combining with the
adaptive attention learning module, our JAA-Net improves the performance with
a larger gap. This demonstrates that the joint learning with face alignment
contributes to AU detection.

Fig. 4. Visualization of attention maps of JAA-Net. The first and third rows show the
predefined attention maps, and the second and fourth rows show the refined attention
maps. Attention weights are visualized with different colors as shown in the color bar
(Color figure online)

Adaptive Attention Learning: In Table 3, JAA-Net w/o AR, JAA-Net w/o
BE, and JAA-Net w/o GA are variants of adaptive attention learning of JAA-
Net. It can be observed that JAA-Net achieves the best performance compared
to other three variants. The predefined attention map of each AU uses fixed
size and attention distribution for subregions of the predefined ROI and ignores
regions beyond the ROI completely, which makes JAA-Net w/o AR fail to adapt
AUs with different scales and exploit correlations among different facial parts.
JAA-Net w/o GA gives predefined ROIs with a uniform initialization, which
makes the constraint of Er more difficult to be traded off with back-propagated
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gradients from Eau. In addition, the performance of JAA-Net w/o BE can be
further improved with the back-propagation enhancement.

The attention maps before and after the adaptive refinement of JAA-Net are
visualized in Fig. 4. The refined attention map of each AU adjusts the size and
attention distribution of the ROI adaptively, where the learned ROI has irregular
shape and integrates smoothly with the surrounding area. Moreover, the low
attentions in other facial regions contribute to exploiting correlations among
different facial parts. With the adaptively localized ROIs, local features with
respect to AUs can be well captured. Although different persons have different
facial shapes and expressions, our JAA-Net can detect the ROI of each AU
accurately and adaptively.

Table 4. Comparison of the results of the mean error and the failure rate of different
methods on BP4D

Method JAA-Net

w/o AU

HMR-Net

+ DWA

JAA-Net

w/o AR

JAA-Net

w/o BE

JAA-Net

w/o GA

JAA-Net

Mean error 12.23 11.86 12.32

9.21

14.14 6.38

Failure rate 66.85 65.84 53.48 34.46 76.04 3.27

Contribution of AU Detection to Face Alignment: Table 4 shows the
results of the mean error and the failure rate of JAA-Net and other variants on
BP4D benchmark. JAA-Net w/o AU denotes the single face alignment task with
the removal of the AU detection. It is seen that JAA-Net achieves the minimum
mean error and failure rate. It can be concluded that the AU detection task is
also conducive to face alignment. Note that the face alignment module can be
replaced with a more powerful one, which could further improve the performance
of both face alignment and AU detection.

5 Conclusions

In this paper, we have developed a novel end-to-end deep learning framework for
joint AU detection and face alignment. Joint learning of the two tasks contributes
to each other by sharing features and initializing the attention maps with the face
alignment results. In addition, we have proposed the adaptive attention learning
module to localize ROIs of AUs adaptively so as to extract better local features.
Extensive experiments have demonstrated the effectiveness of our method for
both AU detection and face alignment. The proposed framework is also promising
to be applied for other face analysis tasks and other multi-task problems.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (No. 61503277 and No. 61472245), the Science and Technology Com-
mission of Shanghai Municipality Program (No. 16511101300), and Data Science &
Artificial Intelligence Research Centre@NTU (DSAIR) and SINGTEL-NTU Cognitive
& Artificial Intelligence Joint Lab (SCALE@NTU).



Joint Facial Action Unit Detection and Face Alignment 739

References

1. Benitez-Quiroz, C.F., Srinivasan, R., Martinez, A.M., et al.: Emotionet: an accu-
rate, real-time algorithm for the automatic annotation of a million facial expres-
sions in the wild. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5562–5570. IEEE (2016)

2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848
(2017)

3. Chu, W.S., De la Torre, F., Cohn, J.F.: Learning spatial and temporal cues for
multi-label facial action unit detection. In: IEEE International Conference on Auto-
matic Face & Gesture Recognition, pp. 25–32. IEEE (2017)

4. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans.
Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

5. Ekman, P., Rosenberg, E.L.: What the Face Reveals: Basic and Applied Studies of
Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford
University Press, USA (1997)

6. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library
for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)

7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

8. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature
embedding. In: ACM International Conference on Multimedia, pp. 675–678. ACM
(2014)

9. Li, W., Abtahi, F., Zhu, Z.: Action unit detection with region adaptation, multi-
labeling learning and optimal temporal fusing. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6766–6775. IEEE (2017)

10. Li, W., Abtahi, F., Zhu, Z., Yin, L.: EAC-Net: A region-based deep enhancing
and cropping approach for facial action unit detection. In: IEEE International
Conference on Automatic Face & Gesture Recognition, pp. 103–110. IEEE (2017)

11. Li, Y., Wang, S., Zhao, Y., Ji, Q.: Simultaneous facial feature tracking and facial
expression recognition. IEEE Trans. Image Process. 22(7), 2559–2573 (2013)

12. Liu, Z., Song, G., Cai, J., Cham, T.J., Zhang, J.: Conditional adversarial synthesis
of 3D facial action units. arXiv preprint arXiv:1802.07421 (2018)

13. Martinez, B., Valstar, M.F., Jiang, B., Pantic, M.: Automatic analysis of facial
actions: a survey. IEEE Trans. Affect. Comput. PP(99), 1 (2017)

14. Mavadati, S.M., Mahoor, M.H., Bartlett, K., Trinh, P., Cohn, J.F.: Disfa: A sponta-
neous facial action intensity database. IEEE Trans. Affect. Comput. 4(2), 151–160
(2013)

15. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: International Conference on 3D
Vision, pp. 565–571. IEEE (2016)

16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: International Conference on Machine Learning, pp. 807–814 (2010)

17. Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: A deep multi-task learning
framework for face detection, landmark localization, pose estimation, and gender
recognition. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)

http://arxiv.org/abs/1802.07421


740 Z. Shao et al.

18. Shao, Z., Ding, S., Zhao, Y., Zhang, Q., Ma, L.: Learning deep representation from
coarse to fine for face alignment. In: IEEE International Conference on Multimedia
and Expo, pp. 1–6. IEEE (2016)

19. Shao, Z., Zhu, H., Hao, Y., Wang, M., Ma, L.: Learning a multi-center convolutional
network for unconstrained face alignment. In: IEEE International Conference on
Multimedia and Expo, pp. 109–114. IEEE (2017)

20. la Torre, F.D., Chu, W.S., Xiong, X., Vicente, F., Ding, X., Cohn, J.: Intraface.
In: IEEE International Conference on Automatic Face & Gesture Recognition,
pp. 1–8. IEEE (2015)

21. Valstar, M., Pantic, M.: Fully automatic facial action unit detection and tempo-
ral analysis. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshop, pp. 149–149. IEEE (2006)

22. Wu, Y., Gou, C., Ji, Q.: Simultaneous facial landmark detection, pose and defor-
mation estimation under facial occlusion. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3471–3480. IEEE (2017)

23. Wu, Y., Ji, Q.: Constrained joint cascade regression framework for simultaneous
facial action unit recognition and facial landmark detection. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3400–3408. IEEE (2016)

24. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face
alignment. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 532–539. IEEE (2013)

25. Zeng, J., Chu, W.S., De la Torre, F., Cohn, J.F., Xiong, Z.: Confidence preserving
machine for facial action unit detection. In: IEEE International Conference on
Computer Vision, pp. 3622–3630. IEEE (2015)

26. Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P.:
A high-resolution spontaneous 3D dynamic facial expression database. In: IEEE
International Conference and Workshops on Automatic Face and Gesture Recog-
nition, pp. 1–6. IEEE (2013)

27. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-
task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014, Part VI. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10599-4 7

28. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face
alignment with auxiliary attributes. IEEE Trans. Pattern Anal. Mach. Intell. 38(5),
918–930 (2016)

29. Zhao, K., Chu, W.S., De la Torre, F., Cohn, J.F., Zhang, H.: Joint patch and multi-
label learning for facial action unit detection. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2207–2216. IEEE (2015)

30. Zhao, K., Chu, W.S., De la Torre, F., Cohn, J.F., Zhang, H.: Joint patch and
multi-label learning for facial action unit and holistic expression recognition. IEEE
Trans. Image Process. 25(8), 3931–3946 (2016)

31. Zhao, K., Chu, W.S., Zhang, H.: Deep region and multi-label learning for facial
action unit detection. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 3391–3399. IEEE (2016)

32. Zhong, L., Liu, Q., Yang, P., Huang, J., Metaxas, D.N.: Learning multiscale active
facial patches for expression analysis. IEEE Trans. Cybern. 45(8), 1499–1510
(2015)

https://doi.org/10.1007/978-3-319-10599-4_7
https://doi.org/10.1007/978-3-319-10599-4_7

	Deep Adaptive Attention for Joint Facial Action Unit Detection and Face Alignment
	1 Introduction
	2 Related Work
	3 JAA-Net for Facial AU Detection and Face Alignment
	3.1 Hierarchical and Multi-scale Region Learning
	3.2 Face Alignment
	3.3 Adaptive Attention Learning
	3.4 Facial AU Detection

	4 Experiments
	4.1 Datasets and Settings
	4.2 Comparison with State-of-the-Art Methods
	4.3 Ablation Study

	5 Conclusions
	References




