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Abstract. Despite the promising results on paired/unpaired image-to-
image translation achieved by Generative Adversarial Networks (GANs),
prior works often only transfer the low-level information (e.g. color or
texture changes), but fail to manipulate high-level semantic meanings
(e.g., geometric structure or content) of different object regions. On the
other hand, while some researches can synthesize compelling real-world
images given a class label or caption, they cannot condition on arbitrary
shapes or structures, which largely limits their application scenarios and
interpretive capability of model results. In this work, we focus on a more
challenging semantic manipulation task, aiming at modifying the seman-
tic meaning of an object while preserving its own characteristics (e.g.
viewpoints and shapes), such as cow→sheep, motor→bicycle, cat→dog.
To tackle such large semantic changes, we introduce a contrasting GAN
(contrast-GAN) with a novel adversarial contrasting objective which is
able to perform all types of semantic translations with one category-
conditional generator. Instead of directly making the synthesized samples
close to target data as previous GANs did, our adversarial contrasting
objective optimizes over the distance comparisons between samples, that
is, enforcing the manipulated data be semantically closer to the real data
with target category than the input data. Equipped with the new con-
trasting objective, a novel mask-conditional contrast-GAN architecture
is proposed to enable disentangle image background with object semantic
changes. Extensive qualitative and quantitative experiments on several
semantic manipulation tasks on ImageNet and MSCOCO dataset show
considerable performance gain by our contrast-GAN over other condi-
tional GANs.
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1 Introduction

Arbitrarily manipulating image content given either a target image, class or
caption has recently attracted a lot of research interests and would advance a
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wide range of applications, e.g. image editing and unsupervised representation
learning. Recent generative models [4,13,15,17,36,42,43,46] have achieved great
progress on modifying low-level content, such as transferring color and texture
from a holistic view. However, these models often tend to ignore distinct semantic
information (e.g. background or objects) conveyed at distinct image regions and
directly render the whole image with one holistic color/texture. This largely lim-
its the application potential of image generation/translation tasks where large
semantic changes (e.g. cat → dog, motor → bicycle) are more appealing and
essential to bridge the gap between high-level concepts and low-level image
processing.

Fig. 1. Some example semantic manipulation results by our model, which takes one
image and the desired object category (e.g. cat, dog) as inputs and then learns to
automatically change the object semantics by modifying their appearance or geometric
structure. We show the original image (left) and manipulated result (right) in each
pair.

On the other hand, compelling conditional image synthesis given a specific
object category (e.g. “bird”) [29,41], a textual description (“a yellow bird with
a black head”) [33], or locations [34] has already been demonstrated using vari-
ants of Generative Adversarial Networks (GANs) [9,32] and Variational Autoen-
coders [10]. However, existing approaches have so far only used fixed and simple
conditioning variables such as a class or location that can be conveniently for-
matted as inputs, but failed to control more complex variables (e.g. shapes and
viewpoints). It is thus desirable to endow the unsupervised generation models
with the interpretive and controllable capability.

In this paper, we take a further step towards image semantic manipula-
tion in the absence of any paired training examples. It not only generalizes
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image-to-image translation research by enabling manipulate high-level object
semantics but also pushes the boundary of controllable image generation research
by retaining intrinsic characteristics conveyed in the original image as much as
possible. Figure 1 shows some example semantic manipulation results by our
model. Our model can successfully change the semantic meaning of the objects
into desired ones, such as cat→dog by manipulating the original shape, geo-
metric or texture of objects in the original image. Note that our model often
manipulates the object shapes and structures of target regions to make them
more likely be the target semantic.

To tackle such large semantic changes, we propose a novel contrasting GAN
(contrast-GAN) in the spirit of learning by comparisons [11,37]. Different from
the objectives used in previous GANs that often directly compare the target val-
ues with the network outputs, the proposed contrast-GAN introduces an adver-
sarial distance comparison objective for optimizing one conditional generator
and several semantic-aware discriminators. This contrasting objective enforces
that the features of synthesized samples are much closer to those of real data
with the target semantic than the input data. In addition, distinguished from
existing GANs [8,26,45,46] that require training distinct generators and discrim-
inators for each type of semantic/style translation, our contrast-GAN only needs
to train one single conditional generator for all types of semantic translations
benefiting from the category-conditional network structure.

In order to transform object semantics while keeping their original charis-
matics as much as possible (e.g. only manipulating animal faces for translating
dog to cat), exploiting the distinct characteristics that depict different object
semantics is thus very critical. Distinguished from the commonly used ranking
loss, the new contrasting objective has two merits: (a) the approximated feature
center by considering a set of randomly selected instances with target semantic,
can statistically learn the crucial characteristics determining each semantic; (b)
The competition between two distance pairs of the desired object with original
features and approximated feature center of target semantic enables to learn
a good balance between semantic manipulation and characteristic-preserving,
leading to a controllable system. Compared to simple object replacement, the
controllable manipulation is critical for some applications (e.g. image editing).
Such competition objective also alleviates the model collapse into average object
appearance, like that other GANs suffer from.

In order to disentangle image background from semantic object regions, we
further propose a novel mask-conditional contrast-GAN architecture for realizing
the attentive semantic manipulation on the whole image by conditioning on
masks of object instances. A category-aware local discriminator is employed to
examine the fidelity and manipulated semantics of generated object regions,
while a whole-image discriminator is responsible for the appearance consistency
of the manipulated object regions and image backgrounds. Note that our model
is general for taking any mask resources as inputs for each image, such as human
specified masks or mask results by any segmentation methods [2,20–23,27,40].
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We demonstrate the promising semantic manipulation capability of the pro-
posed contrast-GAN on labels↔photos on Cityscape dataset [3], apple↔orange
and horse↔zebra on Imagenet [5] and ten challenging semantic manipulation
tasks (e.g. cat↔dog, bicycle↔motorcycle) on MSCOCO dataset [24], as illus-
trated in Fig. 1. We further quantitatively show its superiority compared to
existing GAN models [8,15,26,38,46] on unpaired image-to-image translation
task and more challenging semantic manipulation tasks.

Fig. 2. An overview of the proposed contrast-GAN. cy and cx indicate the object cate-
gories (semantics) of domain X and Y , respectively. Gcy translates samples into domain
Y and Dcy distinguishes between the manipulated result y′ and real ones y, and vice
verse for Gcx and Dcx . (a) shows the original CycleGAN in [46] where separate gen-
erators and discriminators for each mapping are optimized using the cycle-consistency
loss. (b) presents the workflow of our contrast-GAN that optimizes one conditional
generator G and several semantic-aware discriminators D1, D2, . . . , DC , where C is the
total number of object categories. We introduce an adversarial contrasting loss into
GAN that encourages the features fy′ of generated sample y′ are much closer to the
feature center f̄y of target domain Y than those of input x.

2 Related Work

Generative Adversarial Networks (GANs). There have been ever-growing
GAN-family methods since the seminal work by Goodfellow et al. [9]. Impressive
progresses have been achieved on a wide variety of image generation [6,7,29,34,
35,44], image editing [45], text generation [12,18] and conditional image genera-
tion such as text2image [33], image inpainting [30], and image translation [13,19]
tasks. The key to GANs’ success is the variants of adversarial loss that forces
the synthesized images to be indistinguishable from real data distribution. To
handle the well-known mode collapse issue of GAN and make its training more
stable, diverse training objectives have been developed, such as Earth Mover Dis-
tance in WGAN [1], feature matching loss [35], loss-sensitive GAN [31]. However,
unlike existing GAN objectives that seek an appropriate criterion between syn-
thesized samples and target outputs, we propose a tailored adversarial contrast-
ing objective for image semantic manipulation. Our contrast-GAN is inspired
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by the strategy of learning by comparison, that is, aiming to learn the mapping
function such that the semantic features of manipulated images are much closer
to feature distributions of target domain than those of the original domain.

Generative Image-conditional Models. GANs have shown great success on
a variety of image-conditional models such as style transfer [15,39] and general-
purpose image-to-image translation [13]. More recent approaches [25,26,43,46]
have tackled the unpaired setting for cross-domain image translation and also
conducted experiments on simple semantic translation (e.g. horse→zebra and
apple→orange), where only color and texture changes are required. Compared
to prior approaches that only transfer low-level information, we focus on high-
level semantic manipulation on images given the desired category. The unified
mask-controllable contrast-GAN is introduced to disentangle image background
with object parts, comprised by one shared conditional generator and several
semantic-aware discriminators within an adversarial optimization. Our model
can be posed as a general-purpose solution for high-level semantic manipulation,
which can facilitate many image understanding task, such as unsupervised and
semi-supervised activity recognition and object recognition. Inspired by the dual-
GAN [43] and Cycle-GAN [46] that learns the inverse mapping to constrain the
network outputs, we also incorporate the cycle-consistency loss into our contrast-
GAN architecture.

3 Semantic Manipulation with Contrasting GAN

The goal of semantic manipulation is to learn mapping functions for manipu-
lating input images into target domains specified by various object semantics
{ck}Ck=1, where C is the total number of target categories. For each semantic
ck, we have a set of images {Ick}. For notation simplicity, we denote the input
domain as X with semantic cx and output domain as Y with semantic cy in
each training/testing step. As illustrated in Fig. 2, our contrast-GAN learns a
conditional generator G, which takes a desired semantic cy and an input image
x as inputs, and then manipulates x into y′. The semantic-aware adversarial
discriminators Dcy aims to distinguish between images y ∈ Y and manipulated
results y′ = G(x, cy). Our new adversarial contrasting loss forces the represen-
tations of y′ be closer to those of images {y} in target domain Y than those of
input image x.

In the following sections, we first describe our contrast-GAN architecture
and then present the mask-conditional contrast-GAN for disentangling image
background and object semantics.

3.1 Adversarial Contrasting Objective

The adversarial loss introduced in Generative Adversarial Networks (GANs) [9]
consists of a generator G and a discriminator D that compete in a two-player
min-max game. The objective of vanilla GAN is to make the discriminator cor-
rectly classify its inputs as either real or synthetic and the generator synthesize
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images that the discriminator will classify as real. In practice, we can replace
the negative log-likelihood objective by a least square loss [28], which performs
more stable during training and generates higher quality results. Thus, the GAN
objective becomes:

LLSGAN(G,Dcy , cy) = Ey∼pdata(y)[(Dcy (y) − 1)2]

+ Ex∼pdata(x)[Dcy (G(x, cy))2].
(1)

Fig. 3. The proposed mask-conditional contrast-GAN for semantic manipulation by
taking an input image, an object mask and a target category as input. Any segmenta-
tion methods can be used to produce the object masks with input categories.

In this work, in order to tackle large semantic changes, we propose a new
adversarial contrasting objective in the spirit of learning by comparison. Using
a comparative measure of the neural network to learn embedding space was
introduced in the “Siamese network” [11,37] with triple samples. The main idea
is to optimize over distance comparisons between generated samples and those
from the source domain X and target domain Y . We consider the feature rep-
resentation of manipulated result y′ should be closer to those of real data {y}
in target domain Y than that of x in input domain X under the background of
object semantic cy. Formally, we can produce semantic-aware features by feed-
ing the samples into Dcy , resulting in fy′ for y′ served as an anchor sample,
fx for the input x as a contrasting sample and {fy}N for samples {y}N in the
target domain as positive samples. Note that, at each training step, we compare
the anchor fy′ with the approximated feature center f̄y computed as the aver-
age of all features {fy}N rather than that of one randomly sampled y in each
step, in order to reduce model oscillation. The generator aims to minimize the
contrasting distance Q(·):

Q(fy′ , fx, f̄y) = − log
e−||fy′ −f̄y||2

e−||fy′−f̄y||2 + e−||fy′−fx||2 . (2)

Similar to the target of Dcy(y) in Eq.(1) that tries to correctly classify its
inputs as either real or fake, our discriminator aims to maximize the contrasting
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distance Q(fy′ , fx, f̄y). The adversarial contrasting objective for GAN can be
defined as:

Lcontrast(G,Dcy , cy) = Ey∼pdata(y),x∼pdata(x)

[Q(Dcy (G(x, cy)),Dcy (x),Dcy ({y}))].
(3)

To further reduce the space of possible mapping functions by the conditional
generator, we also use the cycle-consistency loss in [46] which constrains the
mappings (induced by the generator G) between two object semantics should
be inverses of each other. Notably, different from [46] which used independent
generators for each domain, we use a single shared conditional generator for all
domains. The cycle objective can be defined as:

Lcycle(G, cy, cx) = Ex∼pdata(x) [||G(G(x, cy), cx) − x||1]. (4)

Therefore, our full objective is computed by combining Eqs. (1), (3) and (4):

Lcontrast-GAN(G,Dcy , cy) = Lcontrast(G,Dcy , cy)
+λLLSGAN(G,Dcy , cy) + βLcycle(G, cy, cx),

(5)

where λ and β control the relative importance of the objectives. G tries to
minimize this objective against a set of adversarial discriminators {Dcy} that try
to maximize them, i.e. G∗ = arg minG( 1

C

∑
cy

maxDcy
Lcontrast-GAN(G,Dcy , cy)).

Our extensive experiments show that each of objectives plays a critical role in
arriving at high-quality manipulation results.

3.2 Mask-Conditional Contrast-GAN

Figure 3 shows a sketch of our model, which starts from an input image x, an
object mask M and target category cy and outputs the manipulated image. Note
that the whole model is fully differential for back-propagation. For clarity, the
full cycle architecture (i.e. the mapping y′ → x̂ via G(y, cx)) is omitted. Below
we walk through each step.

First, a masking operation and subsequent spatial cropping operation are
performed to obtain the object region with the size of 128×128. The background
image is calculated by functioning the inverse mask map on an input image. The
object region is then fed into several convolutional layers to get 16 × 16 feature
maps with 512 dimension. Second, we represent the target category cy using a
one-hot vector which is then passed into a linear layer to get a feature embedding
with 64 dimension. This feature is replicated spatially to form a 16 × 16 × 64
feature maps, and then concatenated with image feature maps via the depth
concatenation. Third, several deconvolution layers are employed to obtain target
region with 128 × 128. We then wrap the manipulated region back into the
original image resolution, which is then combined with the background image
via an additive operation to get the final manipulated image. We implement the
spatial masking and cropping modules using spatial transformers [14].

To enforce the semantic manipulation results be semantically consistent with
both the target semantic and the background appearance of the input image,
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Fig. 4. Result comparison by our contrast-GAN with CycleGAN [46] for translating
orange→apple (first row) and apple→orange (second row) on ImageNet, which demon-
strates the advantage of leveraging adversarial contrasting objective in GAN.

we adopt both local discriminators {Dcy} defined in our contrast-GAN and a
global image discriminator DI . Each local discriminator Dcy is responsible for
verifying whether the high-level semantic of outputs is semantically coherent
with the input target while the global one DI evaluates the visual fidelity of
the whole manipulated image. The global discriminator DI takes the combined
image of the transformed regions and background, and randomly sampled image
as inputs, then employ the same patch-level network as local discriminator, which
is jointly trained with local discriminators.

3.3 Implementation Details

Network Architecture. To make a fair comparison, We adopt similar architec-
tures from [46] which have shown impressive results for unpaired image transla-
tion. This generator contains three stride-2 convolutions, six residual blocks, and
three fractionally stridden convolutions. For the architecture of mask-conditional
contrast-GAN in Fig. 3, the residual blocks are employed after concatenating
convolutional feature maps with maps of the target category. In terms of the
target category input for generator G, we specify a different number of cate-
gories C for each dataset, such as C = 10 for ten semantic manipulation tasks
on MSCOCO dataset. We use the same patch-level discriminator used in [46]
for local discriminators {Dcy} and the global discriminator DI . By using the
patch-level discriminator network, f(y) is a vector with 14*14 dimension.

Training Details. To compute the approximate feature center f̄y in Eq.(2)
for the contrasting objective, we keep an image buffer with randomly selected
N = 50 samples in target domain Y . For all the experiments, we set λ = 10
and β = 10 in Eq. (5) to balance each objective. We use the Adam solver [16]
with a batch size of 1. All networks were trained from scratch and trained with a
learning rate of 0.0002 for the first 100 epochs and a linearly decaying rate that
goes to zero over the next 100 epochs. Our algorithm only optimizes over one
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conditional generator and several semantic-aware discriminators for all kinds of
object semantics. All models are implemented on Torch framework.

Table 1. Comparison of FCN-scores on Cityscapes labels→photos.

Method Per-pixel acc. Per-class acc. Class IOU

CoGAN [26] 0.40 0.10 0.06

BiGAN [8] 0.19 0.06 0.02

Pixel loss + GAN [38] 0.20 0.10 0.0

Feature loss + GAN [15] 0.07 0.04 0.01

CycleGAN [46] 0.52 0.17 0.11

Contrast alone 0.53 0.13 0.12

Contrast + classify 0.55 0.15 0.11

Contrast + Cycle 0.57 0.22 0.13

Contrast-GAN (separate G) 0.57 0.22 0.17

Contrast-GAN (ours) 0.58 0.21 0.16

4 Experiments

4.1 Experimental Settings

Datasets. First, we quantitatively compare the proposed contrast-GAN against
recent state-of-the-arts on the task of labels↔photos on the Cityscape dataset [3].
The labels↔Photos dataset uses images from Cityscape training set for train-
ing and validation set for testing. Following [46], we use the unpaired setting
during training and the ground truth input-output pairs for evaluation. Sec-
ond, we compare our contrast-GAN with CycleGAN [46] on unpaired trans-
lation, evaluating on the task of horse↔zebra and apple↔orange from Ima-
geNet. The images for each class are downloaded from ImageNet [5] and scaled
to 128×128, consisting of 939 images for the horse, 1177 for zebra, 996 for apple
and 1020 for orange. Finally, we apply contrast-GAN into ten more challenging
semantic manipulation tasks, i.e. dog↔cat, cow↔sheep, bicycle↔motorcycle,
horse↔giraffe, horse↔zebra. To disentangle image background with the object
semantic information, we test the performance of mask-conditional architecture.
The mask annotations for each image are obtained from MSCOCO dataset [24].
For each object category, the images in MSCOCO train set are used for train-
ing and those in MSCOCO validation set for testing. The output realism of
manipulated results by different methods is quantitatively compared by AMT
perception studies described below.

Evaluation Metrics. We adopt the “FCN score” from [13] to evaluate
Cityscapes labels→photo task, which evaluates how interpretable the gener-
ated photos are according to an off-the-shelf semantic segmentation algorithm.
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Table 2. Comparison of classification performance on Cityscapes photos→ labels
dataset.

Method Per-pixel acc Per-class acc Class IOU

CoGAN [26] 0.45 0.11 0.08

BiGAN [8] 0.41 0.13 0.07

Pixel loss + GAN [38] 0.47 0.11 0.07

Feature loss + GAN [15] 0.50 0.10 0.06

CycleGAN [46] 0.58 0.22 0.16

Contrast alone Contrast + classify 0.55 0.13 0.11

Contrast + Cycle 0.60 0.19 0.15

Contrast-GAN (separate G) 0.60 0.23 0.17

Contrast-GAN (ours) 0.61 0.23 0.18

To evaluate the performance of photo→labels, we use the standard “semantic
segmentation metrics” from Cityscapes benchmark, including per-pixel accu-
racy, per-class accuracy, and mean class Intersection-Over-Union [3]. For seman-
tic manipulation tasks on ImageNet and MSCOCO datasets (e.g. cat→dog), we
run real vs.fake AMT perceptual studies to compare the realism of outputs from
different methods under the background of a specific object semantic (e.g. dog),
similar to [46]. For each semantic manipulation task, we collect 10 annotations
for randomly selected 100 manipulated images by each method and all methods
perform manipulation results on the same set of images.

4.2 Result Comparisons

Labels↔photos on Cityscape. Tables 1 and 2 report the performance com-
parison on the labels→photos task and photos→labels task on Cityscape, respec-
tively. In both cases, the proposed contrast-GAN with a new adversarial con-
trasting objective outperforms the state-of-the-arts [8,15,26,38,46] on unpaired
image-to-image translation. Note that we adopt the same baselines [8,15,26,38]
for fair comparison in [46].

Apple ↔orange and horse↔zebra on ImageNet. Figure 4 shows some
example results by the baseline CycleGAN [46] and our contrast-GAN on the
apple↔orange semantic manipulation. It can be seen that our method success-
fully transforms the semantic of objects while CycleGAN only tends to modify
low-level characteristics (e.g. color and texture). We also perform real vs. fake
AMT perceptual studies on both apple↔orange and horse↔zebra tasks. Our
contrast-GAN can fool participants much better than CycleGAN [46] by com-
paring the number of manipulated images that Turkers labeled real, that is
14.3% vs 12.8% on average for apple↔orange and 10.9% vs 9.6% on average for
horse↔zebra.
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Fig. 5. Result comparison between our mask contrast-GAN with mask CycleGAN [46]
for translating dog→cat and cat→dog on the MSCOCO dataset with provided object
masks. It shows the superiority of adversarial contrasting objectiveness over the objec-
tiveness used in CycleGAN [46].

4.3 Semantic Manipulation Tasks on MSCOCO

We further demonstrate the effectiveness of our method on ten challenging
semantic manipulation applications with large semantic changes.

Contrasting objective vs. other GAN objectives. Figure 5 visualizes the
comparisons of our mask-conditional architecture using cycle-consistency loss
in [46] and our contrasting objective, that is, mask CycleGAN vs mask contrast-
GAN. The baseline method often tries to translate very low-level information
(e.g. color changes) and fails to edit the shapes and key characteristic (e.g.
structure) that truly convey a specific high-level object semantic. However, our
contrast-GAN tends to perform trivial yet critical changes on object shapes and
textures to satisfy the target semantic while preserving the original object char-
acteristics. In Table 3, we report quantitative comparison results with the state-
of-the-art CoGAN [26], BiGAN [8] and CycleGAN [46] on the AMT perceptual
realism measure for eight semantic manipulation tasks. It can be observed that
our method substantially outperforms the baseline on all tasks, especially on
those requiring large semantic changes (e.g. cat↔dog and bicycle↔motorcycle).
In Fig. 6, we show more qualitative results. Our model shows the promising
capability of manipulating object semantics while retaining original shapes, view-
points, and interactions with the background.
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Fig. 6. Example results by our mask contrast-GAN for manipulating a variety of object
semantics on MSCOCO dataset. For each image pair, we show the original image (left)
and manipulated image (right) by specifying a desirable object semantic.

4.4 The Effectiveness of Mask-Conditional Architecture

As observed from Fig. 7, the original GAN networks often renders the whole
image with the target texture and ignores the particular image content at differ-
ent locations/regions. It may result in wrongly translating the unrelated objects
(e.g. person, building) and background as the stripe texture in the horse→zebra
case. On the contrary, our mask-conditional framework shows appealing results
with the capability of selectively manipulating objects of interest (e.g. horse) into
the desired semantic (e.g. zebra). It should be noted that our mask-conditional
is general enough that can support any mask resources, e.g. human-provided
masks and segmentation regions produced by any segmentation methods [2].

4.5 The Effectiveness of Each Objective

In Tables 1 and 2, we report the results by different variants of our full model on
Cityscape labels↔photos task. “Contrast alone” indicates the model only uses
Lcontrast as the final objective in Eq.(5) while “Contrast + classify” represents the
usage of combining of Lcontrast and LLSGAN as the final objective. “Contrast +
cycle” is the variant that removes LLSGAN. CycleGAN [46] can also be regarded
as one simplified version of our model that removes the contrasting objective.
Table 3 shows the ablation studies on mask-conditional semantic manipulation
tasks on MSCOCO dataset. It can be seen that “Contrast alone” and “Mask
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Table 3. Result comparison of AMT perception test on eight mask-conditional
semantic-manipulation tasks on the MSCOCO dataset. The numbers indicate % images
that Turkers labeled real.

Method cat→dog dog→cat bicycle→motor motor→bicycle

Mask CoGAN [26] 1.1% 2.0% 7.6% 12.1%

Mask BiGAN [8] 1.9% 2.1% 8.2% 11.4%

Mask CycleGAN [46] 2.5% 4.1% 10.9% 15.6%

Mask Contrast alone 3.7% 5.0% 9.3% 13.1%

Mask Contrast-GAN w/o

DI

4.3% 6.0% 12.8% 15.7%

Mask Contrast-GAN (gt) 4.8% 6.2% 13.0% 16.7%

Mask Contrast-GAN

(predict)

4.5% 6.5% 13.1% 15.8%

Method horse→ giraffe giraffe→ horse cow→sheep sheep→cow

Mask CoGAN [26] 0.1% 0.9% 11.2% 15.3%

Mask BiGAN [8] 1.2% 1.5% 12.5% 16.8%

Mask CycleGAN [46] 1.5% 2.3% 16.3% 18.9%

Mask Contrast alone 1.6% 1.8% 17.1% 15.5%

Mask Contrast-GAN w/o

DI

1.9% 4.5% 18.3% 19.1%

Mask Contrast-GAN (gt) 1.9% 5.4% 18.7% 20.5%

Mask Contrast-GAN

(predict)

1.7% 6.3% 18.9% 21.6%

Contrast alone” achieve comparable results with the state-of-the-arts. Removing
the original classification-like objective LLSGAN degrades results compared to our
full model, as does removing the cycle-consistency objective LCycle. Therefore,
we can conclude that all three objectives are critical for performing the semantic
manipulation. LLSGAN can be complementary with our contrasting objective
Lcontrast on validating the visual fidelity of manipulated results. We also validate
the advantage of using an auxiliary global discriminator DI by comparing “Mask
Contrast-GAN w/o DI” and our full model in Table 3.

4.6 One Conditional Generator vs. Separate Generators

Note that instead of using separate generators for each semantic as in previous
works [8,15,26,38,46], we propose to employ a conditional generator shared for
all object semantics. Using one conditional generator has two advantages: first,
it can lead to more powerful and robust feature representation by learning over
more diverse samples of different semantics; second, the model size can be effec-
tively reduced by only feeding different target categories as inputs to achieve
different semantic manipulations. Tables 1 and 2 also report the results of using
separate generators for each semantic task in our model, that is, “Contrast-
GAN (separate G)”. We can see that our full model using only one conditional
generator shows slightly better results than “Contrast-GAN (separate G)”.
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Fig. 7. Result comparisons between our mask contrast-GAN with CycleGAN [46] for
translating horse→zebra and zebra→horse on the MSCOCO dataset. It shows the
effectiveness of incorporating object masks to disentangle image background and object
semantics.

4.7 The Effect of Different Mask Resources

Our mask-conditional architecture is able to manipulate any input images by
firstly obtaining rough object masks of input categories using any segmenta-
tion methods [2], which is demonstrated by comparing “Mask Contrast-GAN
(predict)” with “Mask Contrast-GAN (gt)” in Table 3. “Mask Contrast-GAN
(predict)” indicates the results of using predicted masks by the segmentation
model [2] as the network input. We can observe that no significant difference in
visualization quality of manipulated images can be observed. The reason is that
our model only needs a rough localization of objects with input categories and
then generates the manipulated regions with new shapes and structures condi-
tioned on the input object regions. Thus the inaccurate input masks will not
significantly affect the manipulation performance.

5 Discussion and Future Work

This paper presents a novel adversarial contrasting objective and mask-
conditional architecture, which together achieve compelling results in many
semantic manipulation tasks. However, it still shows unsatisfactory results for
some cases which require very large geometric changes, such as car↔truck and
car↔bus. Integrating spatial transformation layers for explicitly learning pixel-
wise offsets may help resolve very large geometric changes. To be more general,
our model can be extended to automatically learned attentive regions via atten-
tion modeling. This paper pushes forward the research of unsupervised setting by
demonstrating the possibility of manipulating high-level object semantics rather
than the low-level color and texture changes as previous works did. In addition,
it would be more interesting to develop techniques that are able to manipulate
object interactions and activities in images/videos.
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