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Abstract. In video captioning task, the best practice has been achieved
by attention-based models which associate salient visual components
with sentences in the video. However, existing study follows a com-
mon procedure which includes a frame-level appearance modeling and
motion modeling on equal interval frame sampling, which may bring
about redundant visual information, sensitivity to content noise and
unnecessary computation cost. We propose a plug-and-play PickNet to
perform informative frame picking in video captioning. Based on a stan-
dard encoder-decoder framework, we develop a reinforcement-learning-
based procedure to train the network sequentially, where the reward of
each frame picking action is designed by maximizing visual diversity
and minimizing discrepancy between generated caption and the ground-
truth. The rewarded candidate will be selected and the corresponding
latent representation of encoder-decoder will be updated for future tri-
als. This procedure goes on until the end of the video sequence. Conse-
quently, a compact frame subset can be selected to represent the visual
information and perform video captioning without performance degra-
dation. Experiment results show that our model can achieve competitive
performance across popular benchmarks while only 6–8 frames are used.

1 Introduction

Human are born with the ability to identify useful information and filter redun-
dant information. In biology, this mechanism is called sensory gating [6], which
describes neurological processes of filtering out unnecessary stimuli in the brain
from all possible environmental stimuli, thus prevents an overload of redundant
information in the higher cortical centers of the brain. This cognitive mechanism
is essentially consistent with a huge body of researches in computer vision [13].

As one of the strong evidences practicing on visual sensory gating, atten-
tion is introduced to identify the salient visual regions with high objectness and
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meaningful visual patterns of an image [21,48]. It has also been established on
videos that contains consecutive image frames. Existing study follows a common
procedure which includes a frame-level appearance modeling and motion model-
ing on equal interval frame sampling, say, every 3 frames or 5 frames [29]. Visual
features and motion features are extracted on the selected frame subset one by
one, and they are all fed into the learning stage. Similar to image, the video
attention is recognized as a spatial-temporal saliency that identifies both salient
objects and their motion trajectories [27]. It is also recognized as the word-frame
association learned by sparse coding [41] or gaze-guided attention learning [45],
which is a de-facto frame weighting mechanism. This mechanism also benefits
many downstream tasks such as visual captioning and visual question answering
for image and video [12,20,43].

Fig. 1. An illustration of the tempo-
ral redundancy in video. Video always
contains many redundant information.
The whole video can be represented by
a small portion of frames (b), while
equally sampled frames still contain
redundant information (a).

Fig. 2. The best METEOR score on
the validation set of MSVD and MSR-
VTT when using different number of
equally sampled frames. The standard
encoder-decoder model is used to gen-
erate captions.

Despite of the success on bridging vision and language achieved by exist-
ing attention-based methods, there still exists critical issues to be addressed as
follows.

– Frame Selection Perspective. As shown in Fig. 1(a), there are many frames
with duplicated and redundant visual appearance information selected with
equal interval frame sampling. This will also involve remarkable computation
expenditures and less performance gain as the information from the input is not
appropriately sampled. For example, it takes millions of floating point calcu-
lation to extract a frame-level visual feature for a moderate-sized CNN model.
Moreover, there is no guarantee that all the frames selected by equal interval
sampling contain meaningful information, so it tends to be more sensitive to
content noise such as motion blur, occlusion and object zoom-out.
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– Downstream Video Captioning Task Perspective. Previous attention-
based models mostly identify the spatial layout of visual saliency, but the
temporal redundancy existing in neighboring frames remains unsolved as all
the frames are taken into consideration. This may lead to an unexpected infor-
mation overload on the visual-linguistic correlation analysis model. For exam-
ple, the dense-captioning-based strategy [14,17,27] can potentially describe
images/videos in finer levels of detail by captioning many visual regions within
an image/video-clip. With an increasing number of frames, many highly simi-
lar visual regions will be generated and the problem will become prohibitive as
the search space of sequence-to-sequence association becomes extremely large.
We have conducted a preliminary study to investigate how many frames is
enough for video captioning on two benchmarks. As shown in Fig. 2, using
more frames may not always lead to better performance, since sampling more
frames may be prone to contain noisy information, and makes the training
procedure more difficult.

– Human Perception Perspective. The vision-to-language technique can
be applied to depict ambient information for human, such as describing the
road conditions through voice broadcast for drivers. Based on existing video
captioning methods, a naive way for generating such descriptions for endless
visual streaming is to sample frames in every fixed time interval. However,
it is problematic to determine an appropriate interval. If the interval is too
long, some useful information may be missed and lead to wrong description. If
the interval is too short, repeated descriptions will be generated as the visual
content may not change largely, which is annoying for drivers as they focus
on the change of surroundings. Therefore, it is necessary to explore a more
appropriate strategy to capture informative frames and produce meaningful
descriptions.

To deal with the above issues, we propose PickNet to perform informa-
tive frame picking for video captioning. Specifically, the base model for visual-
linguistic association in video captioning is a standard encoder-decoder frame-
work [2]. We develop a reinforcement-learning-based procedure to train the net-
work sequentially, where the reward of each frame picking action is designed by
considering both visual and textual cues. From visual perspective, we maximize
the diversity between current picked frame candidate and the selected frames.
From textual perspective, we minimize the discrepancy between the generated
caption and the ground truth using current picked candidate. The rewarded can-
didate will be selected and the corresponding latent representation of encoder-
decoder will be updated for future trials. This procedure goes on until the end of
the video sequence. Consequently, a compact frame subset can be selected to rep-
resent the visual information and perform video captioning without performance
degradation.

To the best of our knowledge, this is the first study on online task-driven
frame selection for video captioning. Different from the previous work [46] that
summarizing the video before video captioning, our method selects frames under
partially observed settings and do not need any auxiliary annotation or
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information. It is very essential for real-world applications, since the video sum-
marization annotations are subjective and expensive, and there is no trimmed
video to summarize in real-world applications, but only endless visual streams.
In fact, our framework can go beyond the encoder-decoder framework in video
captioning task, and serves as a complementary building block for other state-
of-the-art solutions. It can also be adapted by other task-specific objectives for
video analysis. In summary, the merits of our PickNet include:

– Flexibility. We design a plug-and-play reinforcement-learning-based PickNet
to pick informative frames for video captioning. A compact frame subset can
be selected to represent the visual information and perform video captioning
without performance degradation.

– Efficiency. The architecture can largely cut down the usage of convolution
operations. It makes our method more applicable for real-world video pro-
cessing.

– Effectiveness. Experiment shows that our model can achieve comparable
or even better performance compared to state-of-the-art while only a small
number of frames are used.

2 Related Works

2.1 Visual Captioning

The visual captioning is the task translating visual contents into natural lan-
guage. Early to 2002, Kojima et al. [16] proposed the first video captioning sys-
tem for describing human behavior. From then on, a series of image and video
captioning studies have been conducted. Early approaches tackle this problem
using bottom-up paradigm [8,9,18,40], which first generate descriptive words
of an image by attribute learning and object recognition, then combine them
by language models which fit predicted words to predefined sentence templates.
With the development of neural networks and deep learning, modern captioning
systems are based on CNN, RNN and the encoder-decoder architecture [35,36].

An active branch of captioning is utilizing the attention mechanism to weigh
the input features. For image captioning, the mechanism is typically in the form
of spatial attention. Xu et al. [39] first introduced an attention-based model
that automatically learn to fix its gaze on salient objects while generating the
corresponding words in the output sequence. For video captioning, the temporal
attention is added. Yao et al. [41] took into account both the local and global
temporal structure of videos to produce descriptions, and their model is learned
to automatically select the most relevant temporal segments given the text-
generating RNN. However, the attention-based methods, especially temporal
attention, are operated on full observed condition, which is not suitable in some
real world applications, such as blind navigation. Our method do not require the
global information of videos, which is more effective in these applications.
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2.2 Frame Selection

Selecting informative video frames is the most studied in the field of video sum-
marization. This problem may be formulated as image searching. For example,
Song et al. [32] considered images related to the video title that can serve as
a proxy for important visual concepts, so they developed a co-archetypal anal-
ysis technique that learns canonical visual concepts shared between video and
images, and used it to summarize videos. Other researchers use sparse learning
to deal with this problem. Zhao et al. [47] proposed to learn a dictionary from
given video using group sparse coding, and the summary video was then gen-
erated by combining segments that cannot be sparsely reconstructed using the
learned dictionary.

Some video analysis task cooperates with frame selection mechanism. For
example, in action detection, Yeung et al. [42] designed a policy network to
directly predict the temporal bounds of actions, which decreased the cost of
processing the whole video, and improved the detection performance. However,
the prediction made by this method is in the form of normalized global position,
which requires the knowledge of the video length, making it unable to deal with
real video streams. Different from the above methods, our model selects frames
based on both semantic and visual information, and does not need to know the
global length of video.

3 Method

Our method can be viewed as inserting the play-and-plug PickNet into the stan-
dard encoder-decoder for video captioning. The PickNet sequentially picks infor-
mative frames to generate a compact frame subset which properly represent the
visual information of input video. And the encoder-decoder uses this subset to
generate sentence description about the video.

3.1 Preliminary

Like most of video captioning methods, our model is built on the encoder-
decoder-based sentence generator. In this subsection, we briefly introduce this
building block.

Encoder. Given an input video, we use a recurrent video encoder which takes
a sequence of visual features (x1,x2, . . . ,xn) as input and outputs a fixed size
vector v as the representation of this video. The encoder is built on top of a
Long Short-Term Memory (LSTM) [11] unit, which has been widely used for
video encoding, since it is known to properly deal with long range temporal
dependencies. Different from vanilla recurrent neural network unit, LSTM intro-
duces a memory cell c which maintains the history of the inputs observed up to
a time-step. The update operations on memory cell are controlled by input gate
it that controls how the current input should be added into memory cell, forget
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Fig. 3. The encode-decode procedure
for video captioning.

Fig. 4. The PickNet uses the flattened
difference gray-scale image as input
and produces a Bernoulli distribution
to indicate picking the current frame
or not.

gate ft that controls what the current memory cell ct will forget from the pre-
vious memory ct−1, and output gate ot that controls how the current memory
cell should be passed as output. These gates all take the combination of the
frame feature xt and the previous hidden state ht−1 as input, and the sigmoid
activation is used to avoid gradient vanishing or exploding. The hidden state h
and memory cell c are initialized to zero vector. And the last hidden state hT

is used as the final encoded video representation v.

Decoder and Sentence Generation. Once the representation of the video
has been generated, the recurrent decoder can employ it to generate the cor-
responding description. At every time-step of the decoding phase, the decoder
unit uses the encoded vector v, previous generated one-hot representation word
wt−1 and previous internal state pt−1 as input, and outputs a new internal state
pt. Like [2], our decoder unit is the Gated Recurrent Unit (GRU) [5], a simpli-
fied version of LSTM, which is good at language decoding. The output of GRU
is modulated via two sigmoid gates: a reset gate rt which determines how the
previous internal state should be dropped to generate the next outputs, and an
update gate zt which controls how much information of the previous internal
state should be preserved. A softmax function is applied on pt to compute the
probability of producing certain word at current time-step:

pω(wt|wt−1,wt−2, ...,w1,v) = wT
t softmax(Wppt), (1)

where Wp is used to project the output of the decoder to the dictionary space
and ω denotes all parameters of the encoder-decoder. Also, the internal state
p is initialized to zero vector. We use the greedy decode routine to generate
every word. It means that at every time-step, we choose the word that has the
maximal pω(wt|wt−1,wt−2, ...,w1,v) as the current output word. Specifically,
we use a special token <BOS> as w0 to start the decoding, and when the decoder
generates another special token <EOS>, the decoding procedure is terminated.
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Fig. 5. A typical frame picking and encoding procedure of our framework. F denotes
PickNet. E is the encoder unit and v is the encoded video representation. The design
choice is the balance between processing time and computation cost. The system can
simultaneously extract convolutional features and decide whether to pick the frame
or not at each time-step. If it decides not to pick the frame at certain time-step, the
convolutional neural network can stop early to save computation cost.

3.2 Our Approach

Architecture. The PickNet aims to select informative video content without
knowing the global information. It means that the pick decision can only be
based on the current observation and the history, which makes it more difficult
than video summarization tasks. The more challenging issue is, we do not have
supervision information to guide the learning of PickNet in video captioning
tasks. Therefore, we formulate the problem as a reinforcement learning task,
i.e., given an input image sequence sampled from a video, the agent should
select a subset of them under certain policy to retain video content as much as
possible. Here, we use PickNet to produce the picking policy. Figure 4 shows the
architecture of PickNet.

Considering the computation efficiency, we use a simple two-layer feedforward
neural network as the prototype of PickNet. The network has two outputs, which
indicate the probabilities to pick or drop the current observed frame. We model
the frame picking process as the glance-and-compare operation. For each input
frame zt, we first convert the colored image into grayscale image, and then resize
it into a smaller image gt, which can be viewed as a “glance” of current frame.
Then we subtract the current glance gt by the glance of the last picked frame
g̃, to get a grayscale difference image dt; this can be seen as the “compare”.
Finally we flatten the 2D grayscale difference image into a 1D fixed size vector,
and feed it to PickNet to produce a Bernoulli distribution that the pick decision
is sampled from:

st = W2(max(W1vec(dt) + b1,0)) + b2 (2)

pθ(at|zt, g̃) ∼ softmax(st), (3)

where W∗ are learned weight matrices and b∗ are learned bias vectors.
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During training, we use stochastic policy, i.e., the action is sampled according
to Equation (3). When testing, the policy becomes determined, hence the action
with higher probability is chosen. If the policy decides to pick the current frame,
the frame feature will be extracted by a pretrained CNN and embedded into
a lower dimension, then passed to the encoder unit, and the template will be
updated: g̃ ← gt.

We force PickNet to pick the first frame, thus the encoder will always process
at least one frame, which makes the training procedure more robust. Figure 5
shows how PickNet works with the encoder. It is worth noting that the input of
PickNet can be of any other forms, such as the difference between optical flow
maps, which may handle the motion information more properly.

Rewards. The design of rewards is very essential to reinforcement learning. For
the purpose of picking informative video frames, we consider two parts for the
reward: the language reward and visual diversity reward.

Language Reward. First of all, the picked frames should contain rich semantic
information, which can be used to effectively generate language description. In
the video captioning task, it is natural to use the evaluated language metrics as
the language reward. Here, we choose CIDEr [33] score. Given a set of picked
frames Vi for video vi and a collection of human generated reference sentences
Si = {sij}, the goal of CIDEr is to measure the similarity of the machine gen-
erated sentence ci to a majority of how most people describe the video. So the
language reward rl is defined as:

rl(Vi, Si) = CIDEr(ci, Si) (4)

Visual Diversity Reward. Also, we want the picked frames that have good
diversity in visual features. Using only language reward may miss some impor-
tant visual information, so we introduce the visual diversity reward rv. For all
the selected frame features {xk ∈ R

D}, we use the pairwise cosine distance to
construct the visual diversity reward:

rv(Vi) =
2

Np(Np − 1)

Np−1∑

k=1

Np∑

m>k

(1 − xT
k xm

‖xk‖2‖xm‖2 ), (5)

where Np is the number of picked frames, ‖ · ‖2 is the 2-norm of a vector.

Picks Limitation. If the number of picked frames is too large or too small, it
may lead to poor performances in either efficiency or effectiveness. So we assign
a negative reward to discourage this situations. Empirically, we set the minimum
picked number Nmin as 3, which stands for beginning, highlight and ending. The
maximum picked number Nmax is initially set as the 1

2 of total frame number,
and will be shrunk down along with the training process, until decreased to a
minimum value τ .
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In summary, we merge the two parts of reward, and the final reward can be
written as

r(Vi) =

{
λlrl(Vi, Si) + λvrv(Vi) if Nmin ≤ Np ≤ Nmax

R− otherwise,
(6)

where λ∗ is the weighting hyper-parameters and R− is the penalty.

3.3 Training

The training procedure is splitted into three stages. The first stage is to pretrain
the encoder-decoder. We call it supervision stage. In the second stage, we fix
the encoder-decoder and train PickNet by reinforcement learning. It is called
reinforcement stage. And the final stage is the joint training of PickNet and the
encoder-decoder. We call it adaptation stage. We use standard back-propagation
to train the encoder-decoder, and REINFORCE [37] to train PickNet.

Supervision Stage. When training the encoder-decoder, traditional method
maximizes the likelihood of the next ground-truth word given previous ground-
truth words using back-propagation. However, this approach causes the exposure
bias [25], which results in error accumulation during generation at test time, since
the model has never been exposed to its own predictions. In order to alleviate
this phenomenon, the schedule sampling [3] procedure is used, which feeds back
the model’s own predictions and slowly increases the feedback probability during
training. We use SGD with cross entropy loss to train the encoder-decoder. Given
the ground-truth sentences y = (y1,y2, . . . ,ym), the loss is defined as:

LX(ω) = −
m∑

t=1

log(pω(yt|yt−1,yt−2, . . .y1,v)), (7)

where pω(yt|yt−1,yt−2, . . .y1,v) is given by the parametric model in Equa-
tion (1).

Reinforcement Stage. In this stage, we fix the encoder-decoder and treat it
as the environment, which can produce language reward to reinforce PickNet.
The goal of training is to minimize the negative expected reward:

LR(θ) = −E [r(Vi)] = −Eas∼pθ
[r(as)] , (8)

where θ denotes all parameters of PickNet, pθ is the learned policy parameterized
by Eq. (3), and as = (as

1, a
s
2, . . . , a

s
T ) is the action sequence, in which as

t is the
action sampled from the learned policy at the time step t. s is a superscript to
indicate a certain sampling sequence. as

t = 1 means frame t will be picked. The
relation between Vi and as is:

Vi = {xt|as
t = 1 ∧ xt ∈ vi}, (9)

i.e., Vi are the picked frames from input video vi following the action sequence
as.
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We train PickNet by using REINFORCE algorithm, which is based on the
observation that the gradient of a non-differentiable expected reward can be
computed as follows:

∇θLR(θ) = −Eas∼pθ
[r(as)∇θ log pθ(as)] . (10)

Using the chain rule, the gradient can be rewritten as:

∇θLR(θ) =
n∑

t=1

∂LR(θ)
∂st

∂st

∂θ
=

n∑

t=1

−Eas∼pθ
r(as)(pθ(as

t ) − 1as
t
)
∂st

∂θ
, (11)

where st is the input to the softmax function. In practice, the gradient can be
approximated using a single Monte-Carlo sample as = (as

1, a
s
2, . . . , a

s
n) from pθ:

∇θLR(θ) ≈ −
n∑

t=1

r(as)(pθ(as
t ) − 1as

t
)
∂st

∂θ
. (12)

When using REINFORCE to train the policy network, we need to estimate a
baseline reward b to diminish the variance of gradients. Here, the self-critical [26]
strategy is used to estimate b. In brief, the reward obtained by current model
under inferencing used at test stage, denoted as r(â), is treated as the baseline
reward. Therefore, the final gradient expression is:

∇θLR(θ) ≈ −(r(as) − r(â))
n∑

t=1

(pθ(as
t ) − 1as

t
)
∂st

∂θ
. (13)

Adaptation Stage. After the first two stages, the encoder-decoder and PickNet
are well pretrained, but there exists a gap between them because the encoder-
decoder use the full video frames as input while PickNet just selects a portion
of frames. So we need a joint training stage to integrate this two parts together.
However, the pick action is not differentiable, so the gradients introduced by
cross-entropy loss can not flow into PickNet. Hence, we follow the approximate
joint training scheme. In each iteration, the forward pass generates frame picks
which are treated just like fixed picks when training the encoder-decoder, and
the backward propagation and REINFORCE updates are performed as usual. It
acts like performing dropout in time sequence, which can improve the versatility
of the encoder-decoder.

4 Experimental Setup

4.1 Datasets

We evaluate our model on two widely used video captioning benchmark datasets:
the Microsoft Video Description (MSVD) [4] and the MSR Video-to-Text (MSR-
VTT) [38].
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Microsoft Video Description (MSVD). The Microsoft Video Description is
also known as YoutubeClips. It contains 1,970 Youtube video clips, each labeled
with around 40 English descriptions collected by Amazon Mechanical Turks. As
done in previous works [34], we split the dataset into three parts: the first 1,200
videos for training, then the followed 100 videos for validation and the remaining
670 videos for test. This dataset mainly contains short video clips with a single
action, and the average duration is about 9 seconds. So it is very suitable to use
only a portion of frames to represent the full video.

MSR Video-to-Text (MSR-VTT). The MSR Video-to-Text is a large-scale
benchmark for video captioning. It provides 10,000 video clips, and each video is
annotated with 20 English descriptions and category tag. Thus, there are 200,000
video-caption pairs in total. This dataset is collected from a commercial video
search engine and so far it covers the most comprehensive categories and diverse
visual contents. Following the original paper, we split the dataset in contiguous
groups of videos by index number: 6,513 for training, 497 for validation and
2,990 for test.

4.2 Metrics

We employ four popular metrics for evaluation: BLEU [24], ROUGEL [19],
METEOR [1] and CIDEr. As done in previous video captioning works, we use
METEOR and CIDEr as the main comparison metrics. In addition, Microsoft
COCO evaluation server has implemented these metrics and released evaluation
functions1, so we directly call such evaluation functions to test the performance
of video captioning. Also, the CIDEr reward is computed by these functions.

4.3 Video Preprocessing

First, we sample equally-spaced 30 frames for every video, and resize them into
224 × 224 resolution. Then the images are encoded with the final convolutional
layer of ResNet152 [10], which results in a set of 2,048-dimensional vectors.
Most video captioning models use motion features to improve performance. How-
ever, we only use the appearance features in our model, because extracting
motion features is very time-consuming, which deviates from our purpose that
cutting down the computation cost for video captioning, and the appearance
feature is enough to represent video content when the redundant or noisy frames
are filtered by our PickNet.

4.4 Text Preprocessing

We tokenize the labeled sentences by converting all words to lowercases and then
utilizing the word tokenize function from NLTK toolbox to split sentences into
words and remove punctuation. Then, the word with frequency less than 3 is

1 https://github.com/tylin/coco-caption.

https://github.com/tylin/coco-caption
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removed. As a result, we obtain the vocabulary with 5,491 words from MSVD
and 13,064 words from MSR-VTT. For each dataset, we use the one-hot vector
(1-of-N encoding, where N is the size of vocabulary) to represent each word.

4.5 Implementation Details

We use the validation set to tune some hyperparameters of our framework. The
learning rates for three training stages are set to 3×10−4, 3×10−4 and 1×10−4,
respectively. The training batchsize is 128 for MSVD and 256 for MSR-VTT,
while each stage is trained up to 50 epoches and the best model is used to
initialize the next stage. The minimum value of maximum picked frames τ is
set to 7, and the penalty R− is −1. To regularize the training and avoid over-
fitting, we apply the well known regularization technique Dropout with retain
probability 0.5 on the input and output of the encoding LSTMs and decoding
GRUs. Embeddings for video features and words have size 512, while the sizes of
all recurrent hidden states are empirically set to 1,024. For PickNet, the size of
glance is 56 × 56, and the size of hidden layer is 1,024. The Adam [15] optimizer
is used to update all the parameters.

5 Results and Discussion

Figure 6 gives some example results on the test sets of two datasets. As it can
be seen, our PickNet can select informative frames, so the rest of our model
can use these selected frames to generate reasonable descriptions. In short, two
characteristics of picked frames can be found. The first characteristic is that the
picked frames are concise and highly related to the generated descriptions, and
the second one is that the adjacent frames may be picked to represent action.
In order to demonstrate the effectiveness of our framework, we compare our
approach with some state-of-the-art methods on the two datasets, and analyze
the learned picks of PickNet in consequent sections.

Fig. 6. Example results on MSVD (left) and MSR-VTT (right). The green boxes indi-
cate picked frames. (Best viewed in color and zoom-in. Frames are organized from left
to right, then top to bottom in temporal order.) (Color figure online)
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Table 1. Experiment results on
MSVD. All values are reported as per-
centage(%). L denotes using language
reward and V denotes using visual
diversity reward. k is set to the aver-
age number of picks N̄p on MSVD.
(N̄p ≈ 6)

Model BLEU4 ROUGE-L METEOR CIDEr Time

Previous Work

LSTM-
E [23]

45.3 – 31.0 - 5x

p-RNN [44] 49.9 – 32.6 65.8 5x

HRNE [22] 43.8 – 33.1 - 33x

BA [2] 42.5 – 32.4 63.5 12x

Baseline Models

Full 44.8 68.5 31.6 69.4 5x

Random 35.6 64.5 28.4 49.2 2.5x

k-means (k
= 6)

45.2 68.5 32.4 70.9 1x

Hecate [31] 43.2 67.4 31.7 68.8 1x

Our Models

PickNet (V) 46.3 69.3 32.3 75.1 1x

PickNet (L) 49.9 69.3 32.9 74.7 1x

PickNet
(V+L)

52.3 69.6 33.3 76.5 1x

Table 2. Experiment results on MSR-
VTT. All values are reported as percent-
age(%). C denotes using the provided
category information. k is set to the aver-
age number of picks N̄p on MSR-VTT.
(N̄p ≈ 8)

Model BLEU4ROUGE-LMETEORCIDErTime

Previous Work

ruc-uva [7] 38.7 58.7 26.9 45.9 4.5x

Aalto [28] 39.8 59.8 26.9 45.7 4.5x

DenseVidCap
[27]

41.4 61.1 28.3 48.9 10.5x

MS-RNN [30] 39.8 59.3 26.1 40.9 10x

Baseline Models

Full 36.8 59.0 26.7 41.2 3.8x

Random 31.3 55.7 25.2 32.6 1.9x

k-means (k =
8)

37.8 59.1 26.9 41.4 1x

Hecate [31] 37.3 59.1 26.6 40.8 1x

Our Models

PickNet (V) 36.9 58.9 26.8 40.4 1x

PickNet (L) 37.3 58.9 27.0 41.9 1x

PickNet (V+L) 39.4 59.7 27.3 42.3 1x

PickNet
(V+L+C)

41.3 59.8 27.7 44.1 1x

5.1 Comparison with the State-of-the-arts

We compare our approach on MSVD with four state-of-the-art approaches for
video captioning: LSTM-E [23], p-RNN [44], HRNE [22] and BA [2]. LSTM-E
uses a visual-semantic embedding to generate better captions. p-RNN use both
temporal and spatial attention. BA uses a hierarchical encoder while HRNE uses
a hierarchical decoder to describe videos. All of these methods use motion fea-
tures (C3D or optical flow) and extract visual features frame by frame. Besides,
we report the performance of our baseline models, which include using all the
sampled frames, and using some straightforward picking strategies. In order to
compare our PickNet with general picking policies, we conduct trials that pick
frames by randomly selecting and k-means clustering, respectively. Specially, to
compare with video summarization methods, we choose Hecate [31] to produce
frame level summarization and use it to generate captions. For analyzing the
effect of different rewards, we conduct some ablation studies on them. As it
can be noticed in Table 1, our method improves plain techniques and achieves
the state-of-the-art performance on MSVD. This result outperforms the most
recent state-of-the-art method by a considerable margin of 76.5−65.8

65.8 ≈ 16.3% on
the CIDEr metric. Further, we try to compare the time efficiency among these
approaches. However, most of state-of-the-art methods do not release executable
codes, so the accurate performance may not be available. Instead, we estimate
the running time by the complexity of visual feature extractors and the number
of processed frames. Thanks to the PickNet, our captioning model is 5–33 times
faster than other methods.



380 Y. Chen et al.

On MSR-VTT, we compare four state-of-the-art approaches: ruc-uva [7],
Aalto [28], DenseVidCap [27] and MS-RNN [30]. ruc-uva incorporates the
encoder-decoder with two new stages called early embedding which enriches
input with tag embeddings, and late reranking which re-scores generated sen-
tences in terms of their relevance to a specific video. Aalto first trains two models
which are separately based on attribute and motion features, and then trains a
evaluator to choose the best candidate generated by the two captioning model.
DenseVidCap generates multiple sentences with regard to video segments and
uses a winner-take-all scheme to produce the final description. MS-RNN uses
a multi-modal LSTM to model the uncertainty in videos to generate diverse
captions. Compared with these methods, our method can be simply trained in
end-to-end fashion, and does not rely upon any auxiliary information. The per-
formance of these approaches and that of our solution is reported in Table 2.
We observe that our approach is able to achieve competitive result even with-
out utilizing attribute information, while other methods take advantage of
attributes and auxiliary information sources. Also, our model is the fastest
among the compared methods. For fairly demonstrating the effectiveness of
our method, we embed the provided category information into our language
model, and better accuracy can be achieved (PickNet (V+L+C) in Table 2). It is
also worth noting that the PickNet can be easily integrated with the compared
methods, since none of them incorporated with frame selection algorithm. For
example, DenseVidCap generates region-sequence candidates based on equally
sampled frames. It can alternatively utilize PickNet to reduce the time for gen-
erating candidates by cutting down the number of selected frames.

5.2 Analysis of Learned Picks

We collect statistics on the properties of our PickNet. Figure 7 shows the distri-
butions of the number and position of picked frames on the test sets of MSVD
and MSR-VTT. As observed in Fig. 7(a), in the vast majority of the videos, less
than 10 frames are picked. It implies that in most case only 10

30 ≈ 33.3% frames

Fig. 7. Statistics on the behavior of our PickNet.
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are necessary to be encoded for captioning videos, which can largely reduce
the computation cost. Specifically, the average number of picks is around 6 for
MSVD and 8 for MSR-VTT. Looking at the distributions of position of picks in
Fig. 7(b), we observe a pattern of power law distribution, i.e., the probability of
picking a frame is reduced as time goes by. It is reasonable since most videos are
single-shot and the anterior frames are sufficient to represent the whole video.

Fig. 8. An example of online video captioning.

5.3 Captioning for Streaming Video

One of the advantage of our method is that it can be applied to streaming video.
Different from offline video captioning, captioning for streaming video requires
the model to tackle with unbounded video and generate descriptions immediately
when the visual information has changed, which meets the demand of practical
applications. For this online setting, we first sample frames at 1fps, and then
sequentially feed the sampled frames to PickNet. If certain frame is picked, the
pretrained CNN will be used to extract visual features of this frame. After that,
the encoder will receive this feature, and produce a new encoded representa-
tion of the video stream up to current time. Finally, the decoder will generate
a description based on the encoded representation. Figure 8 demonstrates an
example of online video captioning with the picked frames and corresponding
descriptions. As it is shown, the descriptions will be more appropriate and more
determined as the informative frames are picked.

6 Conclusion

In this work, we design a plug-and-play reinforcement-learning-based PickNet
to select informative frames for the task of video captioning, which achieves
promising performance on effectiveness, efficiency and flexibility on popular
benchmarks. This architecture can largely cut down the usage of convolution
operations by picking only 6–8 frames for a video clip, while other video analysis
methods usually require more than 40 frames. This property makes our method
more applicable for real-world video processing. The proposed PickNet has a
good flexibility and could be potentially employed to other video-related appli-
cations, such as video classification and action detection, which will be further
addressed in our future work.
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