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Abstract. Three-dimensional rigid point cloud registration has many
applications in computer vision and robotics. Local methods tend to fail,
causing global methods to be needed, when the relative transformation
is large or the overlap ratio is small. Most existing global methods utilize
BnB optimization over the 6D parameter space of SE(3). Such methods
are usually very slow because the time complexity of BnB optimization is
exponential in the dimensionality of the parameter space. In this paper,
we decouple the optimization of translation and rotation, and we propose
a fast BnB algorithm to globally optimize the 3D translation parameter
first. The optimal rotation is then calculated by utilizing the global opti-
mal translation found by the BnB algorithm. The separate optimization
of translation and rotation is realized by using a newly proposed rota-
tion invariant feature. Experiments on challenging data sets demonstrate
that the proposed method outperforms state-of-the-art global methods
in terms of both speed and accuracy.
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1 Introduction

Three-dimensional rigid point cloud registration is a common problem in fields
such as computer vision, robotics, and computer-assisted intervention [1–4]. Tra-
ditional local methods suffice only when the relative transformation is small and
there is a large proportion of true overlap [1–3]. In contrast, a global method is
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needed when there is a large relative transformation or when the overlap propor-
tion is small. Example applications include loop closing in simultaneous local-
ization and mapping (SLAM) [1] and spatial registration in computer-assisted
intervention [5]. In recent years, there has been a surge in the use of branch-
and-bound (BnB) optimization to globally register 3D point clouds. However,
the time complexity of BnB optimization is exponential in the dimensionality
of the problem. Most existing global methods optimize an objective function in
the parameter space of SE(3), which has a dimensionality of six; thus, they are
usually very slow.

Motivated by [6], in which SE(3) is decoupled into SO(3) and R3 and the
rotation and translation are optimized separately in SO(3) and R3, respectively,
we also optimize the rotation and translation separately in lower-dimensional
spaces to achieve high efficiency via a newly proposed rotation invariant feature.
In the method presented in [6], BnB optimization is first used to globally optimize
the rotation to align translation invariant features, namely, the surface normal
distributions, constructed from the original point clouds. Once the globally opti-
mal rotation in SO(3) has been obtained, BnB optimization in R3 is performed
to calculate the translation. In contrast to [6], we propose a new rotation invari-
ant feature (RIF) that allows us to first globally optimize the translation in R3

to align the features computed for the original point clouds. The RIF we propose
is a triple constructed from a pair of points. The first two elements of the RIF
are the distances from the two points to the origin, and the third element is the
distance between the two points. Conceptually, the elements of this RIF are the
edge lengths of the triangle formed by the two points and the origin, which are
obviously invariant with respect to the rotation of the two points around the
origin. We maximize an objective function defined in terms of the consensus set
between the two RIF sets constructed from the two point clouds to be registered
and derive an upper bound on this objective function over the parameter space
of translation in R3. An efficient BnB optimization algorithm is developed based
on this upper bound to calculate the translation with guaranteed global optimal-
ity. Experiments using real data demonstrate the efficiency and accuracy of the
proposed 6D rigid point cloud registration method under challenging real-world
conditions, such as large relative transformation and partial overlap.

2 Related Work

Given two 3D point clouds X and Y, performing 3D rigid registration between
them is the process of finding an optimal transformation T ∈ SE(3) to align
them, as follows:

T∗ = arg max
T∈SE(3)

O(Y,T(X )) (1)

where X is the moving point cloud, Y is the reference point cloud, and O is a
function that measures the alignment. If some correspondences between these
two point clouds are known, then the transformation can be robustly calculated
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analytically. However, this registration becomes a difficult optimization prob-
lem if no correspondence is known because the objective function O is highly
non-convex.

2.1 Local Methods

As a non-convex optimization problem, point cloud registration is first locally
solved with iterative approaches, the most popular of which is the iterative closest
point (ICP) method [7]. The ICP method starts from an initial transformation
and iterates between finding correspondences with the current transformation
and updating the transformation with the newly established correspondences.
The optimization scheme of the ICP algorithm is of the expectation maximiza-
tion (EM) type and can converge only to a local optimum. In addition, the orig-
inal ICP algorithm finds point-to-point correspondences in accordance with the
L2 distance by minimizing the average distance between the corresponding point
pairs found during iteration. The objective function and optimization scheme of
the ICP algorithm make it very sensitive to outliers, and its convergence basin
is very small.

A great number of variants have been proposed to improve the convergence
and robustness of the ICP algorithm [8]. Another line of research for improving
the convergence is to replace the objective function of the ICP algorithm with
a new objective function defined in terms of the probability density [9]. In these
methods, the probability densities are constructed from the original point clouds
by means of kernels, such as the Gaussian kernel, and the difference between the
two probability densities constructed from the two point clouds to be registered is
minimized. This kind of objective function can be made much smoother than the
ICP objective function can, thereby enlarging the basin of convergence. However,
all these methods can still converge only to a local optimum.

2.2 Global Methods

The first attempts at global point cloud registration used heuristic methods, such
as simulated annealing [10] or particle swarm optimization [11]. Methods of this
kind have an increased probability of reaching the global optimum regardless of
the initialization conditions. However, global optimality cannot be guaranteed.

The current trend is to solve the global point cloud registration problem
using guaranteed global optimization methods. Most of these methods use BnB
optimization, and almost every newly developed method involves deriving a new
bound on the objective function. [12] is a pioneer work on global point cloud reg-
istration in which the point cloud registration problem is parameterized in terms
of both transformation and correspondence and a simplified problem under rota-
tion alone is solved by combining BnB optimization with Lipschitz optimization.
Go-ICP [13] is the first practical global point cloud registration method. Based
on a lemma presented in [14], which states that when a vector is rotated through
two rotations, the angular difference between the two new vectors is no greater
than the angular difference between the two rotations, Go-ICP establishes a geo-
metric bound on a point rotated through an arbitrary rotation in a cubic branch
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of SO(3). Go-ICP optimizes the same objective function as that of the tradi-
tional ICP algorithm via BnB optimization, and a trimming technique is used
to address outliers. [15] proposes a tighter bound and optimizes a more robust
objective function based on a consensus set, and this bound is further tightened
in [16]. Another way to address outliers is to define the objective function in
terms of the probability density, as is done in GOGMA [17], which minimizes
the L2 distance between the two probability densities constructed from the orig-
inal point clouds with Gaussian kernels.

The above global point cloud registration methods optimize an objective
function in the six-dimensional space of SE(3). Asymmetric point matching
(APM) optimizes an objective function defined in terms of both transformation
and point correspondence matrix [18]. Although the dimensionality of the orig-
inal parameter space is very high, a bound is developed in a lower-dimensional
space, which has the same dimensionality as that of the spatial transformation,
by assuming a point-to-point correspondence. This assumption makes it difficult
for APM to register partially overlapping point clouds or point clouds with gross
outliers. The advantage of this method is that it can perform affine registration.

The time complexity of BnB optimization is exponential in the dimensional-
ity of the problem. Therefore, existing global point cloud registration methods
are usually very slow, primarily because the parameter space of SE(3) has six
dimensions. One way to improve the time efficiency is to decouple SE(3) into
SO(3) and R3 and then optimize the 3D rotation and the 3D translation sepa-
rately. [6] utilizes translation invariant features to first optimize the 3D rotation
and then optimizes the 3D translation using the calculated globally optimal rota-
tion; however, the process of constructing the translation invariant features is
very time consuming.

2.3 Contribution

This paper also optimizes rotation and translation separately to achieve high
efficiency. Our first contribution is that we propose a simple RIF that allows us
to first globally search for the translation between two point clouds to align the
features constructed from the original point clouds. We define a robust objective
function based on a consensus set and derive a tight bound to achieve fast BnB
optimization for the translation search. Second, we develop a 6D point cloud
registration algorithm on the basis of the global translation search. Experiments
on challenging real data demonstrate the superiority of the proposed method
over state-of-the-art global methods in terms of both run time and accuracy.

3 Method

3.1 Rotation Invariant Feature

Let Y = {yj}Yj=1 and X = {xi}Xi=1 be two 3D point clouds, which are related
by a 3D rigid transformation from X to Y. For a pair of corresponding points
yj and xi, we have

yj = R∗(xi + t∗) (2)
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where t∗ ∈ R3 and R∗ ∈ SO(3) are the translation and rotation, respectively,
from X to Y.

For a pair of points {xi1,xi2} from the moving point cloud, we propose
the construction of a triple {‖xi1‖, ‖xi2‖, ‖xi1 − xi2‖}, where ‖ · ‖ denotes the
Euclidean norm in R3. As shown in Fig. 1, the three elements of this triple are
the edge lengths of the triangle formed by the two points xi1 and xi2 and the
origin. Obviously, this triple is invariant with respect to rotation around the
origin, and thus, we call it a RIF. This means that for any R ∈ SO(3), we have

⎧
⎨

⎩

‖Rxi1‖
‖Rxi2‖

‖R(xi1 − xi2)‖

⎫
⎬

⎭
=

⎧
⎨

⎩

‖xi1‖
‖xi2‖

‖xi1 − xi2‖

⎫
⎬

⎭
(3)

Figure 1(b–d) show the changes in RIFs with the translation of points.
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Fig. 1. Illustration of RIFs and how they change with translation. Only the first two
dimensions of the RIFs are illustrated because the third dimension does not change with
the translation of the points. (a) Four reference points (blue circles) and four moving
points (red crosses). There is a relative rotation but no relative translation between the
two point clouds. The two triangles represent two RIFs constructed from corresponding
point pairs from the reference and moving point clouds. (b) RIFs constructed from the
reference and moving clouds in (a). The two sets of RIFs match each other because
there is no relative translation between the reference point cloud and the moving point
cloud. (c) and (d) The RIFs when there are relative translations of (0.1, 0.1) and (0.2,
0.2), respectively, between the two point clouds. (Color figure online)

3.2 Objective Function for the Translation Search

We use pi1,i2 = {‖xi1‖, ‖xi2‖, ‖xi1 −xi2‖} to denote the RIF constructed from a
pair of moving points {xi1,xi2} and use qj1,j2 = {‖yj1‖, ‖yj2‖, ‖yj1 − yj2‖} to
denote the RIF constructed from a pair of reference points {yj1,yj2}. Following
equation (3), if the two point pairs are related by a translation t and a rotation
R, we have

qj1,j2 =

⎧
⎨

⎩

‖yj1‖
‖yj2‖

‖yj1 − yj2‖

⎫
⎬

⎭
=

⎧
⎨

⎩

‖R(xi1 + t)‖
‖R(xi2 + t)‖

‖R(xi1 − xi2)‖

⎫
⎬

⎭
=

⎧
⎨

⎩

‖xi1 + t‖
‖xi2 + t‖

‖xi1 − xi2‖

⎫
⎬

⎭
:= F (pi1,i2, t)

(4)
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We find that the two RIFs are related by the translation t, and we define the
function F (t) to express this relationship. The parameter space of the function
F (t) is R3. This means that if two point clouds are related by a translation t
and a rotation R, then the RIFs constructed from corresponding point pairs are
related only by the translation t through the function F (t).

Let Q = {qn}Qn=1 be the set of RIFs constructed from point pairs {yj1,yj2},
where yj1,yj2 ∈ Y and j1 �= j2. Let P = {pm}Pm=1 be the set of RIFs con-
structed from point pairs {xi1,xi2}, where xi1,xi2 ∈ X and i1 �= i2. The problem
of finding the optimal translation from X to Y becomes the following optimiza-
tion problem:

t∗ = arg max
t∈R3

E(Q, F (P, t)) (5)

where E(t) is a function that measures the alignment between two RIF sets.
By solving the optimization problem in (5) over R3, we can find the optimal t∗,
which forms part of the solution to the optimization problem in (1) over SE(3).

To make the objective function robust to outliers, we define E(t) on the basis
of a consensus set as follows:

E(Q, F (P, t)) =
∑

m

max
n

�‖F (pm, t) − qn‖∞ ≤ ε� (6)

where �·� is an indicator function that returns 1 if the condition · is true and 0
otherwise. ‖ · ‖∞ is the L-infinity norm in R3 and ε is the inlier threshold. The
size of both Q and P is very large. From the definition of a RIF, we can see that
the third element of a RIF, which is the distance between the two points in the
pair, is invariant with respect to translation. This means that the third elements
of the corresponding RIFs in Q and P are equal to each other. In practice, we
do not need to match the entirety of Q and P. Instead, we match a subset of the
RIFs in Q and P, the third elements of which fall within a specific range. We
denote these two subsets by Q′ = {qn}Q′

n=1 and P′ = {pm}P ′
m=1, and the actual

objective function used in this paper is

E(Q′, F (P ′, t)) =
∑

m

max
n

�‖F (pm, t) − qn‖∞ ≤ ε� (7)

3.3 Bounds and Branch-and-Bound-Based Algorithm

To maximize (7) via BnB optimization, we need an upper bound on this objective
function in a branch of the parameter space. In our BnB algorithm, we search
for the optimal translation in a cube in R3 and iteratively divide the parameter
space into sub-cubes. As shown in Fig. 2, for a translation cube T with a diagonal
length of 2r and centred at tc, we have

‖x + tc‖ − r ≤ ‖x + t‖ ≤ ‖x + tc‖ + r (8)
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Fig. 2. Bounds on the distance from the origin to a point translated by a translation
cube. Two-dimensional coordinates are used for clearer illustration. The translation
cube is T, and the possible positions of point x after being translated by an arbitrary
t ∈ T are represented by the grey square. The diagonal length of T is 2r, and its centre
is at tc. Therefore, the distance from the origin to an arbitrary point in the grey square
is between ‖x+ tc‖ − r and ‖x+ tc‖ + r. (a) and (b) illustrate the two cases in which
the origin is located outside and inside, respectively, of the circle centred at tc with a
radius of r.

Let pm be the RIF constructed from a point pair {xm1,xm2} from the moving
point cloud and let qn be the RIF constructed from a point pair {yn1,yn2} from
the reference point cloud. Then, for any t ∈ T, using formula (8), we have

‖F (pm, t) − qn‖∞ = ‖
⎧
⎨

⎩

‖xm1 + t‖ − ‖yn1‖
‖xm2 + t‖ − ‖yn2‖

‖xm1 − xm2‖ − ‖yn1 − yn2‖

⎫
⎬

⎭
‖

∞

:= C(t) (9)

where ‖xm1 − xm2‖ − ‖yn1 − yn2‖ is constant with respect to t. Because we
can compute the bounds on ‖xm1 + t‖ and ‖xm2 + t‖ from equation (8), we
can easily compute the bounds on the absolute values of ‖xm1 + t‖ − ‖yn1‖
and ‖xm2 + t‖ − ‖yn2‖. Then we can compute the upper and lower bounds on
‖F (pm, t) − qn‖∞, and we denote this lower bound by C(t). Thus, we have

‖F (pm, t) − qn‖∞ ≥ C(t) (10)

It follows that
�‖F (pm, t) − qn‖∞ ≤ ε� ≤ �C(t) ≤ ε� (11)

Then, we can define the upper-bound function as

E(T) =
∑

m

max
n

�C(t) ≤ ε� (12)

For any t ∈ T, we have
E(Q′, F (P ′, t)) ≤ E(T) (13)

Utilizing the upper bound given by formula (12), we can search the transla-
tion space to find the globally optimal translation that maximizes the objective
function (7). The algorithm is outlined in Algorithm 1.

3.4 Six-Dimensional Registration

Once the globally optimal translation t∗ between X and Y has been found, it
is easy to calculate the optimal rotation R∗ between the two point clouds. For
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Algorithm 1. Globally Optimal Translation Search Based on RIFs
Input: Point sets X and Y
Output: Optimal translation t∗ between X and Y.

1 Construct two sets of RIF triples, P ′ and Q′.
2 Initialize translation branch T0;E

∗ ← 0,t∗ ← 0. Insert T0 into queue q with

priority E(T0).
3 while q is not empty do
4 Obtain the highest-priority cube T from q.

5 if E(T) = E∗ then
6 Terminate.
7 end
8 tc ←centre of cube T

9 if E(tc) > E∗ then
10 Update E∗ ←− E(tc), t

∗ ← tc
11 end
12 Subdivide T into eight cubes {Td}8

d=1.
13 for each Td do

14 if E(Td) > E∗ then

15 Insert Td into q with priority E(Td).
16 end

17 end

18 end
19 Obtain the optimal translation t∗.

example, we could use the global rotation search methods presented in [15] or
[16]; however, the optimal rotation can actually be obtained in a much easier
way. When we obtain the optimal t∗ via Algorithm 1, we also obtain a set of
consensus RIFs between P ′ and Q′, which provide us with potential correspon-
dences between points in the original point clouds X and Y. Of course, there
will be some outliers among these correspondences, and the problem of estimat-
ing R∗ becomes a robust estimation problem, which can be solved quickly and
reliably. In this paper, we estimate R∗ by means of the RANdom SAmple Con-
sensus (RANSAC) algorithm [19]. We refer to our 6D rigid registration method
as GoTS. Many global optimization methods sacrifice accuracy for speed and
global optimality, and a subsequent local refinement is performed to improve
accuracy. Similarly, a local refinement procedure can be added to GoTS; we
refer to the algorithm with local refinement as GoTS+.

4 Experiments and Results

In this section, we report the results of evaluating the performance of GoTS and
GoTS+ using many different point clouds and compare the proposed algorithms
against the following three global methods: Go-ICP [13], Glob-GM [15] and APM
[18]. We did not perform comparisons with the methods of [6] and [17], which
use GPUs. GoTS and GoTS+ were implemented in MATLAB. The code for
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the other methods was obtained from the authors. In GoTS, a range is set for
the third elements of the RIFs that are used to construct P ′ and Q′ for the
translation search. We set the lower bound of this range to 65% of the shortest
extension of the original point cloud in the X, Y and Z directions, and set the
range width to 0.01 times inlier threshold. In the supplementary material, we
studied the registration time with respect to the range width used in choosing the
RIFs for translation search. The original point clouds used in these experiments
are very dense, and we down-sampled them using the pcdownsample function
of MATLAB with a specified gridsize. In the experiments with synthetic data
in Sects. 4.1 and 4.2, we scaled the points to make them fall within a cube of
[−1, 1]3 and set 0.01 as the inlier threshold for GoTS; in the experiment with
real data in Sects. 4.3 and 4.4, we set gridsize as the inlier threshold for GoTS. In
Glob-GM, the matchlist and local-refinement options were turned on. In Go-ICP,
a distance transformation was used to speed up the nearest-neighbour distance
calculation. All experiments were performed on a computer with a 2.80 GHz
Intel(R) Core(TM) i7-7700HQ CPU and 16 GB of RAM. The run time for each
method includes the method-specific pre-processing time.

4.1 Run-Time Comparison with Other Global Methods

We first compared the run times of GoTS for registering point clouds with differ-
ent numbers of points to the run times of the other three methods. In this experi-
ment, we used the bunny point cloud from the Stanford 3D Scanning Repository
and down-sampled the original data to point clouds with different numbers of
points. The down-sampled point cloud was scaled to fall within a cube of [−1, 1]3

and was regarded as the moving point cloud, and it was transformed to a new
position via a random transformation to form the reference point cloud. There-
fore, we knew the ground-truth transformation from the moving point cloud to
the reference point cloud and the point correspondence between the two point
clouds. The moving point cloud was then registered to the reference point cloud
with each of the four methods. For each number of points, we performed 20 reg-
istrations with different random ground-truth transformations, and the average
run times with respect to the number of points are shown in Figs. 3(a) and (b).
The run time of Glob-GM and APM exceeded 1000 s when registering 400 points.
To better illustrate the difference between GoTS and Go-ICP, we show the run
times of only these two methods in Fig. 3(b). We can see that GoTS and Go-ICP
are much faster than the other two methods and that GoTS is approximately
four times as fast as Go-ICP. In this experiment, all methods could successfully
register the moving and reference point clouds.

Figure 3(c) shows the evolution of the upper and lower bounds of Algorithm
1 during one registration between 1000 moving points and 1000 reference points,
in which it took only 5.2 s for GoTS to converge.
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Fig. 3. (a) Run times of GoTS, Go-ICP, APM and Glob-GM with respect to the
number of points. (b) Run times of only GoTS and Go-ICP with respect to the number
of points, to better illustrate the run time difference between these two methods. (c)
Evolution of the upper and lower bounds in the global optimal translation search
method (Algorithm 1) as a function of time when registering 1000 points.

4.2 Robustness to Outliers

In this experiment, we evaluated the robustness of GoTS to outliers and com-
pared it to the robustness of the other three methods. Outliers are commonly
encountered in point cloud registration; in this section, we study only the influ-
ence of gross outliers, which do not belong to the true object represented by the
point cloud. Gross outliers may originate from imperfections of the device used
to obtain the point cloud. In the registration of partially overlapping surfaces,
the points in the region that is not overlapped by the other point cloud can also
be regarded as outliers; experiments focusing on this scenario are reported in
the next section.

We down-sampled the bunny data from the Stanford 3D Scanning Reposi-
tory (http://graphics.stanford.edu/data/3Dscanrep/) with a gridsize of 0.0121
to obtain 500 points and then scaled these points to fall within a cube of [−1, 1]3.
The scaled data points were used as the clean moving point cloud. Uniformly
distributed random outlier points were added to this clean point cloud, and the
resulting point cloud was then transformed via a random transformation to form
a reference point cloud. Different numbers of outliers were added to generate ref-
erence point clouds with five different outlier percentages: 10%, 20%, 30%, 40%
and 50%. Figure 4(c) and (d) show examples of reference point clouds with 10%
and 50% outliers, respectively. We ran each algorithm 20 times for each outlier
ratio.

Table 1 reports the root mean square errors on the inlier points for each
method. Both GoTS and Go-ICP achieved high accuracy, indicating that they
are both very robust to outliers. Although the errors of Go-ICP were smaller
than those of GoTS, the accuracy of GoTS is sufficiently high in practice. The
errors of GoTS+ show that two point clouds can be perfectly aligned by means of
a subsequent local refinement, which requires less than one second of additional
time. The registration error of Glob-GM is much higher than that of GoTS, and
it increases as the outlier ratio increases. Considering that all the points lie in
a cube with an edge length of 2, the registration errors of Glob-GM indicate
that it fails in aligning the two point clouds in many cases. The errors of APM

http://graphics.stanford.edu/data/3Dscanrep/
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are even higher; the reason for these large errors may be that the assumption
of a one-to-one correspondence that is adopted in APM is not valid in these
experiments with outliers.

Table 1. Root mean square error between corresponding inlier points after registration.

Method GoTS GoTS+ Go-ICP Glob-GM APM

10% 1.03E−02 1.38E−15 8.95E−06 1.10E−01 2.17E−01

20% 1.20E−02 9.72E−16 7.51E−06 1.21E−01 -

30% 1.14E−02 9.50E−15 4.65E−06 1.14E−01 -

40% 1.09E−02 1.38E−15 4.12E−06 1.12E−01 -

50% 1.17E−02 1.19E−15 6.22E−06 1.41E−01 -

The average run times of the four algorithms with respect to the outlier ratio
are shown in Fig. 4(a). The run time of APM increased rapidly as we added more
outliers to the 500 inlier points and exceeded 1000 s when the outlier ratio was
20%. The run time of Glob-GM decreased when the outlier ratio was above 20%;
this occurred because the algorithm terminated earlier at an incorrect solution
in which the two point clouds were not aligned. Again, we plot the average
run times of GoTS and Go-ICP separately in Fig. 4(b) to better illustrate the
difference between them.
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Fig. 4. (a) Run times of the four methods with respect to the outlier ratio. (b) Run
times of only GoTS and Go-ICP with respect to the outlier ratio, to better illustrate
the difference between them. (c) and (d) Reference point clouds with 10% outliers and
50% outliers, respectively.

4.3 Partially Overlapping Registration of Real 3D Scans

In this section, we report the results of testing the performance of the proposed
method on partially overlapping point clouds using real data. We compared
GoTS and GoTS+ to Go-ICP and Glob-GM in this experiment. APM was not
used here, but we can expect that its registration error would be large in this
experiment because of its difficulty in dealing with outliers.
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We used bun000, bun045, bun090, ArmadilloStand60, ArmadilloStand30 and
ArmadilloStand0 from the Stanford 3D Scanning Repository in this experi-
ment. The first three point clouds are scans of bunny from three different
directions, and the last three are scans of Armadillo from three different direc-
tions. The original point clouds were down-sampled to clouds consisting of 1000
to 2000 points, all of which lay in a cube with an edge length of 0.3. The
ground-truth transformations between each pair of scans of the same object
are provided in the data set. Using the four methods, we performed registra-
tions between four pairs of point clouds: ArmadilloStand60/ArmadilloStand30,
ArmadilloStand30/ArmadilloStand0, bun045/bun000 and bun090/bun000. The
point cloud pairs before and after registration are shown in the supplementary
material.

Table 2. Results of registering Armadillo scans using four different methods.

ArmadilloStand60/30 ArmadilloStand30/0

Method GoTS GoTS+ Go-ICP Glob-GM GoTS GoTS+ Go-ICP Glob-GM

Tran [m] 0.0037 0.0039 0.0023 0.28 0.0065 0.0063 0.0005 0.014

Rot [◦] 0.94 0.84 4.13 172 1.82 1.70 1.73 38.10

Time [s] 27.11 27.33 30.67 447 17.00 17.22 32.08 3136

Table 3. Results of registering bunny scans using four different methods.

bun045/000 bun090/000

Method GoTS GoTS+ Go-ICP Glob-GM GoTS GoTS+ Go-ICP Glob-GM

Tran [m] 0.0058 0.0057 0.0024 0.025 0.0069 0.0074 0.10 0.14

Rot [◦] 3.95 3.94 4.10 19.41 3.82 3.55 90.24 137.02

Time [s] 14.02 14.25 30.44 2361 56.39 56.62 603.63 868

The translation and rotation errors together with the run time of each method
are listed in Tables 2 and 3. In these experiments, the inlier threshold of Glob-
GM was set to 0.05 for the Armadillo data and to 0.029 for the bunny data
because Glob-GM could not terminate within 1000 s when we used an inlier
threshold equal to the gridsize of the down-sampling function. We can see that
GoTS achieved high accuracy in these challenging registrations. In particular,
the translation errors achieved by the global optimal translation search method
in Algorithm 1 are all very small. Go-ICP failed on bun090/000, which is a
difficult case because the relative transformation between the two point clouds is
very large and the overlap ratio is small. The run time of Go-ICP was extremely
long in this case, while in the other three cases, the run time of Go-ICP was
slightly longer than or twice as long as that of GoTS. Carefully tuning the
trimming ratio may improve the accuracy of Go-ICP, but in practice, the best
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trimming ratio cannot be known before registration. Glob-GM failed in all four
cases, and its run times were very long. The number of RIFs generated for the
global translation search was between 150 and 160 in these experiments.

4.4 Registration of Scans of LivingRoom

We tested the performance of the proposed method on large-scale field data
using “livingRoom.mat” from the MATLAB example “3-D Point Cloud Regis-
tration and Stitching”, which consists of a series of 3D point sets obtained by
continuously scanning a living room. We used GoTS, Go-ICP and Glob-GM to
register the point clouds of the first and sixth frames of these data. The original
point clouds consist of more than 300,000 points, and all these points lie in a
cube with an edge length of 4 m. They were down-sampled with a gridsize of
0.1 m.

(a) Init (b) GoTS (c) Go-ICP (d) Glob-GM

Fig. 5. LivingRoom point clouds before and after registration.

The results are listed in Table 4. GoTS successfully registered the two point
clouds in 25.90 s. In contrast, Go-ICP failed to register the point clouds when
the mean square error threshold was set to 0.05. When we used a mean square
error threshold of 0.01, the algorithm could not terminate within half an hour.
For Glob-GM, when we set the inlier threshold to 0.1, the algorithm could not
terminate within half an hour. Then, we set the inlier threshold to 0.8; the
algorithm terminated after 633.8 s, but the result was incorrect. The numbers of
RIFs generated from the reference and moving point clouds were 1434 and 1866,
respectively. More results can be found in the supplementary material.

Table 4. Results of registering livingRoom point clouds.

Method GoTS Go-ICP Glob-GM

Tran [m] 0.1047 1.158 0.4555

Rot [◦] 4.382 158.3 97.59

Time [s] 25.90 489.6 633.8
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5 Conclusion

We introduce a fast global 3D rigid point cloud registration method based on
the decoupling of translation and rotation optimization via a newly proposed
rotation invariant feature. We first globally optimize the translation by using a
BnB algorithm to match sets of rotation invariant features constructed from the
two point clouds, and we then calculate the optimal rotation using the optimized
translation. Decoupling the optimization of the translation and rotation makes
the proposed algorithm more efficient than existing methods. Experiments on
real data demonstrate the superiority of the proposed algorithm in cases of
partial overlap, large angular differences and high outlier ratios. All code will be
available on the web (http://www.fudanmiccai.org).

Acknowledgements. This research was supported by the National Natural Science
Foundation of China (grants 81471758, 81701795 and 60972102). This research was
also partially supported by the National Key Research and Development Program
of China (2017YFC0110700) and the Program of Shanghai Academic/Technology
Research Leaders (16XD1424900).

References

1. Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J.J., McDonald, J.:
Real-time large-scale dense RGB-D SLAM with volumetric fusion. Int. J. Robot.
Res. 34, 598–626 (2015)

2. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using
Kinect-style depth cameras for dense 3D modeling of indoor environments. Int.
J. Robot. Res. 31, 647–663 (2012)

3. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and track-
ing. In: International Symposium on Mixed and Augmented Reality, pp. 127–136
(2011)

4. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image regis-
tration methods with accuracy evaluation. Image Vis. Comput. 25, 578–596 (2007)

5. Fan, Y., Xu, X., Wang, M.: A surface-based spatial registration method based on
sense three-dimensional scanner. J. Craniofac. Surg. 28, 157–160 (2017)

6. Straub, J., Campbell, T., How, J.P., Fisher, J.W.I.: Efficient global point cloud
alignment using Bayesian nonparametric mixtures. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2403–2412 (2017)

7. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14, 239–256 (1992)

8. Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean alignment of 3D point
sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23, 299–
309 (2005)

9. Jian, B., Vemuri, B.C.: Robust point set registration using Gaussian mixture mod-
els. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1633–1645 (2011)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

11. Wachowiak, M.P., Smolikova, R., Zheng, Y.F., Zurada, J.M., Elmaghraby, A.S.:
An approach to multimodal biomedical image registration utilizing particle swarm
optimization. IEEE Trans. Evol. Comput. 8, 289–301 (2004)

http://www.fudanmiccai.org


474 Y. Liu et al.

12. Li, H., Hartley, R.: The 3D–3D registration problem revisited. In: IEEE Interna-
tional Conference on Computer Vision, pp. 1947–1954 (2007)

13. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D
ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2241–2254
(2016)

14. Hartley, R.I., Kahl, F.: Global optimization through rotation space search. Int. J.
Comput. Vis. 82, 64–79 (2009)

15. Bustos, A.P., Chin, T., Eriksson, A., Li, H., Suter, D.: Fast rotation search with
stereographic projections for 3D registration. IEEE Trans. Pattern Anal. Mach.
Intell. 38, 2227–2240 (2016)

16. Campbell, D., Petersson, L., Kneip, L., Li, H.: Globally-optimal inlier set maximi-
sation for simultaneous camera pose and feature correspondence. In: IEEE Inter-
national Conference on Computer Vision, pp. 1–10 (2017)

17. Campbell, D., Petersson, L.: GOGMA: globally-optimal Gaussian mixture align-
ment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
5685–5694 (2016)

18. Lian, W., Zhang, L., Yang, M.: An efficient globally optimal algorithm for asym-
metric point matching. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1281–1293
(2016)

19. Fischler, M.A., Bolles, R.C.: Random sample consensus - a paradigm for model-
fitting with applications to image-analysis and automated cartography. Commun.
ACM 24, 381–395 (1981)


	Efficient Global Point Cloud Registration by Matching Rotation Invariant Features Through Translation Search
	1 Introduction
	2 Related Work
	2.1 Local Methods
	2.2 Global Methods
	2.3 Contribution

	3 Method
	3.1 Rotation Invariant Feature
	3.2 Objective Function for the Translation Search
	3.3 Bounds and Branch-and-Bound-Based Algorithm
	3.4 Six-Dimensional Registration

	4 Experiments and Results
	4.1 Run-Time Comparison with Other Global Methods
	4.2 Robustness to Outliers
	4.3 Partially Overlapping Registration of Real 3D Scans
	4.4 Registration of Scans of LivingRoom

	5 Conclusion
	References




