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Abstract. Estimating the 3D pose of a hand is an essential part of
human-computer interaction. Estimating 3D pose using depth or multi-
view sensors has become easier with recent advances in computer vision,
however, regressing pose from a single RGB image is much less straight-
forward. The main difficulty arises from the fact that 3D pose requires
some form of depth estimates, which are ambiguous given only an RGB
image. In this paper we propose a new method for 3D hand pose esti-
mation from a monocular image through a novel 2.5D pose represen-
tation. Our new representation estimates pose up to a scaling factor,
which can be estimated additionally if a prior of the hand size is given.
We implicitly learn depth maps and heatmap distributions with a novel
CNN architecture. Our system achieves state-of-the-art accuracy for 2D
and 3D hand pose estimation on several challenging datasets in presence
of severe occlusions.
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1 Introduction

Hand pose estimation from touch-less sensors enables advanced human machine
interaction to increase comfort and safety. Estimating the pose accurately is a
difficult task due to the large amounts of appearance variation, self occlusions
and complexity of the articulated hand poses. 3D hand pose estimation escalates
the difficulties even further since the depth of the hand keypoints also has to
be estimated. To alleviate these challenges, many proposed solutions simplify
the problem by using calibrated multi-view camera systems [1–9], depth sen-
sors [10–24], or color markers/gloves [25]. These approaches are, however, not
very desirable due to their inapplicability in unconstrained environments. There-
fore, in this work, we address the problem of 3D hand pose estimation from RGB
images taken from the wild.
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Given an RGB image of the hand, our goal is to estimate the 3D coordi-
nates of hand keypoints relative to the camera. Estimating the 3D pose from a
monocular hand image is an ill-posed problem due to scale and depth ambigui-
ties. Attempting to do so will either not work at all, or results in over-fitting to a
very specific environment and subjects. We address these challenges by decom-
posing the problem into two subproblems both of which can be solved with less
ambiguities. To this end, we propose a novel 2.5D pose representation and then
provide a solution to reconstruct the 3D pose from 2.5D. The proposed 2.5D
representation is scale and translation invariant and can be easier estimated
from RGB images. It consists of 2D coordinates of the hand keypoints in the
input image and scale normalized depth for each keypoint relative to the root
(palm). We perform scale normalization of the depth values such that one of the
bones always has a fixed length in 3D space. Such a constrained normalization
allows us to directly reconstruct the scale normalized absolute 3D pose with less
ambiguity compared to full depth recovery from the image crop. Our solution
is still ill-posed because of relative normalized depth estimation, but it is better
defined compared to relative or absolute depth estimation.

As a second contribution, we propose a novel CNN architecture to esti-
mate the 2.5D pose from images. In the literature, there exists two main learn-
ing paradigms, namely heatmap regression [26,27] and holistic pose regres-
sion [28,29]. Heatmap regression is now a standard approach for 2D pose estima-
tion since it allows to accurately localize the keypoints in the image via per-pixel
predictions. Creating volumetric heatmaps for 3D pose estimation [30], however,
results in very high computational overhead. Therefore, holistic regression is a
standard approach for 3D pose estimation, but it suffers from accurate 2D key-
point localization. Since the 2.5D pose representation requires the prediction of
both the 2D pose and depth values, we propose a new heatmap representation
that we refer to as 2.5D heatmaps. It consists of 2D heatmaps for 2D keypoint
localization and a depth map for each keypoint for depth prediction. We design
the proposed CNN architecture such that the 2.5D heatmaps do not have to be
designed by hand, but are learned in a latent way. We do this by a softargmax
operation which converts the 2.5D heatmaps to 2.5D coordinates in a differen-
tiable manner. The obtained 2.5D heatmaps are compact, invariant to scale and
translation, and have the potential to localize keypoints with sub-pixel accuracy.

We evaluate our approach on five challenging datasets with severe occlusions,
hand object interactions and in-the-wild images. We demonstrate its effectiveness
for both 2D and 3D hand pose estimation. The proposed approach outperforms
state-of-the-art approaches by a large margin.

2 Related Work

Very few works in the literature have addressed the problem of 3D hand pose esti-
mation from a single 2D image. The problem, however, shares several properties
with human body pose estimation and many approaches proposed for the human
body can be easily adapted for hand pose estimation. Hence, in the following,
we discuss the related works for 3D articulated pose estimation in general.
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Model-Based Methods. These methods represent the articulated 3D pose
using a deformable 3D shape model. This is often formulated as an optimization
problem, whose objective is to find the model’s deformation parameters such
that its projection is in correspondence with the observed image data [31–37].

Search-Based Methods. These methods follow a non-parametric approach
and formulate 3D pose estimation as a nearest neighbor search problem in large
databases of 3D poses, where the matching is performed based on some low [38,
39] or high [40,41] level features extracted from the image.

From 2D Pose to 3D. Earlier methods in this direction learn probabilistic 3D
pose models from MoCap data and recover 3D pose by lifting the 2D keypoints
[42–45]. More recent approaches, on the other hand, use deep neural networks to
learn a mapping from 2D pose to 3D [46–48]. Instead of 2D keypoint locations,
[48,49] use 2D heatmaps [26,27] as input and learn convolutional neural networks
for 3D pose regression.

The aforementioned methods have the advantage that they do not necessarily
require images with ground-truth 3D pose annotations for training, but their
major drawback is that they cannot handle re-projection ambiguities i.e., a joint
with positive or negative depth will have the same 2D projections. Moreover, they
are sensitive to errors in 2D image measurements and the required optimization
methods are often prone to local minima due to incorrect initializations.

3D Pose from Images. These approaches aim to learn a direct mapping from
RGB images to 3D pose [50–53]. While these methods can better handle 2D pro-
jection ambiguities, their main downside is that they are prone to over-fitting
to the views only present in training data. Thus, they require a large amount
of training data with accurate 3D pose annotations. Collecting large amounts
of training data in unconstrained environments is, however, infeasible. To this
end, [52] proposes to use Generative Adversarial Networks [54] to convert syn-
thetically generated hand images to look realistic. Other approaches formulate
the problem in a multi-task setup to jointly estimate both 2D keypoint locations
and 3D pose [29,30,55–58]. Our method also follows this paradigm. The clos-
est work to ours are the approaches of [29,30,56,58] in that they also perform
2.5D coordinate regression. While the approach in [29] performs holistic pose
regression with a fully connected output layer, [56] follows a hybrid approach
and combines heatmap regression with holistic regression. Holistic regressions
is shown to perform well for human body but fails in cases where very precise
localization is required, e.g., fingertips in case of hands. In order to deal with
this, the approach in [30] performs dense volumetric regression. This, however,
substantially increases the model size, which in turn forces to work at a lower
spatial resolution.

Our approach, on the other hand, retains the input spatial resolution and
allows one to localize hand keypoints with sub-pixel accuracy. It enjoys the dif-
ferentiability and compactness of holistic regression-based methods, translation
invariance of volumetric representations, while also providing high spatial output
resolution. Moreover, in contrast to existing methods such as VNect [58], it does
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not require hand-designed target heatmaps, which can arguably be sub-optimal
for a particular problem, but rather implicitly learns a latent 2.5D heatmap
representation and converts them to 2.5D coordinates in a differentiable way.

Finally, note that given the 2.5D coordinates, the 3D pose has to be recovered.
The existing approaches either make very strong assumptions such as the ground-
truth location of the root [29] and the global scale of the hand in 3D is known [56],
or resort to an approximate solution [30]. The approach [57] tries to directly
regress the absolute depth from the cropped and scaled image regions which
is a very ambiguous task. The approach VNect [58] regresses both 2D and 3D
coordinates simultaneously which is ill-posed without explicit modeling of the
camera parameters matrix and requires training a specific network for all unique
camera matrices. In contrast, our approach does not make any assumptions.
Instead, we propose a scale and translation invariant 2.5D pose representation,
which can be easily obtained using CNNs, and then provide an exact solution
to obtain the absolute 3D pose up to a scaling factor and only approximate the
global scale of the hand.

Fig. 1. Overview of the proposed approach. Given an image of a hand, the proposed
CNN architecture produces latent 2.5D heatmaps containing the latent 2D heatmaps
H∗2D and latent depth maps H∗ẑ. The latent 2D heatmaps are converted to probability
maps H2D using softmax normalization. The depth maps H ẑ are obtained by multi-
plying the latent depth maps H∗ẑ with the 2D heatmaps. The 2D pose p is obtained
by applying spatial soft-argmax on the 2D heatmaps, whereas the normalized depth
values Ẑr are obtained by the summation of depth maps. The final 3D pose is then
estimated by the proposed approach for reconstructing 3D pose from 2.5D.

3 Hand Pose Estimation

An overview of the proposed approach can be seen in Fig. 1. Given an RGB image
I of a hand, our goal is to estimate the 2D and 3D positions of all the K = 21
keypoints of the hand. We define the 2D hand pose as p = {pk}k∈K and 3D pose
as P = {Pk}k∈K , where pk = (xk, yk) ∈ R

2 represents the 2D pixel coordinates
of the keypoint k in image I and Pk = (Xk, Yk, Zk) ∈ R

3 denotes the location
of the keypoint in the 3D camera coordinate frame measured in millimeters.
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The Z-axis corresponds to the optical axis. Given the intrinsic camera parameters
K, the relationship between the 3D location Pk and corresponding 2D projection
pk can be written as follows under a perspective projection:
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where k ∈ 1, . . . K, Zroot is the depth of the root keypoint, and Zr
k = Zk − Zroot

corresponds to the depth of the kth keypoint relative to the root. In this work
we use the palm of the hand as the root keypoint.

3.1 2.5D Pose Representation

Given an image I, we need to have a function F , such that F : I → P, and the
estimated 3D hand pose P can be projected to 2D with the camera parameters
K. However, predicting the absolute 3D hand pose in camera coordinates is infea-
sible due to irreversible geometry and scale ambiguities. We, therefore, choose a
2.5D pose representation, which is much easier to be recovered from a 2D image,
and provide a solution to recover the 3D pose from the 2.5D representation. We
define the 2.5D pose as P2.5D

k = {P 2.5D
k }k∈K , where P 2.5D

k = (xk, yk, Zr
k). The

coordinates xk and yk are the image pixel coordinates of the kth keypoint and
Zr

k is its metric depth relative to the root keypoint. Moreover, in order to remove
the scale ambiguities, we scale-normalize the 3D pose as follows:

P̂ =
C

s
· P, (2)

where s = ‖Pn − Pparent(n)‖2 is computed for each 3D pose independently. This
results in a normalized 3D pose P̂ with a constant distance C between a specific
pair of keypoints (n, parent(n)). Subsequently, our normalized 2.5D representa-
tion for keypoint k becomes P̂ 2.5D

k = (xk, yk, Ẑr
k). Note that the 2D pose does not

change due to the normalization, since the projection of the 3D pose remains the
same. Such a normalized 2.5D representation has several advantages: it allows
to effectively exploit image information; it enables dense pixel-wise prediction
(Sect. 4); it allows us to perform multi-task learning so that multiple sources of
training data can be used; and finally it allows us to devise an approach to exactly
recover the absolute 3D pose up to a scaling factor. We describe the proposed
solution to obtain the function F in Sect. 4, while the 3D pose reconstruction
from 2.5D pose is explained in the next section.

3.2 3D Pose Reconstruction from 2.5D

Given a 2.5D pose P̂2.5D = F(I), we need to find the depth Ẑroot of the root
keypoint to reconstruct the scale normalized 3D pose P̂ using Eq. (1). While
there exist many 3D poses that can have the same 2D projection, given the
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2.5D pose and intrinsic camera parameters, there exists a unique 3D pose that
satisfies

(X̂n − X̂m)2 + (Ŷn − Ŷm)2 + (Ẑn − Ẑm)2 = C2, (3)

where (n, m = parent(n)) is the pair of keypoints used for normalization in
Eq. (2). The equation above can be rewritten in terms of the 2D projections
(xn, yn) and (xm, ym) as follows:

(xnẐn − xmẐm)2 + (ynẐn − ymẐm)2 + (Ẑn − Ẑm)2 = C2. (4)

Subsequently, replacing Ẑn and Ẑm with (Ẑroot + Ẑr
n) and (Ẑroot + Ẑr

m), respec-
tively, yields:

(xn(Ẑroot + Ẑr
n) − xm(Ẑroot + Ẑr

m))2 + (yn(Ẑroot + Ẑr
n) − ym(Ẑroot + Ẑr

m))2

+((Ẑroot + Ẑr
n) − (Ẑroot + Ẑr

m))2 = C2. (5)

Given the 2.5D coordinates of both keypoints n and m, Zroot is the only unknown
in the equation above. Simplifying the equation further leads to a quadratic
equation with the following coefficients

a = (xn − xm)2 + (yn − ym)2

b = Ẑr
n(x2

n + y2
n − xnxm − ynym) + Ẑr

m(x2
m + y2

m − xnxm − ynym)

c = (xnẐr
n − xmẐr

m)2 + (ynẐr
n − ymẐr

m)2 + (Ẑr
n − Ẑr

m)2 − C2. (6)

This results in two values for the unknown variable Zroot, one in front of the
camera and one behind the camera. We choose the solution in front of the cam-
era i.e., Ẑroot = 0.5(−b +

√
b2 − 4ac)/a. Given the value of Zroot, P̂2.5D, and

the intrinsic camera parameters K, the scale normalized 3D pose can be recon-
structed by back-projecting the 2D pose p using Eq. (1). In this paper, we use
C = 1, and use the distance between the first joint (metacarpophalangeal -
MCP) of the index finger and the palm (root) to calculate the scaling factor s.
We choose these keypoints since they are the most stable in terms of 2D pose
estimation.

3.3 Scale Recovery

Up to this point, we have obtained the 2D and scale normalized 3D pose P̂ of the
hand. In order to recover the absolute 3D pose P, we need to know the global
scale of the hand. In many scenarios this can be known a priori, however, in case
it is not available, we estimate the scale ŝ by

ŝ = argmin
s

∑
k,l∈E

(s · ‖P̂k − P̂l‖ − μkl)2, (7)

where μkl is the mean length of the bone between keypoints k and l in the
training data, and E defines the kinematic structure of the hand.
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4 2.5D Pose Regression

In order to regress the 2.5D pose P̂2.5D from an RGB image of the hand, we
learn the function F using a CNN. In this section, we first describe an alternative
formulation of the CNN (Sect. 4.1) and then describe our proposed solution for
regressing latent 2.5D heatmaps in Sect. 4.2. In all formulations, we train the
CNNs using a loss function L which consists of two parts Lxy and LẐr , each
responsible for the regression of 2D pose and root-relative depths for the hand
keypoints, respectively. Formally, the loss can be written as follows:

L(P̂2.5D) = Lxy(p,pgt) + αLẐr (Ẑr, Ẑr,gt), (8)

where Ẑr = {Ẑr
k}r∈K and Ẑr,gt = {Ẑr,gt

k }r∈K and gt refers to ground-truth
annotations. This loss function has the advantage that it allows to utilize multiple
sources of training, i.e., in-the-wild images with only 2D pose annotations and
constrained or synthetic images with accurate 3D pose annotations. While Lxy is
valid for all training samples, LẐr is enforced only when the 3D pose annotations
are available, otherwise it is not considered.

4.1 Direct 2.5D Heatmap Regression

Heatmap regression is the de-facto approach for 2D pose estimation [26,27,59,
60]. In contrast to holistic regression, heatmaps have the advantage of provid-
ing higher output resolution, which helps in accurately localizing the keypoints.
However, they are scarcely used for 3D pose estimation since a 3D volumetric
heatmap representation [30] results in a high computational and storage cost.

We, thus, propose a novel and compact heatmap representation, which we
refer to as 2.5D heatmaps. It consists of 2D heatmaps H2D for keypoint local-
ization and depth maps H ẑr

for depth predictions. While the 2D heatmap H2D
k

represents the likelihood of the kth keypoint at each pixel location, the depth
map H ẑr

k provides the scale normalized and root-relative depth prediction for
the corresponding pixels. This representation of depth maps is scale and trans-
lation invariant and remains consistent across similar hand poses, therefore, it is
significantly easier to be learned using CNNs. The CNN provides a 2K channel
output with K channels for 2D localization heatmaps H2D and K channels for
depth maps H ẑr

. The target heatmap H2D,gt
k for the kth keypoint is defined as

H2D,gt
k (p) = exp

(
−‖p − pgt

k ‖
σ2

)
, p ∈ Ω (9)

where pgt
k is the ground-truth location of the kth keypoint, σ controls the stan-

dard deviation of the heatmaps and Ω is the set of all pixel locations in image I.
Since the ground-truth depth maps are not available, we define them by

H ẑr

k = Ẑr,gt
k · H2D,gt

k (10)
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where Ẑr,gt
k is the ground-truth normalized root-relative depth value of the kth

keypoint. During inference, the 2D keypoint position is obtained as the pixel
with the maximum likelihood

pk = argmax
p

H2D
k (p), (11)

and the corresponding depth value is obtained as,

Ẑr
k = H ẑr

k (pk). (12)

4.2 Latent 2.5D Heatmap Regression

The 2.5D heatmap representation as described in the previous section is,
arguably, not the most optimal representation. First, the ground-truth heatmaps
are hand designed and are not ideal, i.e., σ remains fixed for all keypoints and
cannot be learned due to indifferentiability of Eq. (11). Ideally, it should be
adapted for each keypoint, e.g., heatmaps should be very peaky for fingertips
while relatively wide for the palm. Secondly, the Gaussian distribution is a nat-
ural choice for 2D keypoint localization, but it is not very intuitive for depth
prediction, i.e., the depth stays roughly the same throughout the palm but is
modeled as Gaussians. Therefore, we alleviate these problems by proposing a
latent representation of 2.5D heatmaps, i.e., the CNN learns the optimal repre-
sentation by minimizing a loss function in a differentiable way.

To this end, we consider the 2K channel output of the CNN as latent variables
H∗2D

k and H∗ẑr

k for 2D heatmaps and depth maps, respectively. We then apply
spatial softmax normalization to the 2D heatmap H∗2D

k of each keypoint k to
convert it to a probability map

H2D
k (p) =

exp(βkH∗2D
k (p))∑

p′∈Ω exp(βkH∗2D
k (p′))

, (13)

where Ω is the set of all pixel locations in the input map H∗2D
k , and βk is

the learnable parameter that controls the spread of the output heatmaps H2D.
Finally, the 2D keypoint position of the kth keypoint is obtained as the weighted
average of the 2D pixel coordinates as,

pk =
∑
p∈Ω

H2D
k (p) · p, (14)

while the corresponding depth value is obtained as the summation of the
Hadamard product of H2D

k (p) and H∗ẑr

k (p) as follows

Ẑr
k =

∑
p∈Ω

H2D
k (p) ◦ H∗ẑr

k (p). (15)

A pictorial representation of this process can be seen in Fig. 1. The operation in
Eq. (14) is known as soft-argmax in the literature [61]. Note that the computation
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of both the 2D keypoint location and the corresponding depth value is fully
differentiable. Hence the network can be trained end-to-end, while generating
a latent 2.5D heatmap representation. In contrast to the heatmaps with fixed
standard deviation in Sect. 4.1, the spread of the latent heatmaps can be adapted
for each keypoint by learning the parameter βk, while the depth maps are also
learned implicitly without any ad-hoc design choices. A comparison between
heatmaps obtained by direct heatmap regression and the ones implicitly learned
by latent heatmap regression can be seen in Fig. 2.

Fig. 2. Comparison between the heatmaps obtained using direct heatmap regression
(Sect. 4.1) and the proposed latent heatmap regression approach (Sect. 4.2). We can see
how the proposed method automatically learns the spread separately for each keypoint,
i.e., very peaky for fingertips while a bit wider for the palm.

5 Experiments

In this section, we evaluate the performance of the proposed approach in detail
and also compare it with the state-of-the-art. For this, we use five challenging
datasets as follows.
The Dexter+Object (D+O) dataset [22] provides 6 test video sequences (3145
frames) recorded using a static camera with a single hand interacting with an
object. The dataset provides annotations for the fingertips only.
The EgoDexter (ED) dataset [62] consists of 4 test sequences (3190 frames)
recorded with a body-mounted camera from egocentric viewpoints and contains
cluttered backgrounds, fast camera motion, and complex interactions with vari-
ous objects. In addition, [62] also provides the so called “SynthHands” dataset
of synthetic images of hands from ego-centric views. The images are provided
with chroma-keyed background, that we replace with random backgrounds [63]
and use them as additional training data for testing on the ED dataset.
The Stereo Hand Pose (SHP) dataset [64] provides 3D pose annotations of 21
keypoints for 6 pairs of stereo sequences (18000 frame pairs) recording a person
while performing various gestures.
The Rendered Hand Pose (RHP) dataset [48] provides 41258 and 2728
synthetic images for training and testing, respectively. The dataset contains 20
different characters performing 39 actions in different settings.
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The MPII+NZSL [60] dataset provides 2D hand pose annotations for 2800
in-the-wild images split into 2000 and 800 images for training and testing, respec-
tively. In addition, [60] also provides additional training data that contains 14261
synthetic images and 14817 real images. The annotations for real images are gen-
erated automatically using multi-view bootstrapping. We refer to these images
as MVBS in the rest of this paper.

5.1 Evaluation Metrics

For our evaluation on the D+O, ED, SHP, and RHP datasets, we use average
End-Point-Error (EPE) and the Area Under the Curve (AUC) on the Percent-
age of Correct Keypoints (PCK). We report the performance for both 2D and
3D hand pose where the performance metrics are computed in pixels (px) and
millimeters (mm), respectively. We use the publicly available implementation of
evaluation metrics from [48]. For the D+O and ED datasets, we follow the evalu-
ation protocol proposed by [52], which requires estimating the absolute 3D pose
with global scale. For SHP and RHP, we follow the protocol proposed by [48],
where the root keypoints of the ground-truth and estimated poses are aligned
before calculating the metrics. For the MPII+NZSL dataset, we follow [60] and
report head-normalized PCK (PCKh) in our evaluation.

5.2 Implementation Details

For 2.5D heatmap regression we use an Encoder-Decoder network architecture
with skip connections [27,65] and fixed number of channels (256) in each convo-
lutional layer. The input to our model is a 128×128 image, which produces 2.5D
heatmaps as output with the same resolution as the input image. Further details
about the network architecture and training can be found in the appendix. For
all the video datasets, i.e., D+O, ED, SHP we use the YOLO detector [66] to
detect the hand in the first frame of the video, and generate the bounding box
in the subsequent frames using the estimated pose of the previous frame. We
trained the hand detector using the training sets of all aforementioned datasets.

5.3 Ablation Studies

We evaluate the proposed method under different settings to better understand
the impact of different design choices. We chose the D+O dataset for all ablation
studies, mainly because it does not have any training data. Thus, it allows us
to evaluate the generalizability of the proposed method. Finally, since the palm
(root) joint is not annotated, it makes it compulsory to estimate the absolute
3D pose in contrast to the commonly used root-relative 3D pose. We use Eq. (7)
to estimate the global scale of each 3D pose using the mean bone lengths from
the SHP dataset.

The ablative studies are summarized in Table 1. We first examine the impact
of different choices of CNN architectures for 2.5D pose regression. For holistic
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Table 1. Ablation studies. The arrows specify whether a higher or lower value for
each metric is better. The first block compares the proposed approach of latent 2.5D
heatmap regression with two baseline approaches. The second block shows the impact
of different training data and the last block shows the impact due to differences in the
annotations.

Method 2D pose estimation 3D pose estimation

AUC ↑ EPE (px) AUC ↑ EPE (mm)

median ↓ mean ↓ median ↓ mean ↓
Comparison with baselines

Holistic 2.5D reg. 0.41 17.34 22.21 0.54 42.76 47.80

Direct 2.5D heatmap reg. 0.57 10.33 21.63 0.55 36.97 52.33

Latent 2.5D heatmap reg. (Ours) 0.59 9.91 16.67 0.57 39.62 45.54

Impact of training data

Latent 2.5D heatmap regression trained with

SHP [64] + RHP [48] 0.59 9.91 16.67 0.57 39.62 45.54

+ MPII + NZSL [60] 0.67 9.07 10.65 0.68 28.11 32.78

+ MVBS [60] 0.68 8.84 10.45 0.68 27.27 32.75

Comparisons with the baselines with additional training data trained with

SHP+RHP (3D pose) and MPII+NZSL+MVBS (2d pose) datasets

Holistic reg. 0.53 12.98 16.17 0.66 31.71 34.86

Direct heatmap reg. 0.65 9.60 12.06 0.68 25.92 35.56

Latent heatmap reg. 0.68 8.84 10.45 0.68 27.27 32.75

Performance after removing labeling discrepancy

Holistic regression 0.59 10.66 14.10 0.67 30.69 33.80

Direct heatmap reg. 0.72 7.05 9.66 0.68 25.37 34.88

Latent heatmap reg. 0.76 5.95 7.97 0.69 26.56 31.86

Latent heatmap reg. - fast 0.71 6.44 10.67 0.68 28.08 33.35

2.5D pose regression, we use the commonly adopted [29] ResNet-50 [67] model.
The details can be found in the appendix. We use the SHP and RHP datasets to
train the models. Using a holistic regression approach results in an AUC of 0.41
and 0.54 for 2D and 3D pose, respectively. Directly regressing the 2.5D heatmaps
significantly improves the performance of 2D pose estimation (0.41 vs. 0.57),
while also raising the 3D pose estimation accuracy from 0.54 AUC to 0.55. Using
latent heatmap regression improves the performance even further to 0.59 AUC
and 0.57 AUC for 2D and 3D pose estimation, respectively. While the holistic
regression approach achieves a competitive accuracy for 3D pose estimation, the
accuracy for 2D pose estimation is inferior to the heatmap regression due to its
limited spatial output resolution.

We also evaluate the impact of training the network in a multi-task setup. For
this, we train the model with additional training data from [60] which provides
annotations for 2D keypoints only. First, we only use the 2000 manually anno-
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tated real images from the training set of the MPII+NZSL dataset. Using addi-
tional 2D pose annotations significantly improves the performance. Adding addi-
tional 15, 000 annotations of real images from the MVBS dataset [60] improves
the performance only slightly. Hence, only 2000 real images are sufficient to
generalize the model trained on synthetic data to a realistic scenario. We also
evaluate the impact of additional training data on all CNN architectures for
2.5D regression. We can see that the performance improves for all architectures,
but importantly, the ordering in terms of performance stays the same.

The annotations of the fingertips in the D+O dataset are slightly different
than in the other datasets i.e., they are annotated at the middle of the tips
whereas other datasets annotate them at the edge of the nails. To remove this
discrepancy, we shorten the last bone of the fingertip by 0.9. Fixing the annota-
tion differences results in further improvements, revealing the true performance
of the proposed approach.

We also evaluate the runtime of the used models on an NVIDIA TitanX Pas-
cal GPU. While the holistic 2.5D regression model runs at 145 FPS, direct and
latent 2.5D heatmap regression networks run at 20 FPS. We trained a smaller 1-
stage model with 128 feature maps (base layers) and replaced 7× 7 convolutions
in the last 3 layers with 1× 1, 3 × 3 and 1× 1 convolutions. The simplifications
resulted in 150 FPS and parameter reduction by 3.8x while remaining competi-
tive to direct heatmap regression with the full model. This model is marked with
label “fast” in Table 1.

Finally, we also evaluate the impact of using multiple stages in the network,
where each stage produces latent 2.5D heatmaps as output. The complete 2-
stage network is trained from scratch with no weight-sharing. While the first
stage only uses the features extracted from the input image using the initial
block of convolutional layers, each subsequent stage also utilizes the output of
the preceding stage as input. This provides additional contextual information to
the subsequent stages and helps in incrementally refining the predictions. Similar
to [26,27] we provide local supervision to the network by enforcing the loss at
the output of each stage (see appendix for more details). Adding one extra stage
to the network increases the 3D pose estimation accuracy from AUC 0.69 to
0.71, but decreases the 2D pose estimation accuracy from AUC 0.76 to 0.74.
The decrease in 2D pose estimation accuracy is most likely due to over-fitting to
the training datasets. Remember that we do not use any training data from the
D+O dataset. In the rest of this paper, we always use networks with two stages
unless stated otherwise.

5.4 Comparison to State-of-the-Art

We provide a comparison of the proposed approach with state-of-the-art methods
on all aforementioned datasets. Note that different approaches use different train-
ing data. We thus replicate the training setup of the corresponding approaches
for a fair comparison.
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Fig. 3. Comparison with the state-of-the-art on the DO, ED, SHP and MPII+NZSL
datasets.

Figure 3a and b compare the proposed approach with other methods on the
D+O dataset for 2D and 3D pose estimation, respectively. In particular, we com-
pare with the state-of-the-art approaches by Zimmerman and Brox (Z&B) [48]
and Mueller et al. [52]. We use the same training data (SHP+RHP) for compar-
ison with [48] (AUC 0.64 vs 0.49), and only use additional 2D pose annotations
(MPII+NZSL+MVBS) provided by [60] for comparison with [52](AUC 0.74 vs
0.64). For the 3D pose estimation accuracy (Fig. 3b), the approach [48] is not
included since it only estimates scale normalized root-relative 3D pose. Our app-
roach clearly outperforms the state-of-the-art RGB based method by Mueller et
al. [52] by a large margin. The approach [52] utilizes the video information to
perform temporal smoothening and also performs subject specific adaptation
under the assumption that the users hold their hand parallel to the camera
image plane. In contrast, we only perform frame-wise predictions without tem-
poral filtering or user assumptions. Additionally, we report the results of the
depth based approach by Sridhar et al. [22], which are obtained from [52]. While
the RGB-D sensor based approach [22] still works better, our approach takes a
giant leap forward as compared to the existing RGB based approaches.

Figure 3c compares the proposed method with existing approaches on the
SHP dataset. We use the same training data (SHP+RHP) as in [48] and outper-
form all existing methods despite the already saturated accuracy on the dataset
and the additional training data and temporal information used in [52].

Figure 3d compares the 2D pose estimation accuracy on the EgoDexter
dataset. While we outperform all existing methods for 2D pose estimation, none



138 U. Iqbal et al.

Table 2. Comparison with the state-of-the-art on the RHP dataset. *uses noisy ground-
truth 2D poses for 3D pose estimation.

Method 2D pose estimation 3D pose estimation

AUC ↑ EPE (px) AUC ↑ EPE (mm)

median ↓ mean ↓ median ↓ mean ↓
Z & B [48] 0.72 5.00 9.14 - 18.8* -

Spurr et al. [53] - - - 0.85 19.73 -

Ours 0.89 2.20 3.57 0.91 13.82 15.77

Ours w. GT Ẑroot and ŝ 0.89 2.20 3.57 0.94 11.33 13.41

of the existing approaches report their performance for 3D pose estimation on
this dataset. We, however, also report our performance in Fig. 3e.

The results on the RHP dataset are reported in Table 2. Our approach signif-
icantly outperforms state-of-the-art approaches [48,53]. Since the dataset pro-
vides 3D pose annotations for complete hand skeleton, we also report the perfor-
mance of the proposed approach when the ground-truth depth of the root joint
and the global scale of the hand is known (w. GT Ẑroot and ŝ). We can see that
our approach of 3D pose reconstruction and scale recovery is very close to the
ground-truth.

Finally, for completeness, in Fig. 3f we compare our approach with [60] which
is a state-of-the-art approach for 2D pose estimation. The evaluation is per-
formed on the test set of the MPII+NZSL dataset. We follow [60] and use the
provided center location of the hand and the size of the head of the person to
obtain the hand bounding box. We define a square bounding box with height and
width equal to 0.7×head-length. We report two variants of our method; (1) the
model trained for both 2D and 3D pose estimation using the datasets for both
tasks, and (2) a model trained for only 2D pose estimation using the same train-
ing data as in [60]. In both cases we use the models trained with 2-stages. Our
approach performs similar or better than [60], even though we use a smaller back-
bone network as compared to the 6-stage Convolutional Pose Machines (CPM)
network [26] used in [60]. The CPM model with 6-stages has 51M parameters,
while our 1 and 2-stage models have only 17M and 35M parameters, respec-
tively. Additionally, our approach also infers the 3D hand pose.

Some qualitative results for 3D hand pose estimation for in-the-wild images
can be seen in Fig. 4.
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Fig. 4. Qualitative Results. The proposed approach can handle severe occlusions, com-
plex hand articulations, and unconstrained images taken from the wild.

6 Conclusion

We have presented a method for 3D hand pose estimation from a single RGB
image. We demonstrated that the absolute 3D hand pose can be reconstructed
efficiently from a single image up to a scaling factor. We presented a novel 2.5D
pose representation which can be recovered easily from RGB images since it
is invariant to absolute depth and scale ambiguities. It can be represented as
2.5D heatmaps, therefore, allows keypoint localization with sub-pixel accuracy.
We also proposed a CNN architecture to learn 2.5D heatmaps in a latent way
using a differentiable loss function. Finally, we proposed an approach to recon-
struct the 3D hand pose from 2.5D pose representation. The proposed approach
demonstrated state-of-the-art results on five challenging datasets with severe
occlusions, object interactions and images taken from the wild.
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