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Abstract. The problem of single-view 3D shape completion or recon-
struction is challenging, because among the many possible shapes that
explain an observation, most are implausible and do not correspond to
natural objects. Recent research in the field has tackled this problem
by exploiting the expressiveness of deep convolutional networks. In fact,
there is another level of ambiguity that is often overlooked: among plau-
sible shapes, there are still multiple shapes that fit the 2D image equally
well; i.e., the ground truth shape is non-deterministic given a single-view
input. Existing fully supervised approaches fail to address this issue,
and often produce blurry mean shapes with smooth surfaces but no fine
details. In this paper, we propose ShapeHD, pushing the limit of single-
view shape completion and reconstruction by integrating deep generative
models with adversarially learned shape priors. The learned priors serve
as a regularizer, penalizing the model only if its output is unrealistic,
not if it deviates from the ground truth. Our design thus overcomes
both levels of ambiguity aforementioned. Experiments demonstrate that
ShapeHD outperforms state of the art by a large margin in both shape
completion and shape reconstruction on multiple real datasets.
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1 Introduction

Let’s start with a game: each of the two instances in Fig. 1 shows a depth or
color image and two different 3D shape interpretations. Which one looks better?

We asked this question to 100 people on Amazon Mechanical Turk. 59% of
them preferred interpretation A of the airplane, and 35% preferred interpretation
A of the car. These numbers suggest that people’s opinions diverge on these
two cases, indicating that these reconstructions are close in quality, and their
perceptual differences are relatively minor.
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Fig. 1. Our model completes or reconstructs the object’s full 3D shape with fine details
from a single depth or RGB image. In this figure, we show two examples, each consisting
of an input image, two views of its ground truth shape, and two views of our results. Our
reconstructions are of high quality with fine details, and are preferred by humans 41%
and 35% of the time in behavioral studies, respectively. Our model takes a single feed-
forward pass without any post-processing during testing, and is thus highly efficient
(< 100 ms) and practically useful. Answers are available in the footnote.

Actually, for each instance, one of the reconstructions is the output of the
model introduced in this paper, and the other is the ground truth shape. Answers
are available in the footnote.

In this paper, we aim to push the limits of 3D shape completion from a single
depth image, and of 3D shape reconstruction from a single color image. Recently,
researchers have made impressive progress on the these tasks [7,8,52], making
use of gigantic 3D datasets [5,59,60]. Many of these methods tackle the ill-posed
nature of the problem by using deep convolutional networks to regress possible
3D shapes. Leveraging the power of deep generative models, their systems learn
to avoid producing implausible shapes (Fig. 2b).

However, from Fig. 2c we realize that there is still ambiguity that a supervis-
edly trained network fails to model. From just a single view, there exist multiple
natural shapes that explain the observation equally well. In other words, there
is no deterministic ground truth for each observation. Through pure supervised
learning, the network tends to generate mean shapes that minimize its penalty
precisely due to this ambiguity.

To tackle this, we propose ShapeHD, which completes or reconstructs a 3D
shape by combining deep volumetric convolutional networks with adversarially
learned shape priors. The learned shape priors penalize the model only if the
generated shape is unrealistic, not if it deviates from the ground truth. This
overcomes the difficulty discussed above. Our model characterizes this natural-
ness loss through adversarial learning, a research topic that has received immense
attention in recent years and is still rapidly growing [14,37,57].

Experiments on multiple synthetic and real datasets suggest that ShapeHD
performs well on single-view 3D shape completion and reconstruction, achieving
better results than state-of-the-art systems. Further analyses reveal that the
network learns to attend to meaningful object parts, and the naturalness module
indeed helps to characterize shape details over time.1

1 Ourreconstructions:B,A
��
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2 Related Work

3D Shape Completion. Shape completion is an essential task in geometry
processing and has wide applications. Traditional methods have attempted to
complete shapes with local surface primitives, or to formulate it as an optimiza-
tion problem [35,44], e.g ., Poisson surface reconstruction solves an indicator
function on a voxel grid via the Poisson equation [28,29]. Recently, there have
also been a growing number of papers on exploiting shape structures and regu-
larities [34,51], and papers on leveraging strong database priors [4,32,46]. These
methods, however, often require the database to contain exact parts of the shape,
and thus have limited generalization power.

With the advances in large-scale shape repositories like ShapeNet [5],
researchers began to develop fully data-driven methods, some building upon deep
convolutional networks. To name a few, Voxlets [12] employs random forests for
predicting unknown voxel neighborhoods. 3D ShapeNets [58] uses a deep belief
network to obtain a generative model for a given shape database, and Nguyen
et al. [50] extend the method for mesh repairing.

Fig. 2. Two levels of ambiguity in single-view 3D shape perception. For each 2D obser-
vation (a), there exist many possible 3D shapes that explain this observation equally
well (b, c), but only a small fraction of them correspond to real, daily shapes (c). Meth-
ods that exploit deep networks for recognition reduce, to a certain extent, ambiguity
on this level. By using an adversarially learned naturalness model, our ShapeHD aims
to model ambiguity on the next level: even among the realistic shapes, there are still
multiple shapes explaining the observation well (c).

Probably the most related paper to ours is the 3D-EPN from Dai et al. [8].
3D-EPN achieves impressive results on 3D shape completion from partial depth
scans by levering 3D convolutional networks and nonparametric patch-based
shape synthesis methods. Our model has advantages over 3D-EPN in two
aspects. First, with naturalness losses, ShapeHD can choose among multiple
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hypotheses that explain the observation, therefore reconstructing a high-quality
3D shape with fine details; in contrast, the output from 3D-EPN without non-
parametric shape synthesis is often blurry. Second, our completion takes a
single feed-forward pass without any post-processing, and is thus much faster
(<100 ms) than 3D-EPN.

Single-image 3D Reconstruction. The problem of recovering the object
shape from a single image is challenging, as it requires both powerful recognition
systems and prior shape knowledge. As an early attempt, Huang et al. [21] pro-
pose to borrows shape parts from existing CAD models. With the development
of large-scale shape repositories like ShapeNet [5] and methods like deep convo-
lutional networks, researchers have built more scalable and efficient models in
recent years [7,13,18,27,36,38,48,52,56,57,62]. While most of these approaches
encode objects in voxels from vision, there have also been attempts to recon-
struct objects in point clouds [11,15] or octave trees [39,40,49], or using tactile
signals [53].

A related direction is to estimate 2.5D sketches (e.g ., depth and surface nor-
mal maps) from an RGB image. In the past, researchers have explored recovering
2.5D sketches from shading, texture, or color images [2,3,20,47,55,63]. With the
development of depth sensors [23] and larger-scale RGB-D datasets [33,42,43],
there have also been papers on estimating depth [6,10], surface normals [1,54],
and other intrinsic images [25,41] with deep networks. Inspired by MarrNet [56],
we reconstructs 3D shapes via modeling 2.5D sketches, but incorporating a nat-
uralness loss for much higher quality.

Perceptual Losses and Adversarial Learning. Researchers recently pro-
posed to evaluate the quality of 2D images using perceptual losses [9,26].
The idea has been applied to many image tasks like style transfer and super-
resolution [26,31]. Furthermore, the idea has been extended to learn a perceptual
loss function with generative adversarial nets (GAN) [14]. GANs incorporate an
adversarial discriminator into the procedure of generative modeling, and achieve
impressive performance on tasks like image synthesis [37]. Isola et al. [22] and
Zhu et al. [65] use GANs for image translation with and without supervision,
respectively.

In 3D vision, Wu et al. [57] extends GANs for 3D shape synthesis. However,
their model for shape reconstruction (3D-VAE-GAN) often produces a noisy,
incomplete shape given an RGB image. This is because training GANs jointly
with recognition networks could be highly unstable. Many other researchers have
also noticed this issue: although adversarial modeling of 3D shape space may
resolve the ambiguity discussed earlier, its training could be challenging [8].
Addressing this, when Gwak et al. [17] explored adversarial nets for single-image
3D reconstruction and chose to use GANs to model 2D projections instead of 3D
shapes. This weakly supervised setting, however, hampers their reconstructions.
In this paper, we develop our naturalness loss by adversarial modeling of the 3D
shape space, outperforming the state-of-the-art significantly.
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3 Approach

Our model consists of three components: a 2.5D sketch estimator and a 3D shape
estimator that predicts a 3D shape from an RGB image via 2.5D sketches (Fig. 3-
I,II, inspired by MarrNet [56]), and a deep naturalness model that penalizes the
shape estimator if the predicted shape is unnatural (Fig. 3-III). Models trained
with a supervised reconstruction loss alone often generate blurry mean shapes.
Our learned naturalness model helps to avoid this issue.

2.5D Sketch Estimation Network. Our 2.5D sketch estimator has an
encoder-decoder structure that predicts the object’s depth, surface normals, and
silhouette from an RGB image (Fig. 3-I). We use a ResNet-18 [19] to encode a
256 × 256 image into 512 feature maps of size 8 × 8. The decoder consists of
four transposed convolutional layers with a kernel size of 5 × 5 and a stride and
padding of 2. The predicted depth and surface normal images are then masked by
the predicted silhouette and used as the input to our shape completion network.

3D Shape Completion Network. Our 3D estimator (Fig. 3-II) is an encoder-
decoder network that predicts a 3D shape in the canonical view from 2.5D
sketches. The encoder is adapted from ResNet-18 [19] to encode a four-channel
256 × 256 image (one for depth, three for surface normals) into a 200-D latent
vector. The vector then goes through a decoder of five transposed convolutional
and ReLU layers to generate a 128 × 128 × 128 voxelized shape. Binary cross-
entropy losses between predicted and target voxels are used as the supervised
loss Lvoxel.

Fig. 3. For single-view shape reconstruction, ShapeHD contains three components: (I)
a 2.5D sketch estimator that predicts depth, surface normal and silhouette images
from a single image; (II) a 3D shape completion module that regresses 3D shapes from
silhouette-masked depth and surface normal images; (III) an adversarially pretrained
convolutional net that serves as the naturalness loss function. While fine-tuning the 3D
shape completion net, we use two losses: a supervised loss on the output shape, and a
naturalness loss offered by the pretrained discriminator. (Color figure online)
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3.1 Shape Naturalness Network

Due to the inherent uncertainty of single-view 3D shape reconstruction, shape
completion networks with only a supervised loss usually predict unrealistic mean
shapes. By doing so, they minimize the loss when there exist multiple possible
ground truth shapes. We instead introduce an adversarially trained deep natu-
ralness regularizer that penalizes the network for such unrealistic shapes.

We pre-train a 3D generative adversarial network [14] to determine whether
a shape is realistic. Its generator synthesizes a 3D shape from a randomly sam-
pled vector, and its discriminator distinguishes generated shapes from real ones.
Therefore, the discriminator has the ability to model the real shape distribution
and can be used as a naturalness loss for the shape completion network. The
generator is not involved in our later training process. Following 3D-GAN [57],
we use 5 transposed convolutional layers with batch normalization and ReLU for
the generator, and 5 convolutional layers with leaky ReLU for the discriminator.

Due to the high dimensionality of 3D shapes (128×128×128), training a GAN
becomes highly unstable. To deal with this issue, we follow Gulrajani et al. [16]
and use the Wasserstein GAN loss with a gradient penalty to train our adver-
sarial generative network. Specifically,

LWGAN = E
x̃∼Pg

[D(x̃)] − E
x∼Pr

[D(x)] + λ E
x̂∼Px

[(‖�x̂D(x̂)‖2 − 1)2], (1)

where D is the discriminator, Pg and Pr are distributions of generated shapes
and real shapes, respectively. The last term is the gradient penalty from Gulra-
jani et al. [16]. During training, the discriminator attempts to minimize the over-
all loss LWGAN while the generator attempts to maximize the loss via the first
term in Eq. 1, so we can define our naturalness loss as Lnatural = − E

x̃∼Pc

[D(x̃)],

where Pc are the reconstructed shapes from our completion network.

3.2 Training Paradigm

We train our network in two stages. We first pre-train the three components
of our model separately. The shape completion network is then fine-tuned with
both voxel loss and naturalness losses.

Our 2.5D sketch estimation network and 3D completion network are trained
with images rendered with ShapeNet [5] objects (see Sects. 4.1 and 5 for details).
We train the 2.5D sketch estimator using a L2 loss and SGD with a learning
rate of 0.001 for 120 epochs. We only use the supervised loss Lvoxel for training
the 3D estimator at this stage, again with SGD, a learning rate of 0.1, and
a momentum of 0.9 for 80 epochs. The naturalness network is trained in an
adversarial manner, where we use Adam [30] with a learning rate of 0.001 and a
batch size of 4 for 80 epochs. We set λ = 10 as suggested in Gulrajani et al. [16].
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We then fine-tune our completion network with both voxel loss and natural-
ness losses as L = Lvoxel +αLnatural. We compare the scale of gradients from the
losses and train our completion network with α = 2.75 × 10−11 using SGD for
80 epochs. Our model is robust to these parameters; they are only for ensuring
gradients of various losses are of the same magnitude.

An alternative is to jointly train the naturalness module with the completion
network from scratch using both losses. It seems tempting, but in practice we
find that Wasserstein GANs have large losses and gradients, resulting in unstable
outputs. We therefore choose to use our pre-training and fine-tuning setup.

4 Single-View Shape Completion

For 3D shape completion from a single depth image, we only use the last two
modules of the model: the 3D shape estimator and deep naturalness network.

4.1 Setup

Data. We render each of the ShapeNet Core55 [5] objects from the aeroplane,
car and chair categories in 20 random, fully unconstrained views. For each view,
we randomly set the azimuth and elevation angles of the camera, but the camera
up vector is fixed to be the world +y axis, and the camera always looks at the
object center. The focal length is fixed at 50 mm with a 35 mm film. We use
Mitsuba [24], a physically-based graphics engine, for all our renderings. We used
90% of the data for training and 10% for testing.

We render the ground-truth depth image of each object in all 20 views.
Depth values are measured from the camera center (i.e., ray depth), rather than
from the image plane. To approximate depth scanner data, we also generate the
accompanying ground-truth surface normal images from the raw depth data, as
surface normal maps are the common by-products of depth scanning. All our
rendered surface normal vectors are defined in the camera space.

Baselines. We compare with the state of the art: 3D-EPN [8]. To ensure a fair
comparison, we convert depth maps to partial surfaces registered in a canonical
global coordinate defined by ShapeNet Core55 [5], which is required by 3D-
EPN. While the original 3D-EPN paper generates their partial observations by
rendering and fusing multi-view depth maps, our method takes a single-view
depth map as input and is solving a more challenging problem.

Metrics. We use two standard metrics for quantitative comparisons: Intersec-
tion over Union (IoU) and Chamfer Distance (CD). In particular, Chamfer dis-
tance can be applied to various shape representations including voxels (by sam-
pling points on the isosurface) and point clouds.

4.2 Results on ShapeNet

Qualitative Results. In Fig. 4, we show 3D shapes predicted by ShapeHD
from single-view depth images. While common encoder-decoder structure usually
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Fig. 4. Results on 3D shape completion from single-view depth. From left to right:
input depth maps, shapes reconstructed by ShapeHD in the canonical view and a
novel view, and ground truth shapes in the canonical view. Assisted by the adversari-
ally learned naturalness losses, ShapeHD recovers highly accurate 3D shapes with fine
details. Sometimes the reconstructed shape deviates from the ground truth, but can
be viewed as another plausible explanation of the input (e.g ., the airplane on the left,
third row).

generates mean shapes with few details, our ShapeHD predicts shapes with large
variance and fine details. In addition, even when there is strong occlusion in the
depth image, our model can predict a high-quality, plausible 3D shape that looks
good perceptually, and infer parts not present in the input images.

Ablation. When using naturalness loss, the network is penalized for generating
mean shapes that are unreasonable but minimize the supervised loss. In Fig. 5,
we show reconstructed shapes from our ShapeHD with and without naturalness
loss (i.e. before fine-tuning with Lnatural), together with ground truth shapes
and shapes predicted by 3D-EPN [8]. Our results contain finer details compared
with those from 3D-EPN. Also, the performance of ShapeHD improves greatly
with the naturalness loss, which predicts more reasonable and complete shapes.

Quantitative Results. We present quantitative results in Table 1. Our
ShapeHD outperforms the state of the art by a margin in all metrics. Our method
outputs shapes at the resolution of 1283, while shapes produced by 3D-EPN are
of resolution 323. Therefore, for a fair comparison, we downsample our predicted
shapes to 323 and report results of both methods in that resolution. The origi-
nal 3D-EPN paper suggests a post-processing step that retrieves similar patches
from a shape database for results of a higher resolution. Practically, we find
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Fig. 5. Our results on 3D shape completion, compared with the state of the art, 3D-
EPN [8], and our model but without naturalness losses. Our results contain more details
than 3D-EPN. We observe that the adversarially trained naturalness losses help fix
errors, add details (e.g ., the plane wings in row 3, car seats in row 6, and chair arms
in row 8), and smooth planar surfaces (e.g ., the sofa back in row 7).

this steps takes 18 hours for a single image. We therefore report results without
post-processing for both methods.

Table 1 also suggests the naturalness loss improve the completion results,
achieving comparable IoU scores and better (lower) CDs. CD has been reported
to be better at capturing human perception of shape quality [45].

Table 1. Average IoU scores (323) and CDs for 3D shape completion on ShapeNet [5].
Our model outperforms the state of the art by a large margin. The learned naturalness
losses consistently improve the CDs between our results and ground truth.

Methods IoU CD

chair car plane avg chair car plane avg

3D-EPN [8] .147 .274 .155 .181 .227 .200 .125 .192

ShapeHD w/o Lnatural .466 .698 .488 .529 .112 .083 .071 .093

ShapeHD .488 .698 .452 .529 .096 .078 .068 .084
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4.3 Results on Real Depth Scans

We now show results of ShapeHD on real depth scans. We capture six depth
maps of different chairs using a Structure sensor (http://structure.io) and use
the captured depth maps to evaluate our model. All the corresponding normal
maps used as inputs are estimated from depth measurements. Figure 6 shows
that ShapeHD completes 3D shapes well given a single-view depth map. Our
ShapeHD is more flexible than 3D-EPN, as we do not need any camera intrinsics
or extrinsics to register depth maps. In our case, none of these parameters are
known and thus 3D-EPN cannot be applied.

Fig. 6. Results of 3D shape completion on depth data from a physical scanner. Our
model is able to reconstruct the shape well from just a single view. From left to right:
input depth, two views of our completion results, and a color image of the object.

5 3D Shape Reconstruction

We now evaluate ShapeHD on 3D shape reconstruction from a single color image.

RGB Image Preparation. For the task of single-image 3D reconstruction, we
need to render RGB images that correspond to the depth images for training. We
follow the same camera setup specified earlier. Additionally, to boost the real-
ism of the rendered RGB images, we put three different types of backgrounds
behind the object during rendering. One third of the images are rendered in
a clean white background; one third are rendered in high-dynamic-range back-
grounds with illumination channels that produce realistic lighting. We render
the remaining one third images with backgrounds randomly sampled from the
SUN database [61].

Baselines. We compare our ShapeHD with the state-of-the-art in 3D
shape reconstruction, including 3D-R2N2 [7], point set generation network

http://structure.io
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Fig. 7. Qualitative results and CDs for 3D shape reconstruction on ShapeNet [5].
Our rendering of ShapeNet is more challenging than that from Choy et al. [7]; as
such, the numbers of the other methods may differ from those in the original paper.
All methods are trained with full 3D supervision on our rendering of the largest 13
ShapeNet categories. ∗DRC and ShapeHD take a single image as input, while AltasNet
requires ground truth object silhouettes as additional input.

Fig. 8. Qualitative results and CDs for 3D shape reconstruction on novel categories
from ShapeNet [5]. All methods are trained with full 3D supervision on our rendering of
ShapeNet cars, chairs, and planes, and tested on the next 10 largest categories. ∗DRC
and ShapeHD take a single image as input, while AltasNet requires ground truth object
silhouettes as additional input.

(PSGN) [11], differentiable ray consistency (DRC) [52], octree generating net-
work (OGN) [49], and AtlasNet [15]. 3D-R2N2, DRC, OGN, and our ShapeHD
take a single image as input, while PSGN and AltasNet require object silhouettes
as additional input.

Results on Synthetic Data. We first evaluate on renderings of ShapeNet
objects [5]. We present reconstructed 3D shapes and quantitative results in Fig. 7.
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Fig. 9. Single-view 3D shape reconstruction on PASCAL 3D+ [60]. From left to right:
input, two views of reconstructions from ShapeHD, and reconstructions by the best
alternative in Table 2. Assisted by the learned naturalness losses, ShapeHD recovers
accurate 3D shapes with fine details.

All these models are trained on our rendering of the largest 13 ShapeNet cate-
gories (those have at least 1,000 models) with ground truth 3D shapes as supervi-
sion. In general, our ShapeHD is able to predict 3D shapes that closely resemble
the ground truth shapes, giving fine details that make the reconstructed shapes
more realistic. It also performs better quantitatively.

Generalization on Novel Categories. An important aspect of evaluating
shape reconstruction methods is on how well they generalize. Here we train our
model and baselines on the largest three ShapeNet classes (cars, chairs, and
planes), again with ground truth shapes as supervision, and test them on the
next largest ten. Figure 8 shows our ShapeHD performs better than DRC (3D)
and is comparable to AtlasNet; however, note that AtlasNet requires ground
truth silhouettes as additional input, while ShapeHD works on raw images.

Results on Real Data. We then evaluate on two real datasets, PASCAL
3D+ [60] and Pix3D [45]. Here, we train our model on synthetic ShapeNet ren-
derings and use the pre-trained models released by the authors as baselines. All
methods take ground truth 3D shapes as supervision during training. As shown
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in Figs. 9 and 10, ShapeHD works well, inferring a reasonable shape even in the
presence of strong self-occlusions. In particular, in Fig. 9, we compare our recon-
structions with the best-performing alternatives (DRC on chairs and airplanes,
and AtlasNet on cars). In addition to preserving details, our model captures the
shape variations of the objects, while the competitors produce similar recon-
structions across instances.

Quantitatively, Tables 2 and 3 suggest that ShapeHD performs significantly
better than the other methods in almost all metrics. The only exception is the
CD on PASCAL 3D+ cars, where OGN performs the best. However, as PASCAL
3D+ only has around 10 CAD models for each object category as ground truth
3D shapes, the ground truth labels and the scores can be inaccurate, failing to
reflect human perception [52].

We therefore conduct an additional user study, where we show an input image
and its two reconstructions (from ShapeHD and from OGN, each in two views)
to users on Amazon Mechanical Turk, and ask them to choose the shape that
looks closer to the object in the image. For each image, we collect 10 responses
from “Masters” (workers who have demonstrated excellence across a wide range
of HITs). Table 2b suggests that on most images, most users prefer our recon-
struction to OGN’s. In general, our reconstructions are preferred 64.5% of the
time.

Fig. 10. Single-view 3D reconstruction on Pix3D [45]. For each input image, we show
reconstructions by AtlasNet, DRC, our ShapeHD, and ground truth. Our ShapeHD
reconstructs complete 3D shapes with fine details that resemble the ground truth.
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Table 2. Results for 3D shape reconstruction on PASCAL 3D+ [60]. (a) We compare
our ShapeHD with 3D-R2N2, DRC, and OGN. PSGN and AtlasNet are not evaluated,
because they require object masks as additional input, but PASCAL 3D+ has only
inaccurate masks. (b) In the behavioral study, most users prefer our constructions on
most images. Overall, our reconstructions are preferred 64.5% of the time to OGN’s.

Methods
CD

chair car plane avg

3D-R2N2 [7] 0.238 0.305 0.305 0.284
DRC (3D) [52] 0.158 0.099 0.112 0.122
OGN [49] - 0.087 - -
ShapeHD (ours) 0.137 0.129 0.094 0.119

(a) CDs on PASCAL 3D+ [60]
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(b) Human Study results

Table 3. 3D shape reconstruction results on Pix3D [45]. All methods were trained
with full 3D supervision on rendered images of ShapeNet objects. ∗3D-R2N2, DRC,
and ShapeHD take a single image as input, while PSGN and AtlasNet require the
ground truth mask as input. Also, PSGN and AtlasNet generate surface point clouds
without guaranteeing watertight meshes and therefore cannot be evaluated in IoU.

3D-R2N2 [7] DRC (3D) [52] PSGN [11]∗ AtlasNet [15]∗ ShapeHD

IoU (323) 0.136 0.265 - - 0.284

IoU (1283) 0.089 0.185 - - 0.205

CD 0.239 0.160 0.199 0.126 0.123

6 Analyses

We want to understand what the network has learned. In this section, we present
a few analyses to visualize what the network is learning, analyze the effect of
the naturalness loss function over time, and discuss common failure modes.

Network Visualization. As the network successfully reconstructs object shape
and parts, it is natural to ask if it learns object or part detectors implicitly. To
this end, we visualize the top activating regions across all validation images
for units in the last convolutional layer of the encoder in our 3D completion
network, using the method proposed by Zhou et al. [64]. As shown in Fig. 11,
the network indeed learns a diverse and rich set of object and part detectors.
There are detectors that attend to car wheels, chair backs, chair arms, chair legs,
and airplane engines. Also note that many detectors respond to certain patterns
(e.g ., strided) in particular, which is probably contributing to the fine details in
the reconstruction. Additionally, there are units that respond to generic shape
patterns across categories, like the curve detector in the bottom right.



Learning Shape Priors for Single-View 3D Completion and Reconstruction 687

Fig. 11. Visualizations on how ShapeHD attends to details in depth maps. Row 1: car
wheel detectors. Row 2: chair back and leg detectors. The left responds to the strided
pattern in particular. Row 3: chair arm and leg detectors. Row 4: airplane engine and
curved surface detectors. The right responds to a specific pattern across classes.

Fig. 12. Visualizations on how ShapeHD evolves over time with naturalness losses: the
predicted shape becomes increasingly realistic as details are being added.

Fig. 13. Common failure modes of our system. Top left: the model sometimes gets
confused by deformable object parts (e.g ., wheels). Top right: the model might miss
uncommon object parts (the ring above the wheels). Bottom row: the model has dif-
ficulty in recovering very thin structure, and may generate other structure patterns
instead.
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Training with Naturalness Loss Over Time. We study the effect of the
naturalness loss over time. In Fig. 12, we plot the loss of the completion network
with respect to fine-tuning epochs. We realize the voxel loss goes down slowly but
consistently. If we visualize the reconstructed examples at different timestamps,
we clearly see details are being added to the shapes. These fine details occupy
a small region in the voxel grid, and thus training with supervised loss alone
is unlikely to recover them. In contrast, with adversarially training perceptual
losses, our model recovers details successfully.

Failure Cases. We present failure cases in Fig. 13. We observe our model has
these common failing modes: it sometimes gets confused by deformable object
parts (e.g ., wheels on the top left); it may miss uncommon object parts (top
right, the ring above the wheels); it has difficulty in recovering very thin structure
(bottom right), and may generate other patterns instead (bottom left). While
the voxel representation makes it possible to incorporate the naturalness loss,
intuitively, it also encourages the network to focus on thicker shape parts, as
they carry more weights in the loss function.

7 Conclusion

We have proposed to use learned shape priors to overcome the 2D-3D ambiguity
and to learn from the multiple hypotheses that explain a single-view obser-
vation. Our ShapeHD achieves state-of-the-art results on 3D shape completion
and reconstruction. We hope our results will inspire further research in 3D shape
modeling, in particular on explaining the ambiguity behind partial observations.
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