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Abstract. In this paper we present an efficient modeling framework
for large scale urban scenes. Taking surface meshes derived from multi-
view-stereo systems as input, our algorithm outputs simplified models
with semantics at different levels of detail (LODs). Our key observation
is that urban building is usually composed of planar roof tops connected
with vertical walls. There are two major steps in our framework: seg-
mentation and building modeling. The scene is first segmented into four
classes with a Markov random field combining height and image fea-
tures. In the following modeling step, various 2D line segments sketching
the roof boundaries are detected and slice the plane into faces. Through
assigning each face with a roof plane, the final model is constructed by
extruding the faces to the corresponding planes. By combining geometric
and appearance cues together, the proposed method is robust and fast
compared to the state-of-the-art algorithms.
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1 Introduction

Modeling urban environment has been the core part for many applications
including navigation, simulation and virtual reality. Although detailed models
can be created with modern interactive softwares, it is inevitably tedious and
not applicable to large city scale. Actually, automatic generation of urban mod-
els from physical measurements remains an open problem [23]. Typically, there
are two types of data sources used in the reconstruction: aerial LiDAR (light
detection and ranging) and aerial imagery.

Airborne LiDAR point cloud was once the first choice for city-scale model-
ing [17,27,35]. It is pure geometric data and usually in the form of 2.5D, i.e., the
LiDAR sensor captures roof structures well but fails to collect sufficient points
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on facade. By contrast, meshes derived from oblique images using structure from
motion (SfM) and multi-view stereo (MVS) workflows contain walls with details
and have rich texture information [2,8,9,11,12]. Although LiDAR point cloud is
more accurate, images are much cheaper and more approachable. With advanced
automated SfM and MVS workflows like Pix4D [26] and Acute3D [1], people can
obtain faithful meshes with realistic textures at large scale. However, these trian-
gulated meshes are particularly dense and noisy because they do not convey any
high level semantic or structural information (e.g., road, building, tree, roof and
wall). Therefore reconstructing them into more compact models with abstracted
semantics has gained increasing attention [14,18,19,25,31,36].

Fig. 1. Modeling of a large urban area. Our input is textured surface meshes generated
from 3720 oblique aerial images. It has 92 M triangle faces covering an area of 12.2 km2.
The output model (in the middle) has 4343 buildings with 0.25M faces, enhanced with
regularity and semantics. Two close-ups are shown on left and right sides

In the context of urban modeling, practitioners usually wish to present the
data with semantics and levels of detail (LODs). Although classic simplification
or approximation algorithms [7,13] can generate models of different complex-
ity via controllable parameters. Herein LOD is not only in the sense of data
storage or rendering, but also a simplified semantic abstraction of the scene.
One aspect of our system is to generate models with LODs conforming to the
CityGML [6] standard, which is a widely accepted open data model for represent-
ing and exchanging virtual 3D city models. Figure 2 shows the basic semantics
and LOD abstractions defined by CityGML [6].

The proposed pipeline takes urban MVS meshes as input and outputs sim-
plified building models with meaningful LODs adhering to the CityGML [6]
standard. We utilize the 2.5D characteristic of building structures and cast the
modeling as a shape labeling problem. Specifically, we first segment the scene
on the orthograph into 4 classes: ground, grass, tree and building. Then various
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roof boundary segments are detected for each building. The segments slice the
plane into pieces of faces. Built on the faces of the segment arrangement, each
face is assigned with a roof plane via a Markov random field (MRF) formulation.
Extruding the face to their designated plane gives the final model.

Fig. 2. Modeling semantics and LODs defined by CityGML [6]. From left to right
are LODs from 0 to 3 with increasing details: LOD1 is LOD0 rising to the averaged
height, LOD2 models the roof top shapes and LOD3 is decorated with superstructures.
Semantics are color coded: ground in brown, facade in light yellow and roof top in blue
(Color figure online)

The main contributions of our work include:

– A novel line segment based 2D shape labeling method for LOD modeling
taking both appearance and geometry cues into consideration.

– A prior embedded shape detection approach, which enhances the regularity
of the model with orthogonal facades and symmetric roofs.

– An efficient pipeline to generate LOD models of large urban scene from noisy
MVS meshes, and validated on our real-world dataset.

2 Related Work

Two major steps of the proposed pipeline are covered in our review of previous
work: urban scene segmentation and modeling.

Segmentation. Although surface mesh segmentation and image segmentation
have been around for a long time in computer graphics and computer vision com-
munities respectively. Little literature is devoted to the segmentation of meshes
reconstructed from images. Verdie et al. [31] compute different geometric features
on the surface and classify it by constructing a MRF labeling on the superfacet
graph. Similarly, Rouhani et al. [28] add other photometric features and using a
random forest to compute the MRF pair-wise potentials. Liu et al. [21] partition
the urban surfaces into structural elements by iteratively clustering faces into
bigger primitives with a high-order conditional random field.

Modeling. Speaking of urban modeling, building is of the most interest. Two
categories of building modeling have been proposed recently.

Candidate selection is a common modeling strategy, which usually follows
the generation and selection pattern. Both [19,31] slice the bounding space
into candidate 3D cells with planes and transform the modeling into a binary
inside/outside labeling problem. Comparing to [19,31] is restricted to Manhat-
tan scene. Apart from the cell selection method, Nan et al. [24] formulate the
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modeling as a cell face selection problem. By putting constraints on the faces
sharing an edge, the model is guaranteed to be 2-manifold by solving a linear
programing problem.

Contour based modeling is another category. In [18], the authors simplify
the boundaries of the pixel-wise labeled height map and generate the model
by lifting the boundary polygons to 3D spaces. Given street-level imagery, GIS
footprint and MVS meshes, Kelly et al. [15] detect the profiles of the footprint
contour and generate detailed models with procedural extrusion [16]. Although
the generated model is of high-quality, the input data is not always available.
Zhu et al. [36] extend the variational shape approximation (VSA) [7] algorithm
for the urban scene and model the facade contour with regularity.

LOD generation is another concern in city modeling. General mesh simplifi-
cation [13] or shape approximation [7] methods can generate models of different
complexity. However they are essentially geometric error driven, which are not
aware of the higher-level structure or regularity presented in the scene. Build
upon the detected structure primitive graph, Salinas et al. [29] try to preserve
the structure when conducting the mesh decimation. None of them could gener-
ate LODs with respect to the semantic abstraction.

3 Overview

Taking noisy MVS meshes of large urban scene as input, our method outputs
manifold models of low complexity and strong regularity in the form of semantic
LODs. The proposed framework consists of two main phases: semantic segmen-
tation and building modeling. Figure 3 shows the overview of the pipeline.

Fig. 3. Large urban scene modeling pipeline of two major steps: semantic segmentation
(b)(c) and building modeling (d)–(h). (a) The input raw MVS meshes in terrestrial
coordinate, rendered with (right) and without (left) texture; (c) semantic segmentation
on the orthographs of (b); (d) plane detection on the roof top; (e) various line segments
outlining the roof patch boundaries; (f) line segments arrangement shape labeling; (h)
an example of the final model with semantics and LODs of building (g)

For city scale reconstruction, aerial oblique images acquired at high altitude
are often used. Although the images are of high resolution and quality, the
output MVS surface meshes still suffer from occlusion, shade, weak and repetitive
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texture. Compared with LiDAR point clouds, MVS meshes are more noisy as
we can see in Fig. 3(a)(g).

Memory issues also arise when dealing with city scale data. Rendering such
dense and large scene alone can be challenging. To curb the computation bur-
den, we cut the input mesh into several memory manageable blocks and each
block can be processed in parallel. In the segmentation part, we fuse both
geometry and appearance information on the orthographs, Fig. 3(b)(c). Then we
model each building with a segment based modeling method as demonstrated
in Fig. 3(d)–(f).

4 Segmentation

Our segmentation step relies on a MRF built on the orthographs to distinguish
four classes of urban objects: ground, grass, tree and building. Through com-
bining a specialized supervised tree classifier and geometric attributes, we can
achieve decent result that meets our need with a simple formulation.

Raw MVS surfaces usually contain many geometric and topological defects
such as self-intersections, non-manifold edges and floating parts. Instead of oper-
ating on the 3D meshes directly like [28,31], we sample the textured mesh into
a 2D orthograh representation. Given a grid sampling step, a vertical ray is cast
from above at each grid center. Recording the texture color, height and normal
of the first intersected point gives us an orthophoto, a depth map and a normal
map respectively, as shown in Fig. 4. The obvious advantages of the orthogo-
nal grid sampling are: (1) data are evenly distributed with efficient access, (2)
both geometric and texture information are in the same image form, (3) many
off-the-shelf image processing algorithms are available.

(a) (b) (c)

Fig. 4. Orthogonal grid sampling of a block, step size is set to 0.2m. (a) Orthophoto.
(b) Height map (linearly mapped into range [0, 255]). (c) Normal map colored by
treating x, y, z components as RGB channels respectively, the blueish color shows that
normals are mostly facing upwards (Color figure online)

Recent CNN-based segmentation methods [22,32] have impressive perfor-
mances. Despite that we choose a traditional boosting and MRF combined
method over them because: (1) the large amount of training data is hard to
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acquire, (2) they are unable to integrate orthophoto features with geometric
data (e.g., height or normal) effectively [22], (3) the segmentation here is more
treated as a building isolation step rather than a pixel-level precision labeling
task, and it serves the subsequent modeling step well in our experiments, Sect. 6.

4.1 Tree Probability

Although buildings may have various textures and colors, trees generally have
distinguishable color and similar pattern (Fig. 4). Based on the specialized
orthophoto tree detection algorithm [34], we give each pixel a value measuring
the tree probability. To be more specific, we compute visual features xi at each
pixel pi of (1) color: CIE L*a*b* color and the illumination-invariant color [5],
(2) texture: Gaussian derivative filter-bank at 3 scales (with σ = 1,

√
2, 2) and

6 uniform sampled directions in [0, π), (3) entropy of L channel: with window
sizes of 5, 9 and 17. With these features, we use the boosting algorithm [10] to
train a strong classifier F (xi) from T basic decision stump ft(xi):

F (xi) =
T∑

t=1

αtft(xi), (1)

where T is set to 200 across our experiments and the weights αt is learned in the
training process. Then a tree probability t(pi) is given by the sigmoid function:

t(pi) =
1

1 + e−F (xi)
. (2)

We trained our model on a small area of about 300m × 300m, Fig. 5(a) shows
the predicted tree probability of the same block in Fig. 4.

4.2 MRF Labeling

With the tree probability and the observation that only trees and build-
ings rise above the ground of few meters, our label set is lp =
{ground, grass, tree, building}. Since ground is almost flat in a block, we mea-
sure the height with a normalized value defined as:

hn(pi) = L(max(h(pi) − hground, 0)), (3)

where L(x) = 1/(1 + e−2(x−htrunc)) is a logistic function with “S”-shaped curve
and its midpoint is modulated by a truncation value htrunc. hground is the height
of block ground. Figure 5(b) shows the normalized height map.

With the tree probability t(pi) and the normalized height hn(pi), each pixel
pi is defined with a likelihood data term:

Dp(lpi ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hn(pi) · t(pi) if lpi = ground

hn(pi) · (1 − t(pi)) if lpi = grass

(1 − hn(pi)) · (1 − t(pi)) if lpi = tree

(1 − hn(pi)) · t(pi) if lpi = building

. (4)
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(a) (b) (c)

Fig. 5. (a) Tree probability learned from the boosting algorithm. (b) Normalized height
map. (c) Result of segmentation: ground, grass, tree and building are colored with
brown, light green, dark green and blue respectively. Notice the adjacent tree and
building are correctly separated in red rectangle (Color figure online)

The pairwise smooth relation is measured by their clamped height difference:

V p(lpi , l
p
j ) = (1 − [h(pi) − h(pj)]

1
0) · 1{lpi �=lpj }, (5)

where 1{·} denotes the characteristic function. Then the objective function on
the image grid graph Gp = {Vp, Ep} can be written as:

Ep(lp) =
∑

i∈Vp

Dp(lpi ) + μ
∑

{i,j}∈Ep

V p(lpi , l
p
j ), (6)

where l is the label configuration of the orthophoto. μ is the balance and set to
1 in all experiments shown in this paper. The proposed energy function can be
efficiently minimized by graph-cuts [3,4].

To start the segmentation, we use the lowest point in the block as an initial
estimation of hground. After running MRF once, all ground pixels are averaged to
give better estimation of hground. With updated hground, the normalized heights
hn are recomputed and the MRF formulation is solved again. This iterative
technique will give more accurate ground height estimation and thus better
segmentation of the scene.

In our experiment, hground typically converges after 3 iterations and htrunc is
set to 3m as the height of an one story building. After the segmentation, we apply
a morphology open operation to break weakly connected buildings followed by
a close operation to eliminate small holes. An example of the labeling result is
shown in Fig. 5(c).

5 Modeling

With the labeled block, each connected building region is isolated from the scene.
The objective of this section is to reconstruct buildings into LOD models with
enhanced regularity.
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Since images for urban reconstruction are usually obtained from aerial vehi-
cles, facades suffer more from occlusion and shade than the roofs. Therefore,
quite a few works [18,27,35] take advantage of the 2.5D nature of the buildings
and mainly use the roof information for modeling. Here 2.5D means buildings can
be viewed as piece-wise planar roofs connected with vertical walls. Both [27,35]
deal with LiDAR point clouds and extract roof contours by analysing the point
geometric features, making them vulnerable to noise and outliers. Li et al. [18]
uses a pixel-wise labeling to extract the contours of the roof patches. However
none of them tries to model the regularity (e.g., symmetry, orthogonality and
parallelism) or is capable of generating models with LODs.

In this section, we propose a segment based modeling approach. We first
construct a roof boundary segment arrangement on the ground plane, then assign
each arrangement face a roof plane label. Extruding each face to the assigned
plane gives the model. Comparing to previous work, we consolidate different
data sources together, producing models with LODs and enhanced regularity.

5.1 Facade Directions

One common regularity of urban building is that its facade has two orthogo-
nal directions. We detect the local orthogonal directions of the facade with the
RANSAC algorithm.

Specifically, the input data {nf} is a set of 2D unit normals constructed from
the horizontal projections of face normals that are within an angle threshold
angthre to the ground plane. Each time a hypothesis normal no is generated.
Together with its orthogonal counterpart n′

o, the inlier set is defined as:

{n|min(cos−1(n · no), cos−1(n · n′
o)) < angthre, n ∈ {nf}}. (7)

Then, the maximum consensus set is considered as the facade orthogonal direc-
tions. Figure 6(a)(b) show the detection of the facade directions on a small house
provided by Pix4D [26] open data set.

(a) (b) (c) (d)

Fig. 6. Facade directions and segments detection on the Pix4D [26] house. (a) Z com-
ponent of face normals with the jet color map. (b) The near horizontal unit normal
circle {nf}, two orthogonal (red and blue arrows) directions are detected. (c) VSA [7]
segmentation on the mesh with color coded proxies and unit normal of short red line.
(d) The facade segments detection by projecting near vertical proxies on the ground.
Notice the boundary is not closed due to occlusion (Color figure online)
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5.2 Line Segments

Generally roof tops are piece-wise planar and their boundaries projected on the
ground are polygons. This inspires us to detect line segments that outline the
roof patches. With the orthogonal sampling in Sect. 4, each building has an
orthophoto, a normal map and a height map. We utilize these complementary
data sources to detect various edge segments.

Image Segments. The most straight forward boundary cue is line segments
from orthophoto. Due to the noise and mismatch, MVS mesh generation algo-
rithms generally perform some smoothing operations, making the reconstructed
surface corner rounded (Fig. 3(g)). Although it is difficult to locate the edges
from geometric data, it can be easily spotted in the image. Therefore, we use
the line segment detection (LSD) [33] algorithm to detect line segments from the
orthophoto, as illustrated in Fig. 7(a).

Facade Segments. Apart from the visual cues, we also detect segments from
geometry data. The facade contouring segments is detected with the plane
approximation method VSA [7]. Specifically, a minimum area (set to 10m2) is
used to estimate the number of proxies used to approximate the building shape.
And we use the random seeding to give a rough and fast segmentation of the
mesh. By projecting vertical proxies (controlled by angthre) onto the ground, we
have facade line segments bounding the roofs, as shown in Fig. 7(c)(d).

Height Map Segments. When the building facade is touching a tree, there
is no mesh at the facade thus VSA [7] is unable to detect any proxy here. To
solve this problem, we treat height map as an intensity image and use the same
LSD [33] algorithm to detect height discontinuity segments as shown in Fig. 7(c).

(a) (b) (c) (d) (e) (f)

Fig. 7. Segments detected from different sources of the house in Fig. 6. (a) Image
segments. (b) Height map segments. (c)(d) Directional normal variation maps and the
detected ridge segments. (e) The stacked segments from (a)–(d) and facade segments
in Fig. 6(d). (f) The regularized line segments slices the plane into faces

Normal Map Segments. While height map segments is evident where suf-
ficient height disparity exists, it is unable to detect the ridge lines where two
roof patches meet. In contrast, ridges are quite noticeable in the normal map
as shown in Fig. 4(c). Unfortunately, there is no clear definition of the gradi-
ent of a 3-channel image, so we can not apply the LSD [33] on it directly.
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One important structural characteristic of the building is that roof normals are
in the planes constructed by the z axis and facade normals [15,16], as depicted in
Fig. 8(a). We construct two directional normal variation maps by computing the
dot products of the normal map and two orthogonal facade directions in Sect. 5.1
respectively, highlighting the normal changes along each direction. Then we can
apply the LSD [33] on the two generated intensity images and spot the ridge
lines easily, as illustrated in Fig. 7(c)(d).

Stacking all these line segments together, we can outline the complete con-
tours of major roof patches, as shown in Fig. 5(e). To enhance the regularity of
the contours, we employ the two step regularization technique described in [36]:
(1) segments parallel to the facade directions are reoriented to the facade direc-
tions first, (2) then coplanar segments are repositioned and merged into one
longer segment. Figure 7(f) shows the regularized segments slice the plane into
smaller polygon faces. The collinear threshold is set to 0.5m in our experiment.

5.3 Shape Detection

An often underestimated obstacle in modeling from MVS data is the detec-
tion of shape primitives that are complete and with regularity. Unlike previ-
ous works [17,20] using the first-detect-then-regularize strategy, we extend the
RANSAC [30] algorithm to model regularities into the shape detection process.

Roof Direction Detection. Before detecting roof planes, we detect prominent
roof directions on the normal map first. All normals are collected in {nr} as
the input for the RANSAC. When a hypothesis direction ns is proposed, it is
snapped to the nearest roof direction plane (based on the characteristic discussed
in normal map segments). Similar to Sect. 5.1, the inlier set is defined as

{n|min(cos−1(n · ns), cos−1(n · n′
s)) < angthre, n ∈ {nr}}, (8)

where n′
s is the z-symmetry counter part of ns. Figure 8(a)(b) shows the roof

principal direction detection.

(a) (b) (c)

Fig. 8. Roof shape detection of the building in Fig. 6. (a) The normal sphere {nr} and
roof direction planes. (b) Detected symmetric roof direction inliers (blue points). (c) 5
detected shapes: 2 pairs of z-symmetric/parallel planes and a horizontal plane (Color
figure online)
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Roof Plane Detection. Based on the RANSAC shape detection [30], we detect
planes along the roof principal directions on the height map. In the same spirit
to roof direction detection, each hypothesis plane is snapped to the nearest roof
principal directions. Figure 8(c) shows the detected roof planes along the roof
directions. With the direction constraints stemmed from facades, the detected
planes {Pi} is inherently encoded with parallelism and z-symmetry.

5.4 LOD Modeling

With the regularized segment arrangement in Sect. 5.2, we have a dual graph
Gf = {Vf , Ef}, where each face fi is a vertex and adjacent faces is connected
with an edge. Another MRF is build on Gf with the detected roof planes as the
label set lf = {Pi}.

MRF Formulation. In the height map in Sect. 4, each pixel pi is treated as a
3D point p′

i. To measure how well a plane is fitted to the points bounded by face
fi, each face fi is defined with a data term:

Df (lfi ) =
∑

pk∈fi

‖p′
k, l

f
i ‖. (9)

The pairwise smooth relation between two adjacent faces fi, fj is weight by
their shared edge length leni,j :

V f (lfi , lfj ) = leni,j · (1 − 3λ0

λ0 + λ1 + λ2
) · 1{lfi �=lfj }, (10)

where λ0 denotes the minimum eigenvalues of the covariance matrix of points
{p′

i|pi ∈ fi∨fj} measuring the planarity of two faces [31]. 1{·} is the characteristic
function. With the data and smooth terms balanced by β, the objective function
of a labeling configuration lf is:

Ef (lf ) =
∑

i∈Vf

Df (lfi ) + β
∑

{i,j}∈Ef

V f (lfi , lfj ). (11)

We use the same graph-cut [3,4] algorithm to solve the above problem, and β is
set to 10 in our experiments.

LOD Generation. Given the 2D faces labeled with roof planes, models of LODs
can be extracted by projecting the face vertices to the corresponding plane, as
illustrated in Fig. 9 (same house in Fig. 6):

– LOD0: the outer boundary of non-ground face is the building’s footprint,
– LOD1: each face is extruded to the plane’s averaged height,
– LOD2: each face is extruded to the corresponding roof planes.
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(a) (b) (c) (d)

Fig. 9. LOD generation. (a) Segment arrangement color coded with the plane labels in
Fig. 8(c). (b) LOD0 model of the outer most boundary. (c) LOD1 model extruded to
the averaged heights. (d) LOD2 model extruded to the corresponding 3D roof planes

6 Results and Discussion

Our method is implemented in C++ with the CGAL and the max-flow library [3,
4]. In this section, we test our method on both open data set and our own large
urban scene data. Experiments show that our modeling workflow can generate
regular and accurate building models with different LODs. Both qualitative and
quantitative assessments are conducted.

Modeling Quality. Three aspects are considered in evaluating the modeling
quality: reconstruction error, model complexity and regularity. In Fig. 10, we
compare the modeling results on the public Pix4D [26] house model in Fig. 6. Two
recent candidate selection methods [24,31] and two classic shape simplification
algorithms [7,13] are compared with our method.

Generally, geometric error driven methods like VSA [7] and QEM [13] can
generate models of LODs with controllable parameters. Although both methods
are able to reduce the complexity of the model dramatically while keeping the
error low, they are more sensitive to noise and outliers and unable to convey the
global regularity of the model.

More recent approaches [19,24,31] employ the slice and selection strategy.
While [19,31] choose a cell based selection and assembly method, Nan et al. [24]
take the edge selection approach. As illustrated in Fig. 10, both methods can pro-
duce models of high regularity but the accuracy is low. One common difficulty of
the 3D slicing methods is that they suffer from noise and incomplete primitives.
For example, facades can be severely occluded because the images are captured
from above. Without the complete structures of the model, both [24,31] failed in
Fig. 10 (in rectangles). In the proposed method, we consolidate various comple-
mentary information from appearance to geometry into one modeling framework.
We are able to infer the incomplete structures from the scene.

The proposed workflow can reach the balance of model complexity, accuracy
and regularity. In Table 1, our LOD2 model has slightly higher error than [7,13]
but much lower complexity and more regular surfaces.

Scalability and Performances. By orthogonal grid sampling, we simplify the
3D modeling into a 2D shape labeling problem, making the modeling relatively
fast. In fact, the modeling speed is more affected by the sampling step size. In
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Fig. 10. Modeling quality comparison of accuracy and regularity to our LOD2 model.
At each column we have the reconstructed model below and the corresponding modeling
error to the input mesh on the top. The accuracy is measured by the Hausdorff distance
from the output models to the input mesh, color scaled from blue to red. Both Verdie et
al. [31] and Polyfit [24] suffer from incomplete primitives of the protruded parts (in red
and orange rectangle). QEM [13] and VSA [7] have higher quality but less regularity
(Color figure online)

Table 1. Comparison of modeling accuracy and complexity. The accuracy is measured
by the RMS of the Hausdorff distance to the input mesh. The generated model com-
plexity is accessed by the number of triangle faces. Our LOD2 model can reach the
balance of accuracy and complexity

Method Our LOD1 Our LOD2 Verdie et al. [31] PolyFit [24] QEM [13] VSA [7]

RMS 2.25 0.21 1.16 1.27 0.14 0.11

#Face 24 24 153 52 149 830

Table 2. Running time on different data sets. Data complexity measured by the num-
ber of triangles. We run all modeling in a sequential implementation, except for the
large city district in Fig. 1

Input Segmentation Modeling

Pix4D house (418.6 k faces, Fig. 10) 5 s 8 s

Apartment (92 k faces, second row in Fig. 11) 4 s 3 s

Block (588 k faces, Fig. 3) 25 s 42 s

City district (92 M faces, Fig. 1) 22 min 49.5 min

Table 2, we list the timing of different sizes of data set. All timings are measured
on a PC with a 4 cores Intel Xeon CPU clocked at 3.7 GHz. VSA [7] and QEM [13]
are either iterative method or sequential, neither of them scales well with data.
The computational speed of PolyFit [24] relies on the linear programming solver.
When there are too many intersections in the model, the solver may take really
long time.
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As Table 2 shows our pipeline scales well with data and can deal with input
meshes with up to a hundred million triangles. Figure 1 shows a large urban area
reconstructed from 356 high-resolution oblique aerial images by Pix4D [26]. The
flight height is 750m and the averaged definition is 0.1m. The input mesh has
94M triangles covering an area of 12.2 km2. We cut the data into 16 × 16 blocks
and run them in parallel. The orthogonal sampling step is set to 0.2m. Buildings
that are cut at the block borders are later merged to avoid unnatural seams. On
the left and right sides of Fig. 1 are two close-ups. Although obvious defects
are visible in the input building’s mesh model, we can still recover the sharp
structures of roof tops and small protrusions on facades with the parallelism,
coplanarity and z-symmetry regularity. Figure 11 shows some other modeling
results. More results are available in the supplementary materials.

Fig. 11. LOD modeling on typical urban buildings. From top to bottom rows are
ordinary residential building, high rising apartment and low connecting houses. From
left to right at each row are: (a) orthograph, (b) isolated input building mesh, (c)–(e)
LOD0, LOD1, LOD2 models respectively

7 Conclusions

In this paper we present a complete framework of LOD modeling from MVS
meshes of large urban scene. We first segment the scene with a simple yet effective
MRF formulation by fusing the visual and geometry features. The subsequent
modeling method take advantage of the structure characteristics of the urban
building and transform the 3D modeling into a 2D shape labeling problem. With
line segments detected from complementary data sources, we are able to model
the scene with strong regularity and low complexity. The result of our method
is regular polygon models with LODs conforming to the CityGML standard [6],
which can be used for presentation or further processing.
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