
Riemannian Walk for Incremental
Learning: Understanding Forgetting

and Intransigence

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan(B),
and Philip H. S. Torr

University of Oxford, Oxford, UK
{arslan.chaudhry,puneet.dokania,thalaiyasingam.ajanthan,

philip.torr}@eng.ox.ac.uk

Abstract. Incremental learning (il) has received a lot of attention
recently, however, the literature lacks a precise problem definition, proper
evaluation settings, and metrics tailored specifically for the il problem.
One of the main objectives of this work is to fill these gaps so as to pro-
vide a common ground for better understanding of il. The main chal-
lenge for an il algorithm is to update the classifier whilst preserving
existing knowledge. We observe that, in addition to forgetting, a known
issue while preserving knowledge, il also suffers from a problem we call
intransigence, its inability to update knowledge. We introduce two met-
rics to quantify forgetting and intransigence that allow us to understand,
analyse, and gain better insights into the behaviour of il algorithms. Fur-
thermore, we present RWalk, a generalization of ewc++ (our efficient
version of ewc [6]) and Path Integral [25] with a theoretically grounded
KL-divergence based perspective. We provide a thorough analysis of var-
ious il algorithms on MNIST and CIFAR-100 datasets. In these exper-
iments, RWalk obtains superior results in terms of accuracy, and also
provides a better trade-off for forgetting and intransigence.

1 Introduction

Realizing human-level intelligence requires developing systems capable of learn-
ing new tasks continually while preserving knowledge about the old ones. This is
precisely the objective underlying incremental learning (il) algorithms. By defi-
nition, il has ever-expanding output space, and no or limited access to data from
the previous tasks while learning a new one. This makes it more challenging and
fundamentally different from the classical learning paradigm where the entire
dataset is available and the output space is fixed. Recently, there have been
several works in il [6,14,19,25] with varying evaluation settings and metrics

A. Chaudhry, P. K. Dokania, T. Ajanthan—Joint first authors

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01252-6 33) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11215, pp. 556–572, 2018.
https://doi.org/10.1007/978-3-030-01252-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01252-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01252-6_33

Riemannian Walk for Incremental Learning 557

making it difficult to establish fair comparisons. The first objective of this work
is to rectify these issues by providing precise definitions, evaluation settings, and
metrics for il for the classification task.

Let us now discuss the key points to consider while designing il algorithms.
The first question is ‘how to define knowledge: factors that quantify what the
model has learned’. Usually, knowledge is defined either using the input-output
behaviour of the network [4,19] or the network parameters [6,25]. Once the
knowledge is defined, the objective then is to preserve and update it to counter-
act two inherent issues with il algorithms: (1) forgetting : catastrophically forget-
ting knowledge of previous tasks; and (2) intransigence: inability to update the
knowledge to learn the new task. Both of these problems require contradicting
solutions and pose a trade-off for any il algorithm.

To capture this trade-off, we advocate the use of measures that evaluate an
il algorithm based on its performance on the past and the present tasks in the
hope that this will reflect in its behaviour in the future unseen tasks. Taking this
into account we introduce two metrics to evaluate forgetting and intransigence.
These metrics together with the standard multi-class average accuracy allow us
to understand, analyse, and gain better insights into the behaviour of various il
algorithms.

In addition, we present a generalization of two recently proposed incremental
learning algorithms, Elastic Weight Consolidation (ewc) [6], and Path Integral
(pi) [25]. In particular, first we show that in ewc, while learning a new task,
the model’s likelihood distribution is regularized using a well known second-order
approximation of the KL-divergence [1,17], which is equivalent to computing dis-
tance in a Riemannian manifold induced by the Fisher Information Matrix [1].
To compute and update the Fisher matrix, we use an efficient (in terms of mem-
ory) and online (in terms of computation) approach, leading to a faster and
online version of ewc which we call ewc++. Note that, a similar extension to
ewc, called online-ewc, is concurrently proposed by Schwarz et al . [21]. Next,
we modify the pi [25] where instead of computing the change in the loss per
unit distance in the Euclidean space between the parameters as the measure of
sensitivity, we use the approximate KL divergence (distance in the Riemannian
manifold) between the output distributions as the distance to compute the sen-
sitivity. This gives us the parameter importance score which is accumulated over
the optimization trajectory encoding information about the previous tasks as
well. Finally, RWalk is obtained by combining ewc++ and the modified pi.

Furthermore, in order to counteract intransigence, we study different sam-
pling strategies that store a small representative subset (≤5%) of the dataset
from the previous tasks. This not only allows the network to recall information
about the previous tasks but also helps in learning to discriminate current and
previous tasks. Finally, we present a thorough analysis to better understand
the behaviour of il algorithms on MNIST [10] and CIFAR-100 [7] datasets. To
summarize, our main contributions are:

1. New evaluation metrics - Forgetting and Intransigence - to better understand
the behaviour and performance of an incremental learning algorithm.

558 A. Chaudhry et al.

2. ewc++: An efficient and online version of ewc.
3. RWalk: A generalization of ewc++ and pi with theoretically grounded KL-

divergence based perspective providing new insights.
4. An analysis of different methods in terms of accuracy, forgetting, and intran-

sigence.

2 Problem Set-Up and Preliminaries

Here we define the il problem and discuss the practicality of two different eval-
uation settings: (a) single-head; and (b) multi-head. In addition, we review
the probabilistic interpretation of neural networks and the connection of KL-
divergence with the distance in the Riemannian manifold, both of which are
crucial to our approach.

2.1 Single-Head vs Multi-head Evaluations

We consider a stream of tasks, each corresponding to a set of labels. For the
k-th task, let Dk = {(xk

i , yk
i)}nk

i=1 be the dataset, where xk
i ∈ X is the input and

yk
i ∈ yk the ground truth label, and yk is the set of labels specific to the task.

The main distinction between the single-head and the multi-head evaluations is
that, at test time, in single-head, the task identifier (k) is unknown, whereas in
multi-head, it is given. Therefore, for the single-head evaluation, the objective at
the k-th task is to learn a function fθ : X → Yk, where Yk = ∪k

j=1y
j corresponds

to all the known labels. For multi-head, as the task identifier is known, Yk = yk.
For example, consider MNIST with 5 tasks: {{0, 1}, · · · , {8, 9}}; trained in an
incremental manner. Then, at the 5-th task, for a given image, the multi-head
evaluation is to predict a class out of two labels {8, 9} for which the 5-th task
was trained. However, the single-head evaluation at 5-th task is to predict a label
out of all the ten classes {0, · · · , 9} that the model has seen thus far.

Why Is Single-Head the Right Evaluation for il? In the case of single-
head, used by [12,19], the output space consists of all the known labels. This
requires the classifier to learn to distinguish labels from different tasks as well.
Since, the tasks are supplied in a sequence in il, while learning a task, the
classifier must also learn the inter-task discrimination with no or limited access1

to the previous data. This is a much harder problem compared to multi-head
where the output space contains labels of the current task only. Furthermore,
single-head is more practical as knowing a priori the subset of labels to look at
is a big assumption. For instance, if the task contains only one label, multi-head
evaluation would be equivalent to knowing the ground truth label itself.

1 Since the number of tasks are potentially unlimited in il, it is impossible to store all
the previous data in a scalable manner.

Riemannian Walk for Incremental Learning 559

2.2 Probabilistic Interpretation of Neural Network Output

If the final layer of a neural network is a soft-max layer and the network is trained
using cross entropy loss, then the output may be interpreted as a probability
distribution over the categorical variables. Thus, at a given θ, the conditional
likelihood distribution learned by a neural network is actually a conditional
multinoulli distribution defined as pθ(y|x) =

∏K
j=1 p

[y=j]
θ,j , where pθ,j is the soft-

max probability of the j-th class, K are the total number of classes, y is the
one-hot encoding of length K, and [·] is Iverson bracket. A prediction can then
be obtained from the likelihood distribution pθ(y|x). Typically, instead of sam-
pling, a label with the highest soft-max probability is chosen as the network’s
prediction. Note that, if y corresponds to the ground-truth label then the log-
likelihood is exactly the same as the negative of the cross-entropy loss, i.e., if
the ground-truth corresponds to the t-th index of the one-hot representation of
y, then log pθ(y|x) = log pθ,t. More insights can be found in the supplementary
material.

2.3 KL-Divergence as the Distance in the Riemannian Manifold

Let DKL(pθ‖pθ+Δθ) be the KL-divergence [8] between the conditional likelihoods
of a neural network at θ and θ + Δθ, respectively. Then, assuming Δθ → 0,
the second-order Taylor approximation of the KL-divergence can be written as
DKL(pθ‖pθ+Δθ) ≈ 1

2Δθ�FθΔθ = 1
2‖Δθ‖2Fθ

2, where Fθ, known as the empirical
Fisher Information Matrix [1,17] at θ, is defined as:

Fθ = E(x,y)∼D

[(
∂ log pθ(y|x)

∂θ

)(
∂ log pθ(y|x)

∂θ

)�]

, (1)

where D is the dataset. Note that, as mentioned earlier, the log-likelihood
log pθ(y|x) is the same as the negative of the cross-entropy loss function, thus,
Fθ can be seen as the expected loss-gradient covariance matrix. By construction
(outer product of gradients), Fθ is positive semi-definite (PSD) which makes it
highly attractive for second-order optimization techniques [1,2,9,15,17]. Thus,
when Δθ → 0, computing KL-divergence 1

2‖Δθ‖2Fθ
is equivalent to computing

the distance in a Riemannian manifold3 [11] induced by the Fisher information
matrix at θ. Since Fθ ∈ R

P×P and P is usually in the order of millions for neural
networks, it is practically infeasible to store Fθ. To handle this, similar to [6], we
assume parameters to be independent of each other (diagonal Fθ) which results
in the following approximation of the KL-divergence:

DKL(pθ‖pθ+Δθ) ≈ 1
2

P∑

i=1

Fθi
Δθ2i , (2)

2 Proof and insights are provided in the supplementary material.
3 Since Fθ is PSD, this makes it a pseudo-manifold.

560 A. Chaudhry et al.

where θi is the i-th entry of θ. Notice, the diagonal entries of Fθ are the expected
square of the gradients, where the expectation is over the entire dataset. Thus,
Fθ is expensive to compute as it requires a full forward-backward pass over the
dataset.

3 Forgetting and Intransigence

Since the objective is to continually learn new tasks while preserving knowl-
edge about the previous ones, an il algorithm should be evaluated based on
its performance both on the past and the present tasks in the hope that this
will reflect in its behaviour on the future unseen tasks. To achieve this, along
with average accuracy, there are two crucial components that must be quantified
(1) forgetting: how much an algorithm forgets what it learned in the past; and
(2) intransigence: inability of an algorithm to learn new tasks. Intuitively, if a
model is heavily regularized over previous tasks to preserve knowledge, it will
forget less but have high intransigence. If, in contrast, the regularization is too
weak, while the intransigence will be small, the model will suffer from catas-
trophic forgetting. Ideally, we want a model that suffers less from both, thus
efficiently utilizing the finite model capacity. In contrast, if one observes high
negative correlation between forgetting and intransigence, which is usually the
case, then, it suggests that either the model capacity is saturated or the method
does not effectively utilize it. Before defining metrics for quantifying forgetting
and intransigence, we first define the multi-class average accuracy which will
be the basis for defining the other two metrics. Note, some other task specific
measure of correctness (e.g ., IoU for object segmentation) can also be used while
the definitions of forgetting and intransigence remain the same.

Average Accuracy (A). Let ak,j ∈ [0, 1] be the accuracy (fraction of correctly
classified images) evaluated on the held-out test set of the j-th task (j ≤ k) after
training the network incrementally from tasks 1 to k. Note that, to compute
ak,j , the output space consists of either yj or ∪k

j=1y
j depending on whether the

evaluation is multi-head or single-head (refer Sect. 2.1). The average accuracy
at task k is then defined as Ak = 1

k

∑k
j=1 ak,j . The higher the Ak the better

the classifier, but this does not provide any information about forgetting or
intransigence profile of the il algorithm which would be crucial to judge its
behaviour.

Forgetting Measure (F). We define forgetting for a particular task (or
label) as the difference between the maximum knowledge gained about the task
throughout the learning process in the past and the knowledge the model cur-
rently has about it. This, in turn, gives an estimate of how much the model forgot
about the task given its current state. Following this, for a classification problem,

Riemannian Walk for Incremental Learning 561

we quantify forgetting for the j-th task after the model has been incrementally
trained up to task k > j as:

fk
j = max

l∈{1,··· ,k−1}
al,j − ak,j , ∀j < k. (3)

Note, fk
j ∈ [−1, 1] is defined for j < k as we are interested in quantifying

forgetting for previous tasks. Moreover, by normalizing against the number of
tasks seen previously, the average forgetting at k-th task is written as Fk =
1

k−1

∑k−1
j=1 fk

j . Lower Fk implies less forgetting on previous tasks. Here, instead
of max one could use expectation or aj,j in order to quantify the knowledge about
a task in the past. However, taking max allows us to estimate forgetting along
the learning process as explained below.

Positive/Negative Backward Transfer ((P/N)BT): Backward transfer (BT) is
defined in [14] as the influence that learning a task k has on the performance
on a previous task j < k. Since our objective is to measure forgetting, negative
forgetting (fk

j < 0) implies positive influence on the previous task or positive
backward transfer (PBT) and the opposite for NBT. Furthermore, in [14], aj,j

is used in place of maxl∈{1,··· ,k−1} al,j (refer Eq. (3)) which makes the measure
agnostic to the il process and does not effectively capture forgetting. To under-
stand this, let us consider an example with 4 tasks trained in an incremental
manner and we are interested in measuring forgetting of task 1 after training up
to task 4. Let the accuracies be {a1,1, a1,2, a1,3, a1,4} = {0.7, 0.8, 0.6, 0.5}. Here,
forgetting measured based on Eq. (3) is f4

1 = 0.3, whereas [14] would measure it
as 0.2 (irrespective of the variations in a1,2 and a1,3). Hence, it does not capture
the fact that there was a PBT in the learning process and, we believe, it is vital
that an evaluation metric of an il algorithm considers such behaviour along the
learning process.

Intransigence Measure (I). We define intransigence as the inability of a
model to learn new tasks. The effect of intransigence is more prominent in the
single-head setting especially in the absence of previous data, as the model is
expected to learn to differentiate the current task from the previous ones. Exper-
imentally we show that storing just a few representative samples (refer Sect. 4.2)
from the previous tasks improves intransigence significantly. Since we wish to
quantify the inability to learn, we compare to the standard classification model
which has access to all the datasets at all times. We train a reference/target
model with dataset

⋃k
l=1 Dl and measure its accuracy on the held-out set of the

k-th task, denoted as a∗
k. We then define the intransigence for the k-th task as:

Ik = a∗
k − ak,k, (4)

where ak,k denotes the accuracy on the k-th task when trained up to task k in an
incremental manner. Note, Ik ∈ [−1, 1], and lower the Ik the better the model.
A reasonable reference/target model can be defined depending on the feasibility
to obtain it. In situations where it is highly expensive, an approximation can be
proposed.

562 A. Chaudhry et al.

Positive/Negative Forward Transfer ((P/N)FT): Since intransigence is defined
as the gap between the accuracy of an il algorithm and the reference model,
negative intransigence (Ik < 0) implies learning incrementally up to task k
positively influences model’s knowledge about it, i.e., positive forward transfer
(PFT). Similarly, Ik > 0 implies NFT. However, in [14], FT is quantified as the
gain in accuracy compared to the random guess (not a measure of intransigence)
which is complementary to our approach.

4 Riemannian Walk for Incremental Learning

We first describe ewc++, an efficient version of the well known ewc [6], and
then RWalk which is a generalization of ewc++ and pi [25]. Briefly, RWalk has
three key components: (1) a KL-divergence-based regularization over the con-
ditional likelihood pθ(y|x) (ewc++); (2) a parameter importance score based
on the sensitivity of the loss over the movement on the Riemannian manifold
(similar to pi); and (3) strategies to obtain a few representative samples from
the previous tasks. The first two components mitigate the effects of catastrophic
forgetting, whereas the third handles intransigence.

4.1 Avoiding Catastrophic Forgetting

KL-Divergence Based Regularization (ewc++). We learn parameters for
the current task such that the new conditional likelihood is close (in terms
of KL) to the one learned until previous tasks. To achieve this, we regularize
over the conditional likelihood distributions pθ(y|x) using the approximate KL-
divergence, Eq. (2), as the distance measure. This would preserve the inherent
properties of the model about previous tasks as the learning progresses. Thus,
given parameters θk−1 trained sequentially from task 1 to k − 1, and dataset Dk

for the k-th task, our objective is:

argmin
θ

L̃k(θ) := Lk(θ) + λDKL (pθk−1(y|x)‖pθ(y|x)) , (5)

where, λ is a hyperparameter. Substituting Eq. (2), the KL-divergence compo-
nent can be written as DKL (pθk−1‖pθ) ≈ 1

2

∑P
i=1 Fθk−1

i
(θi − θk−1

i)2 . Note that,
for two tasks, the above regularization is exactly the same as that of ewc [6].
Here we presented it from the KL-divergence based perspective. Another way to
look at it would be to consider Fisher4 for each parameter to be its importance
score. The intuitive explanation for this is as follows; since Fisher captures the
local curvature of the KL-divergence surface of the likelihood distribution (as it
is the second-derivative component of the Taylor approximation, refer Sect. 2.3),
higher Fisher implies higher curvature, thus suggests to move less in that direc-
tion in order to preserve the likelihood.

4 By Fisher we always mean the empirical Fisher information matrix.

Riemannian Walk for Incremental Learning 563

In the case of multiple tasks, ewc requires storing Fisher for each task inde-
pendently (O(kP) parameters), and regularizing over all of them jointly. This
is practically infeasible if there are many tasks and the network has millions of
parameters. Moreover, to estimate the empirical Fisher, ewc requires an addi-
tional pass over the dataset of each task (see Eq. (1)). To address these two
issues, we propose ewc++ that (1) maintains single diagonal Fisher matrix as
the training over tasks progresses, and (2) uses moving average for its efficient
update similar to [15]. Given F t−1

θ at t − 1, Fisher in ewc++ is updated as:

F t
θ = αF t

θ + (1 − α)F t−1
θ , (6)

where F t
θ is the Fisher matrix obtained using the current batch and α ∈ [0, 1]

is a hyperparameter. Note, t represents the training iterations, thus, computing
Fisher in this manner contains information about previous tasks, and also elimi-
nates the additional forward-backward pass over the dataset. At the end of each
task, we simply store F t

θ as Fθk−1 and use it to regularize the next task, thus
storing only two sets of Fisher at any instant during training, irrespective of the
number of tasks. Similar to ewc++, an efficient version of ewc referred to as
online-ewc is concurrently developed in [21].

Fig. 1. Parameter importance accumu-
lated over the optimization trajectory.

In ewc, Fisher is computed at a local
minimum of L̃k using the gradients of Lk,
which is nearly zero whenever L̃k ≈ Lk

(e.g ., smaller λ or when k = 1). This
results in negligible regularization leading
to catastrophic forgetting. This issue is
partially addressed in ewc++ using mov-
ing average. However, to improve it fur-
ther and to capture model’s behaviour not
just at the minimum but also during the
entire training process, we augment each
element of the diagonal Fisher with a pos-
itive scalar as described below. This also ensures that the augmented Fisher is
always positive-definite.

Optimization-Path Based Parameter Importance. Since Fisher captures
the intrinsic properties of the model and it only depends on Lk, it is blinded
towards the influence of parameters over the optimization path on the loss surface
of L̃k. Similar to [25], we accumulate parameter importance based on L̃k over
the entire training trajectory. This score is defined as the ratio of the change in
the loss function to the distance between the conditional likelihood distributions
per step in the parameter space.

More precisely, for a change of parameter from θi(t) to θi(t + 1) (where t
is the time step or training iteration), we define parameter importance as the
ratio of the change in the loss to its influence in DKL(pθ(t)‖pθ(t+1)). Intuitively,
importance will be higher if a small change in the distribution causes large
improvement over the loss. Formally, using the first-order Taylor approximation,

564 A. Chaudhry et al.

the change in loss L can be written as:

L(θ(t + Δt))− L(θ(t))≈−
P∑

i=1

t+Δt∑

t=t

∂L

∂θi
(θi(t + 1) − θi(t))=−

P∑

i=1

ΔLt+Δt
t (θi), (7)

where ∂L
∂θi

is the gradient at t, and ΔLt+Δt
t (θi) represents the accumulated change

in the loss caused by the change in the parameter θi from time step t to t + Δt.
This change in parameter would cause a corresponding change in the model dis-
tribution which can be computed using the approximate KL-divergence (Eq. (2)).
Thus, the importance of the parameter θi from training iteration t1 to t2 can be
computed as st2

t1(θi) =
∑t2

t=t1

ΔLt+Δt
t (θi)

1
2F t

θi
Δθi(t)2+ε

, where Δθi(t) = θi(t+Δt)−θi(t) and

ε > 0. The denominator is computed at every discrete intervals of Δt ≥ 1 and F t
θi

is computed efficiently at every t-th step using moving average as described while
explaining ewc++. The computation of this importance score is illustrated in
Fig. 1. Since we care about the positive influence of the parameters, negative
scores are set to zero. Note that, if the Euclidean distance is used instead, the
score st2

t1(θi) would be similar to that of pi [25].

Final Objective Function (RWalk). We now combine Fisher information
matrix based importance and the optimization-path based importance scores as
follows:

L̃k(θ) = Lk(θ) + λ
P∑

i=1

(Fθk−1
i

+ s
tk−1
t0 (θi))(θi − θk−1

i)2. (8)

Here, s
tk−1
t0 (θi) is the score accumulated from the first training iteration t0 until

the last training iteration tk−1, corresponding to task k − 1. Since the scores are
accumulated over time, the regularization gets increasingly rigid. To alleviate this
and enable continual learning, after each task the scores are averaged: s

tk−1
t0 (θi) =

1
2

(
s

tk−2
t0 (θi) + s

tk−1
tk−2

(θi)
)
. This continual averaging makes the tasks learned far

in the past less influential than the tasks learned recently. Furthermore, while
adding, it is important to make sure that the scales of both Fθk−1

i
and s

tk−1
t0 (θi)

are in the same order, so that the influence of both the terms is retained. This can
be ensured by individually normalizing them to be in the interval [0, 1]. This,
together with score averaging, have a positive side-effect of the regularization
hyperparameter λ being less sensitive to the number of tasks. However, ewc [6]
and pi [25] are highly sensitive to λ, making them relatively less reliable for il.
Note, during training, the space complexity for RWalk is O(P), independent of
the number of tasks.

4.2 Handling Intransigence

Experimentally, we observed that training k-th task with Dk leads to a poor
test accuracy for the current task compared to previous tasks in the single-head
evaluation setting (refer Sect. 2.1). This happens because during training the

Riemannian Walk for Incremental Learning 565

model has access to Dk which contains labels only for the k-th task, yk. However,
at test time the label space is over all the tasks seen so far Yk = ∪k

j=1y
j , which

is much larger than yk. This in turn increases confusion at test time as the
predictor function has no means to differentiate the samples of the current task
from the ones of previous tasks. An intuitive solution to this problem is to store
a small subset of representative samples from the previous tasks and use it while
training the current task [19]. Below we discuss different strategies to obtain
such a subset. Note that we store m points from each task-specific dataset as
the training progresses, however, it is trivial to have a fixed total number of
samples for all the tasks similar to iCaRL [19].

Uniform Sampling. A näıve yet highly effective (shown experimentally) app-
roach is to sample uniformly at random from the previous datasets.

Plane Distance-Based Sampling. In this case, we assume that samples closer
to the decision boundary are more representative than the ones far away. For a
given sample {xi, yi}, we compute the pseudo-distance from the decision bound-
ary d(xi) = φ(xi)�wyi , where φ(·) is the feature mapping learned by the neural
network and wyi are the last fully connected layer parameters for class yi. Then,
we sample points based on q(xi) ∝ 1

d(xi)
. Here, the intuition is, since the change

in parameters is regularized, the feature space and the decision boundaries do
not vary much. Hence, the samples that lie close to the boundary would act as
boundary defining samples.

Entropy-Based Sampling. Given a sample, the entropy of the output soft-
max distribution measures the uncertainty of the sample which we used to sample
points. The higher the entropy the more likely is that the sample would be picked.

Mean of Features (MoF). iCaRL [19] proposes a method to find samples
based on the feature space φ(·). For each class y, m number of points are found
whose mean in the feature space closely approximate the mean of the entire
dataset for that class. However, this subset selection strategy is inefficient com-
pared to the above sampling methods. In fact, the time complexity is O(nfm)
where n is dataset size, f is the feature dimension and m is the number of
required samples.

5 Related Work

One way to address catastrophic forgetting is by dynamically expanding the
network for each new task [18,20,23,24]. Though intuitive and simple, these
approaches are not scalable as the size of the network increases with the number
of tasks. A better strategy would be to exploit the over-parametrization of neural
networks [3]. This entails regularizing either over the activations (output) [13,19]

566 A. Chaudhry et al.

or over the network parameters [6,25]. Even though activation-based approach
allows more flexibility in parameter updates, it is memory inefficient if the acti-
vations are in millions, e.g ., semantic segmentation. On the contrary, methods
that regularize over the parameters - weighting the parameters based on their
individual importance - are suitable for such tasks. Our method falls under the
latter category and we show that our method is a generalization of ewc++
and pi [25], where ewc++ is our efficient version of ewc [6], very similar to
the concurrently developed online-ewc [21]. Similar in spirit to regularization
over the parameters, Lee et al . [12] use moment matching to obtain network
weights as the combination of the weights of all the tasks, and Nguyen et al . [16]
enforce the distribution over the model parameters to be close via a Bayesian
framework. Different from the above approaches, Lopez-Paz et al . [14] update
gradients such that the losses of the previous tasks do not increase, while Shin et
al . [22] resort to a retraining strategy where the samples of the previous tasks
are generated using a learned generative model.

6 Experiments

Datasets. We evaluate baselines and our proposed model - RWalk - on two
datasets:

1. Incremental MNIST : The standard MNIST dataset is split into five disjoint
subsets (tasks) of two consecutive digits, i.e., ∪kyk = {{0, 1}, . . . , {8, 9}}.

2. Incremental CIFAR: To show that our approach scales to bigger datasets, we
use incremental CIFAR where CIFAR-100 dataset is split into ten disjoint
subsets such that ∪kyk = {{0−9}, . . . , {90−99}}.

Architectures. The architectures used are similar to [25]. For MNIST, we use
an MLP with two hidden layers each having 256 units with ReLU nonlinearites.
For CIFAR-100, we use a CNN with four convolutional layers followed by a
single dense layer (see supplementary for more details). In all experiments, we
use Adam optimizer [5] (learning rate = 1 × 10−3, β1 = 0.9, β2 = 0.999) with a
fixed batch size of 64.

Baselines. We compare RWalk against the following baselines:

– Vanilla: Network trained without any regularization over past tasks.
– ewc [6] and pi [25]: Both use parameter based regularization. Note, we

observed that ewc++ performed at least as good as ewc and therefore,
in all the experiments, by ewc we mean the stronger baseline ewc++.

– iCaRL [19]: Uses regularization over the activations and a nearest-exempler-
based classifier. Here, iCaRL-hb1 refers to the hybrid1 version, which uses the
standard neural network classifier. Both the versions use previous samples.

Note, we use a few samples from the previous tasks to consolidate our base-
lines further in the single-head setting.

Riemannian Walk for Incremental Learning 567

6.1 Results

We report the results in Table 1 where RWalk outperforms all the baselines in
terms of average accuracy and provides better trade-off between forgetting and
intransigence. We now discuss the results in detail.

Table 1. Comparison with different baselines on MNIST and CIFAR in both multi-
head and single-head evaluation settings. Baselines where samples are used are
appended with ‘-S’. For MNIST and CIFAR, 10 (0.2%) and 25 (5%) samples are used
from the previous tasks using mean of features (MoF) based sampling strategy (refer
Sect. 4.2).

Methods MNIST CIFAR

λ A5(%) F5 I5 λ A10(%) F10 I10

Multi-head evaluation

Vanilla 0 90.3 0.12 6.6 × 10−4 0 44.4 0.36 0.02

ewc 75000 99.3 0.001 0.01 3 × 106 72.8 0.001 0.07

pi 0.1 99.3 0.002 0.01 10 73.2 0 0.06

RWalk (Ours) 1000 99.3 0.003 0.01 1000 74.2 0.004 0.04

Single-head evaluation

Vanilla 0 38.0 0.62 0.29 0 10.2 0.36 −0.06

ewc 75000 55.8 0.08 0.77 3 × 106 23.1 0.03 0.17

pi 0.1 57.6 0.11 0.8 10 22.8 0.04 0.2

iCaRL-hb1 – 36.6 0.68 −0.01 – 7.4 0.40 0.06

iCaRL – 55.8 0.19 0.46 – 9.5 0.11 0.35

Vanilla-S 0 73.7 0.30 0.03 0 12.9 0.64 −0.3

ewc-S 75000 79.7 0.14 0.22 15 × 105 33.6 0.27 −0.05

pi-S 0.1 78.7 0.24 0.05 10 33.6 0.27 −0.03

RWalk (Ours) 1000 82.5 0.15 0.14 500 34.0 0.28 −0.06

In the multi-head evaluation setting [14,25], except Vanilla, all the methods
provide state-of-the-art accuracy with almost zero forgetting and intransigence
(top row of Fig. 2). This gives an impression that il problem is solved. However,
as discussed in Sect. 2.1, this is an easier evaluation setting and does not capture
the essence of il.

However, in the single-head evaluation, forgetting and intransigence increase
substantially due to the the inability of the network to differentiate among tasks.
Hence, the performance significantly drops for all the methods (refer Table 1 and
the middle row of Fig. 2). For instance, on MNIST, forgetting and intransigence
of Vanilla deteriorates from 0.12 to 0.62, and 6.6 × 10−4 to 0.29, respectively,
causing the average accuracy to drop from 90.3% to 38.0%. Although, regularized
methods, ewc and pi, designed to counter catastrophic forgetting, result in less

568 A. Chaudhry et al.

Fig. 2. Accuracy on incremental MNIST with multi-head evaluation (top), and single-
head evaluation without (middle) and with samples (bottom). First five columns
show the variation in performance for different tasks, e.g ., the first plot depicts the
performance variation on Task 1 when trained incrementally over five tasks. The last
column shows the accuracy (Ak, refer Sect. 3). Mean of features (MoF) sampling is
used.

degradation of forgetting, their accuracy is still significantly worse - compare
99.3% of pi in multi-head against 57.6% in single-head. In Table 1, a similar
performance decrease is observed on CIFAR-100 as well. Such a degradation in
accuracy even with less forgetting shows that it is not only important to preserve
knowledge (quantified by forgetting) but also to update knowledge (captured
by intransigence) to achieve better performance. Task-level analysis for CIFAR
dataset, similar to Fig. 2, is presented in the supplementary material.

We now show that even with a few representative samples intransigence can
be mitigated. For example, in the case of pi on MNIST with only 10 (≈0.2%)
samples for each previous class, the intransigence drops from 0.8 to 0.05 which
results in improving the average accuracy from 57.6% to 78.7%. Similar improve-
ments can be seen for other methods as well. On CIFAR-100, with only 5%
representative samples, almost identical behaviour is observed.

In our CIFAR-100 experiments (CNN instead of ResNet32), we note that the
performance of iCaRL [19] is significantly worse than what has been reported
by the authors. We believe this is due to the dependence of iCaRL on a highly
expressive feature space, as both the regularization and the classifier depend on
it. Perhaps, this reduced expressivity of the feature space due to the smaller
network resulted in the performance loss.

Riemannian Walk for Incremental Learning 569

Fig. 3. Interplay between forgetting and intransigence

Fig. 4. Comparison by increasing the number of samples. On MNIST and CIFAR
each class has around 5000 and 500 samples, respectively. With increasing number of
samples, the performance of Vanilla improved, but in the range where Vanilla is poor,
RWalk consistently performs the best. Uniform sampling is used

Interplay of Forgetting and Intransigence. In Fig. 3 we study the inter-
play of forgetting and intransigence in the single-head setting. Ideally we would
like a model to be in the quadrant marked as PBT, PFT (i.e., positive back-
ward transfer and positive forward transfer). On MNIST, since all the methods,
except iCaRL-hb1, lie on the top-right quadrant, hence for models with com-
parable accuracy, a model which has the smallest distance from (0, 0) would be
better. As evident, RWalk is closest to (0, 0), providing a better trade-off between
forgetting and intransigence compared to all the other methods. On CIFAR-100,
the models lie on both the top quadrants and with the introduction of samples,
all the regularized methods show positive forward transfer. Since the models lie
on different quadrants, their comparison of forgetting and intransigence becomes
application specific. In some cases, we might prefer a model that performs well on
new tasks (better intransigence), irrespective of its performance on the old ones
(can compromise forgetting), and vice versa. Note that, RWalk maintains com-
parable performance to other baselines while yielding higher average accuracy
on CIFAR-100.

570 A. Chaudhry et al.

Fig. 5. Comparison of different sampling strategies discussed in Sect. 4.2 on MNIST
(top) and CIFAR-100 (bottom). Mean of features (MoF) outperforms others

Effect of Increasing the Number of Samples. As expected, for smaller num-
ber of samples, regularized methods perform far superior compared to Vanilla
(refer Fig. 4). However, once the number of samples are sufficiently large, Vanilla
starts to perform better or equivalent to the regularized models. The reason is
simple because now the Vanilla has access to enough samples of the previous
tasks to relearn them at each step, thereby obviating the need of regularized
models. However, in an il problem, a fixed small-sized memory budget is usu-
ally assumed. Therefore, one cannot afford to store large number of samples from
previous tasks. Additionally, for a simpler dataset like MNIST, Vanilla quickly
catches up to the regularized models with small number of samples (20, 0.4% of
total samples) but on a more challenging dataset like CIFAR it takes consider-
able amount of samples (200, 40% of total samples) of previous tasks for Vanilla
to match the performance of the regularized models.

Comparison of Different Sampling Strategies. In Fig. 5 we compare differ-
ent subset selection strategies discussed in Sect. 4.2. It can be observed that for
all the methods Mean-of-Features (MoF) subset selection procedure, introduced
in iCaRL [19], performs the best. Surprisingly, uniform sampling, despite being
simple, is as good as more complex MoF, Plane Distance (PD) and entropy-based
sampling strategies. Furthermore, the regularized methods remain insensitive to
different sampling strategies, whereas in Vanilla, performance varies a lot against
different strategies. We believe this is due to the unconstrained change in the
last layer weights of the previous tasks.

Riemannian Walk for Incremental Learning 571

7 Discussion

In this work, we analyzed the challenges in the incremental learning problem,
namely, catastrophic forgetting and intransigence, and introduced metrics to
quantify them. Such metrics reflect the interplay between forgetting and intran-
sigence, which we believe will encourage future research for exploiting model
capacity, such as, sparsity enforcing regularization, and exploration-based meth-
ods for incremental learning. In addition, we have presented an efficient version of
ewc referred to as ewc++, and a generalization of ewc++ and pi with a KL-
divergence-based perspective. Experimentally, we observed that these parameter
regularization methods suffer from high intransigence in the practical single-head
setting and showed that this can be alleviated with a small subset of representa-
tive samples. Since these methods are memory efficient compared to knowledge
distillation-based algorithms such as iCaRL, future research in this direction
would enable the possibility of incremental learning on segmentation tasks.

Acknowledgements. This work was supported by The Rhodes Trust, EPSRC, ERC
grant ERC-2012-AdG 321162-HELIOS, EPSRC grant Seebibyte EP/M013774/1 and
EPSRC/MURI grant EP/N019474/1.

References

1. Amari, S.I.: Natural gradient works efficiently in learning. Neural Comput. 10,
251–276 (1998)

2. Grosse, R., Martens, J.: A kronecker-factored approximate fisher matrix for con-
volution layers. In: ICML (2016)

3. Hecht-Nielsen, R., et al.: Theory of the backpropagation neural network. Neural
Netw. 1(Supplement–1), 445–448 (1988)

4. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS (2014)

5. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
6. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. In:

Proceedings of the National Academy of Sciences of the United States of America
(PNAS) (2016)

7. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images
(2009). https://www.cs.toronto.edu/∼kriz/cifar.html

8. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22,
79–86 (1951)

9. Le Roux, N., Pierre-Antoine, M., Bengio, Y.: Topmoumoute online natural gradient
algorithm. In: NIPS (2007)

10. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

11. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature, vol. 176.
Springer, New York (2006). https://doi.org/10.1007/b98852

12. Lee, S.W., Kim, J.H., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting
by incremental moment matching. In: NIPS (2017)

13. Li, Z., Hoiem, D.: Learning without forgetting. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 614–629. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 37

https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/b98852
https://doi.org/10.1007/978-3-319-46493-0_37

572 A. Chaudhry et al.

14. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continuum learning.
In: NIPS (2017)

15. Martens, J., Grosse, R.: Optimizing neural networks with kronecker-factored
approximate curvature. In: ICML (2015)

16. Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. In:
ICLR (2018)

17. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. In: ICLR
(2014)

18. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual
adapters. In: NIPS (2017)

19. Rebuffi, S.V., Kolesnikov, A., Lampert, C.H.: iCaRL: incremental classifier and
representation learning. In: CVPR (2017)

20. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671
(2016)

21. Schwarz, J., et al.: Progress & compress: a scalable framework for continual learn-
ing. In: ICML (2018)

22. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: NIPS (2017)

23. Terekhov, A.V., Montone, G., O’Regan, J.K.: Knowledge transfer in deep block-
modular neural networks. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott,
T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 268–279.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9 27

24. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically
expandable networks. In: ICLR (2018)

25. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: ICML (2017)

http://arxiv.org/abs/1606.04671
https://doi.org/10.1007/978-3-319-22979-9_27

	Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence
	1 Introduction
	2 Problem Set-Up and Preliminaries
	2.1 Single-Head vs Multi-head Evaluations
	2.2 Probabilistic Interpretation of Neural Network Output
	2.3 KL-Divergence as the Distance in the Riemannian Manifold

	3 Forgetting and Intransigence
	4 Riemannian Walk for Incremental Learning
	4.1 Avoiding Catastrophic Forgetting
	4.2 Handling Intransigence

	5 Related Work
	6 Experiments
	6.1 Results

	7 Discussion
	References

