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Abstract. Recent breakthroughs in Neural Architectural Search (NAS)
have achieved state-of-the-art performances in applications such as image
classification and language modeling. However, these techniques typ-
ically ignore device-related objectives such as inference time, mem-
ory usage, and power consumption. Optimizing neural architecture for
device-related objectives is immensely crucial for deploying deep net-
works on portable devices with limited computing resources. We propose
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural
Architectures, optimizing for both device-related (e.g., inference time
and memory usage) and device-agnostic (e.g., accuracy and model size)
objectives. DPP-Net employs a compact search space inspired by current
state-of-the-art mobile CNNs, and further improves search efficiency by
adopting progressive search (Liu et al. 2017). Experimental results on
CIFAR-10 are poised to demonstrate the effectiveness of Pareto-optimal
networks found by DPP-Net, for three different devices: (1) a workstation
with Titan X GPU, (2) NVIDIA Jetson TX1 embedded system, and (3)
mobile phone with ARM Cortex-A53. Compared to CondenseNet and
NASNet (Mobile), DPP-Net achieves better performances: higher accu-
racy & shorter inference time on various devices. Additional experimental
results show that models found by DPP-Net also achieve considerably-
good performance on ImageNet as well.

Keywords: Architecture search · Multi-objective optimization

1 Introduction

Deep Neural Networks (DNNs) have demonstrated impressive performance on
many machine-learning tasks such as image recognition [2], speech recognition
[3], and language modeling [4]. Despite the great successes achieved by DNNs,
crafting neural architectures is usually a manual, time-consuming process that
requires profound domain knowledge. Recently, automating neural architecture
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Fig. 1. Different devices share different Pareto-Optimality. An optimal point on Device
A’s Pareto front may not lie on Device B’s Pareto front. Given multiple device-related
(e.g., inference time and memory usage) and device-agnostic (e.g., accuracy and model
size) objectives. Our DPP-Net can efficiently find various network architectures at the
Pareto-front for the corresponding device.

search (NAS) has drawn lots of attention from both industry and academia [5,6].
Approaches for NAS can mainly be categorized into two branches: based on Rein-
forcement Learning (RL) [6–10] or Genetic Algorithm (GA) [11–14]. There are
also works not based on RL or GA, such as [15], achieving comparable perfor-
mance by using other efficient search algorithms. However, most of these works
mentioned above focus on optimizing one single objective (e.g., accuracy), and
other objectives have been largely ignored, especially thoses related to devices
(e.g., latency).

On the other hand, while designing complex, sophisticated architectures have
already been treated more like an art than science, searching for neural architec-
tures optimized for multiple objectives has posed an even more significant chal-
lenge. To this end, new architectures leveraging novel operations [16–18] have
been developed to achieve higher computing efficiency than conventional convo-
lution. Not surprisingly, designing such architectures requires, again, profound
domain knowledge and much effort. Therefore, how to automatically search for
network architectures jointly considering high accuracy and other objectives
(e.g., inference time, model size, etc. to conforms to device-related constraints)
remains a critical yet less addressed question. To the best of our knowledge,
there is one previous work [19] that searches network architectures by consid-
ering both accuracy and inference time. Nevertheless, the computational power
required during training by their algorithm is very significant, and their search
space is naively small.
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We propose DPP-Net : Device-aware Progressive Search for Pareto-optimal
Neural Architectures given multiple device-related (e.g., inference time and mem-
ory usage) and device-agnostic (e.g., accuracy and model size) objectives. It is
an efficient search algorithm to find various network architectures at the Pareto-
front (Fig. 1) in the multiple objectives space to explore the trade-off among
these objectives. In this way, a deep learning practitioner can select the best
architecture under the specific use case. We define our search space by taking
inspirations from state-of-the-art handcrafted mobile CNNs, which is more com-
pact and efficient comparing to usual NAS architectures. For search efficiency,
we have also adopted the progressive search strategy used in [15] to speed up
the search process. Experimental results on CIFAR-10 demonstrate that DPP-
Net can find various Pareto-optimal networks on three devices: (1) a workstation
with Titan X GPU, (2) NVIDIA Jetson TX1 embedded system, and (3) a mobile
phone with ARM Cortex-A53. Most importantly, DPP-Net achieves better per-
formances in both (a) higher accuracy and (b) shorter inference time, comparing
to the state-of-the-art CondenseNet on three devices. Finally, our searched DPP-
Net achieves considerably good performance on ImageNet as well.

2 Related Work

Recent advancements on neural architecture search can be classified into three
basic categories: Reinforcement Learning (RL) based approaches, Genetic Algo-
rithm (GA) based ones and the third category of methods that involve opti-
mization techniques other than those two. In addition to architecture search
techniques, we will also focus on those methods that work on multiple objec-
tives.

RL-Based Approach. Seminal work by [6] proposed “Neural Architecture Search
(NAS)” using REINFORCE algorithm [20] to learn a network architecture called
“controller” RNN that generates a sequence of actions representing the architec-
ture of a CNN. Classification accuracies of the generated bypass CNN models on
a validation dataset are used as rewards for the controller. NASNet [9] further
improves NAS by replacing REINFORCE with proximal policy-optimization
(PPO) [21] and search architectures of a “block” which repeatedly concatenated
itself to form a complete model. This techniques has not only reduced the search
space but also managed to incorporate empirical knowledge when designing a
CNN. Other works in the field including approach used in [22] which searches
model architectures by manipulating the depth of the width of the layers using
policy gradient, and the methods proposed by [8,10] which search network archi-
tectures using Q-learning. A concurrent work [7] proposed a model to force all
child networks to share weights, which largely reduced the computational costs
needed to search in a space as defined by [9].

GA-Based Approach. Except for RL-based methods, Genetic Algorithm based
methods [11–13] are also popular in architecture search research. One of the
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recent work in this field [14] achieves state-of-the-art performance on CIFAR-10
image classification task over RL-based method.

Other Approaches. Methods using either RL-based or GA-based algorithm usu-
ally requires a significant amount of computational power and are therefore
infeasible in certain situations. Many approaches are proposed to specifically
address this issue by proposing their search strategies that cannot be categories
using methods that belong to the previous two families. [5] use Monte Carlo
Tree Search (MCTS) to search through the space of CNN architectures in a
shallow-to-deep manner and randomly select which branch to expand at each
node. A sequential Model-based Optimization (SMBO) [23] that learns a predic-
tive model is further adopted to help the decision making of node expansion. [15]
also use SMBO as the search algorithm and have achieved comparable perfor-
mance to NASNet using significantly less computational resources while operated
on the same search space. [24] proposed to predict performance to reduce the
effort of searching model architectures. A concurrent work [25] proposed to train
a network to predict the weights of another network and combine this method
with random search to search for good candidate models. Despite the small num-
ber of resources required in each search, the performance of the model is hard
to compete with state-of-the-art approaches.

Architecture Search with Multiple Objectives. All the previously mentioned works
focus on searching models that achieve highest performance (e.g.classification
accuracy) regardless of the model complexity. [19] proposed to treat neural net-
work architecture search as a multi-objective optimization task and adopt an
evolutionary algorithm to search models with two objectives, run-time speed,
and classification accuracy. However, the performances of the searched models
are not comparable to handcrafted small CNNs, and the numbers of GPUs they
required are enormous.

Handcrafted Models with Multiple Objectives. The machine learning and com-
puter vision community are rich in handcrafted neural architectures. Here we
will list some of the most recent work that involves multiple objectives. [16] and
ShuffleNet [17] have utilized depth-wise convolution and largely reduced com-
putational resources required but remained comparably accurate. However, the
real-world implementation of depth-wise convolution in most of the deep learn-
ing framework have not reached the theoretical efficiency and results in much
inferior inference time. CondenseNet [18] proposed to use a group convolution
[2] variant in order to achieve state-of-the-art computational efficiency.

3 Search Architecture

In Fig. 2 we illustrate the overall architectures. We repeat an identical “cell”
(Dense Cell) numerous of times following the connecting rules of CondenseNet
[18]. We take inspirations from CondenseNet, which optimizes both classification
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Fig. 2. Network architecture for CIFAR-10 and ImageNet. Our final network
structure is fully specified by defining the Dense Cell topology. The number of Dense
Cell repetitions C and the growth rate G are different for CIFAR-10 and ImageNet
architecture. Note that in ImageNet Architecture we set the stride value of initial
convolution 2 and the pool size in global pooling to 7 due to the scale of the input
image.

accuracy and inference speed for mobile devices. The feature maps are directly
connected even with different resolution and the growth rate is doubled when-
ever the size of the feature maps reduces. The strategy to make fully dense con-
nections encourage feature re-use and the exponentially increased growth rate
reduces computational costs. These characteristics are beneficial when deploying
models on energy constrained devices. As we conduct our searching on CIFAR-
10, transferring the searched model to ImageNet, requires more stride 2 pooling
layers and Dense Cells since the size of the input images (224× 224) is way larger
than CIFAR10 (32× 32). Finally, a global average pooling layer is appended to
the last Dense Cell to obtain the final output.

The overall architectures (e.g., how many cells are connected, initial output
feature map size, growth rate) are fixed before searching, the only component
we are going to search is the cell structure, this idea follows the heuristics of
searching for a “block” similar to [9,15]. Each cell to be searched consists of
multiple layers of two types - normalization (Norm) and convolutional (Conv)
layers. We progressively add layers following the Norm-Conv-Norm-Conv order
(Fig. 3(a)-Right). The operations available for Norm (yellow boxes) and Conv
(green boxes) layers are shown in the left and right column below, respectively:
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1. Batch Normalization + Relu
2. Batch Normalization
3. No op (Identity)

1. 1× 1 Convolution
2. 3× 3 Convolution
3. 1× 1 Group Convolution
4. 3× 3 Group Convolution
5. 1× 1 Learned Group Convolution
6. 3× 3 Depth-wise Convolution

Fig. 3. Search Space Design. Panel (a): We show the cell structure of our DPP-Net.
Panel (b): cells of efficient CNNs. BN, DW, LG, G stands for Batch Norm, Depth-wise,
Learned Group, Group, respectively. All the group convolutions are implicitly followed
by channel shuffle operation. (Color figure online)

4 Search Space

Our search space covers well-designed efficient operations (e.g., Depth-wise Con-
volution [26], Learned Group Convolution [18]) to take advantages of empirical
knowledge when designing efficient CNNs. This not only ensures the robustness
and efficiency of our searched architectures but also reduces the training time of
the searched model, therefore reduce the search time as well. Finally, the block
of other efficient CNNs, e.g., MobileNet [16], ShuffleNet [17] are also shown in
Fig. 3(b) for a more thorough comparison.

We now measure the complexity of our search space to have an intuition of
the size of the search problem. For a �-layer cell, the total number of possible
cell structures is O0 × O1 × ... × Oi × ... × O� where Oi = |Norm| if i mod 2 =
0 or Oi = |Conv|. As shown above, the number of operations in the Norm set
is 3 and the number of operations in the Conv set is 6. Therefore, a 3-layer cell
structure has 3 × 6 × 3 = 54 possibilities, a 4-layer cell will have 54 × 6 = 324
possible structures. As the number of layer increases, it is hardly pragmatic to
train all the architectures. This search space is undersized comparing to the
search space of [9,15] because we discarded the operations that are rarely used
in modern mobile CNNs and we do not need to search for which layer to connect
to. Nevertheless, this search space is still versatile enough to cover a wide variety
of possible mobile models.



546 J.-D. Dong et al.

5 Search Algorithm

5.1 Overview

Many architecture search approaches intuitively search on the complete search
space which requires significant computing power. Inspired by [15], which pro-
gressively search the architectures from a small search space to a large one,
we adopt Sequential Model-Based Optimization ([23]) algorithm to navigate
through the search space efficiently. Our search algorithm consists of the fol-
lowing three main steps (Fig. 4).

Fig. 4. Flow Diagram of Our Search Algorithm. We adopt Sequential Model-
Based Optimization [23] algorithm to search efficiently with the following three steps:
(1) Train and Mutation, (2) Update and Inference, and (3) Model Selection.
Note that � is the layers in a cell, K is the number of models to train, and K′ is the
number of models after Mutation.

1. Train and Mutation. In this stage, we train K �-layer models and acquire
their accuracies after N epochs. Meanwhile, for each �-layer model, we mutate
it and acquire a � + 1-layer model by exploring all possible combinations.
Assuming that we have K models before mutation, the number of models
after mutation K ′ process will be the following.

K ′ =

{
K × |Norm| , if � + 1 mod 2 = 0
K × |Conv| , otherwise

(1)

2. Update and Inference. In Train and Mutation step, the algorithm will
generate a large number of candidate models that are usually beyond our
ability to evaluate. We use a surrogate function to predict the networks’
accuracies with the given architectures. The surrogate function is updated
with the evaluation accuracies (output) and the architectures (inputs) of the
K �-layer models from the Train and Mutation step. After the surrogate
function is updated, we predict the accuracies of the mutated � + 1-layer
models. Using a surrogate function avoids time-consuming training to obtain
true accuracy of a network with only a slight drawback of regression error.
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3. Model Selection. There are two ways we can select � + 1-layers models.
PNAS Method. [15] adopted the SMBO algorithm to search for block archi-
tectures of increasing complexity. During the search process, SMBO simply
selects top K performing models based on predicted accuracies. This approach
is inconsiderate of the heterogeneity of real-world portable device, which is
only equipped with limited power supply.
Our Method. Our method considers not only the accuracy of the models
but also the device-aware characteristics. Those characteristics include QoS
(Quality of Service) and hardware requirements (e.g., memory size), which are
critical metrics to be considered on mobile and embedded devices. Given the
device we are searching on, multiple hard constraints μ and soft constraints
ξ are set. A hard constraint μ is considered to be the minimal requirement of
the model. A model that does not meet the hard constraint will be removed
from the candidate list. On the other hand, a soft constraint ξ is treated as
one of the objectives to be optimized which will be eventually selected using
Pareto Optimality selection.

Fig. 5. A symbolic figure for Pareto Optimality. Panel (a) illustrates an example
of two objectives Pareto front. Every box represents a feasible choice. In this case, our
goal is to minimize both objectives. Since box C is dominated by both box A and box
B, it is not on the Pareto front. While box A and box B both lie on the front because
none of them dominated another. Panel (b) demonstrates that when the number of
objectives is more than two, the Pareto front becomes more complicated.

5.2 Pareto Optimality

Since we are optimizing the problem using multiple objectives, no single solu-
tion will optimize each objective simultaneously and compromises will have to
be made. We treat neural network architecture search as a multi-objective opti-
mization problem and use Pareto Optimality over a set of pre-defined objectives
to select models. Using Pareto Optimization, it is likely that there exists a num-
ber of optimal solutions. A solution is said to be Pareto optimal if none of the
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objectives can be improved without worsening some of the other objectives, and
the solutions achieve Pareto-optimality are said to be in the Pareto front.

5.3 Surrogate Function

To accurately predict the classification accuracy of an architecture, a surrogate
function is used. The surrogate function is able to learn efficiently from a few
data points and handle variable-sized inputs (models with different number of
layers). Hence, we choose a Recurrent Neural Network (RNN), the last hidden
state of the RNN is followed by a fully connected layer with sigmoid nonlinearity
to regress accuracy. The reason for choosing RNN as the surrogate function is
because of its high sampling efficiency and the ability to handle different length
of inputs. The input to the RNN is the one-hot encoding of our cell structure
and each structure has its own embedding.

Fig. 6. The architecture diagram of our Recurrent Neural Network (RNN). The dashed
block indicates we progressively search for more layers architectures.

6 Experiments and Results

6.1 Experimental Details

We conduct our search on the CIFAR-10 dataset with standard augmentation,
the training set consists of 50,000 images and the testing set consists of 10,000
images. After the search is done, we use the cell structure to form a larger model
and train on ImageNet [27] classification task to see how well the search performs.
For the surrogate function, we use a standard LSTM with layer normalization
[28], the hidden state size and the embedding size are both set to 128. Bias in
the fully connected layer is initialized to 2, and the embeddings use random
uniform initializer in range 0 to 1. To train the surrogate function, we use Adam
Optimizer [29] with learning rate 0.008.

During the search, the number of repeated blocks C1, C2, C3 are set to 14, 14,
14, G1, G2, G3 are set to 8, 16, 32 for CIFAR-10 and the searching end at � = 4.
Each sampled architecture is trained for 10 epochs with batch size 256 using
Stochastic Gradient Descent and Nesterov momentum weight 0.9. The learning
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rate is set to 0.1 with cosine decay [30]. At each iteration of the search algorithm,
our number of models to train, K, is set to 128. After searching is done, we train
the final models on ImageNet with batch size 256 for 120 epochs, the number of
repeated blocks C1, C2, C3, C4, C5 are set to 4, 6, 8, 10, 8 and G1, G2, G3, G4, G5

are set to 8, 16, 32, 64, 128.
The detail settings of the devices to search on are shown in Table 1. When

searching models on WS and ES, we consider 4 objectives, evaluation error rate,
number of parameters, FLOPs, and actual inference time on different computing
devices. While on Mobile Phone, we consider an additional metric, memory
usage, as our 5th objective.

Table 1. Hardware Specifications and Numbers of Objectives. For WS, 64GB
is the CPU memory and 12GB is the GPU memory. In ES, memory space is shared
among CPU and GPU

Workstation (WS) Embedded System (ES) Mobile Phone (M)

Instance Desktop PC NVIDIA Jetson TX1 Xiaomi Redmi Note 4

CPU Intel i5-7600 ARM Cortex57 ARM Cortex53

Cores 4 4 8

GHz 3.5 1.9 2.0

CUDA Titan X (Pascal) Maxwell 256 –

Memory 64 GB/12 GB 4 GB 3 GB

Objectives 4 4 5

6.2 Results on CIFAR-10

We first provide the results about the Pareto-optimal candidates (each trained
for 10 epochs) found during the search process, and then demonstrate the eval-
uations of final models (trained for 300 epochs).

Figure 7 shows the candidates extracted from the Pareto front during the
search process. In Fig. 7(a, b), no clear pattern (or association) is observed
between the error rate and the number of parameters (or FLOPs). Similarly,
from Fig. 7(c), the inference time couldn’t be simply associated with the device-
agnostic objectives (FLOPs and number of parameters). As we will show later
in Table 2 and Fig. 9, not surprisingly, inference time is device-dependent since,
in addition to modeling, the hardware implementation also affects the inference
time. For a better comparison and also to showcase our DPP-Net, we evaluate
and plot the performance of CondenseNet (reproduce 10 epochs performance),
which is also included in our search space but not on the Pareto front.

During the searching process, the surrogate function was updated several
times. The best regression error (on the validation set) is around 12%. At the
first glance, this number is a bit large in terms of predicting the true accuracy.
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Fig. 7. Pareto-optimal candidates on WS (trained with 10 epochs) evaluated
with Cifar10 dataset. (a) is the scatter plot between error rate (Y-axis) and the
number of parameters (X-axis), whereas (b) stands for error rate v.s. FLOPs. (c) is the
number of parameters (left Y-axis) and FLOPs (right Y-axis) v.s. actual inference time
(X-axis), where the dot represents params v.s. inference time and the cross is FLOPs
v.s. inference time. Each model is color-coded: green (DPP-Net-PNAS), yellow (DPP-
Net-WS), and cyan (DPP-Net-Panacea). Notice that each candidate here represents a
neural architecture that achieves Pareto optimality. Finally, CondenseNet (red dots) is
included for comparison. (Color figure online)

Table 2. Cifar10 Classification Results. Missing values are the metrics not
reported in their original papers. Pareto front visualizations of our searched networks
can also be found in Fig. 7. The standard deviation of the metrics of DPP-Net-Panacea
are calculated across 10 runs

Device-agnostic metrics Device-aware metrics

Model from

previous works

Error rate Params FLOPs Time-WS Time-ES Time-M Mem-M

Real et al. [11] 5.4 5.4M – – – – –

NASNet-B [9] 3.73 2.6M – – – – –

PNASNet-1 [15] 4.01 1.6M – – – – –

DenseNet-BC

(k=12) [31]

4.51 0.80M – – – 0.273 79MB

CondenseNet-86

[18]

5.0 0.52M 65.8M 0.009 0.090 0.149 113MB

Device-agnostic metrics Device-aware metrics

Model from

DPP-Net

Error rate Params FLOPs Time-WS Time-ES Time-M Mem-M

DPP-Net-PNAS 4.36 11.39M 1364M 0.013 0.062 0.912 213MB

DPP-Net-WS 4.78 1.00M 137M 0.006 0.075 0.210 129MB

DPP-Net-ES 4.93 2.04M 270M 0.007 0.044 0.381 100MB

DPP-Net-M 5.84 0.45M 59.27M 0.008 0.065 0.145 58MB

DPP-Net-Panacea 4.62 ± 0.23 0.52M 63.5M 0.009 ± 7.4e-5 0.082 ± 0.011 0.149 ± 0.017 104MB

However, it is important to clarify that the purpose of using the surrogate func-
tion is to suggest what kind of models may have a relatively good accuracy
instead of exactly how accurate the models are. For the search time, we use 4
GTX 1080 GPUs and search for two days (around 48 hours).

After searching process is done, we select two architectures (from others
on the Pareto front) for detailed evaluation: DPP-Net-Device and DPP-Net-
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Panacea. DPP-Net-Device has a small error rate and the shortest inference time
when running on certain Device (WS or ES), whereas DPP-Net-Panacea also
has a small error rate and performs relatively well on every objective (but longer
inference time than DPP-Net-Device). These two best models, in terms of Pareto
Optimality, are trained for 300 epochs and the evaluation metrics are reported
in Table 2 (bottom half). We also include the results of the neural architec-
ture searched by DPP-Net with PNAS [15] criterion: the highest classification
accuracy among all the candidates. Furthermore, for the completeness and com-
prehensive study, in the top half of Table 2, we include the results from the best
models of previous NAS works [9,11,15], as well as the current state-of-the-art
handcrafted mobile CNN models (bottom half) [18,31]. The architectures of
these models are shown in Fig. 8.

DPP-Net-PNAS results in finding models with possible large number of
parameters and very slow inference time. Our results are compared with state-
of-the-art handcrafted mobile CNNs (second group) and models designed using
architecture search methods (first group). Our DPP-Net clearly strikes better
trade-off among multiple objectives.

Fig. 8. The result of our searched dense cell topology.

6.3 Results on ImageNet

We further transfer our searched architecture to test the performance on Ima-
geNet classification task. The cell structures searched using CIFAR-10 dataset
are directly used for ImageNet with only a slight modification on the number of
repeated Dense Cells. The hyper-parameters for training DPP-Net on ImageNet
are nearly identical to training DPP-Net on CIFAR-10, except for the parame-
ter of group lasso regularizer which we set to 1e-5. This regularization induces
group-level sparsity for Learned Group Convolution as suggested in [18].

The results of ImageNet training is shown in Table 3. DPP-Net-Panacea per-
forms better in nearly every aspect than Condensenet-74. Moreover, DPP-Net-
Panacea outperforms NASNet (Mobile), a state-of-the-art mobile CNN designed
by an architecture search method [9] in every metrics. We further argue that
the sophisticated architecture makes NASNet (Mobile) not practical on mobile
devices although it has a relatively small number of parameters compared to
traditional CNNs. These results again show the versatility and robustness of our
device-aware search method.
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Table 3. ImageNet Classification Results. Time-M and Mem-M is the inference
time and memory usage of the corresponding model on our mobile phone using ONNX
and Caffe2. Due to operations not supported on this framework, we cannot measure
the inference time and memory usage of NASNet (Mobile) on our mobile phone

Model Top-1 Top-5 Params FLOPs Time-ES Time-M Mem-M

Densenet-121 [31] 25.02 7.71 – – 0.084 1.611 466 MB

Densenet-169 [31] 23.80 6.85 – – 0.142 1.944 489 MB

Densenet-201 [31] 22.58 6.34 – – 0.168 2.435 528 MB

ShuffleNet 1x (g = 8) 32.4 – 5.4M 140M 0.051 0.458 243 MB

MobileNetV2 28.3 – 1.6M – 0.032 0.777 270 MB

Condensenet-74
(G = 4) [18]

26.2 8.30 4.8M 529M 0.072 0.694 238 MB

NASNet (Mobile) 26.0 8.4 5.3M 564M 0.244 – –

DPP-Net-PNAS 24.16 7.13 77.16M 9276M 0.218 5.421 708 MB

DPP-Net-Panacea 25.98 8.21 4.8M 523M 0.069 0.676 238 MB

6.4 Device Performance Study

Our main idea is that models searched on one device does not necessarily guar-
antee good performance on the other devices when it comes to device-related
metrics, such as actual inference time. A small number of parameters or FLOPs
does not always indicate fast inference time, this is due to existing problems of
hardware optimization and software implementations (e.g., implementation of
depth-wise convolution is inefficient and group convolution cannot reach theo-
retical speedups). To prove that inference time is device-aware, we measured the
inference time of all 4-layers models (measuring only the network forward time
can be done very efficiently) on 3 devices and plot them in Fig. 9. For WS and
ES environments, we test our models on PyTorch 0.3.0 [32] built with Python
3.5, CUDA-8.0, and CUDNN-6.0, as for M, we follow the instructions from the
PyTorch official guide and port the models to Caffe2 for deployment. The X-
axis in Fig. 9 is the inference time of all the 4-layer cell structures sorted by WS
(green line/bottom line) in ascending order. The red line and the blue line is the
inference time on ES and M, respectively.

The plot shows that even on similar devices with identical software settings
(WS v.s. ES), the inference time can be sensitive to particular devices. Moreover,
inference time on M is significantly disparate to that of WS. Therefore, we con-
clude that only searching models on an actual device can ensure the robustness
of the searched results.
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Fig. 9. Models inference time on different devices. We show that the inference
time is highly device-related. The X-axis is the index of all 4-layers models, sorted by
inference time on WS in ascending order. (Color figure online)

7 Conclusions

Our proposed DPP-Net is the first device-aware neural architecture search app-
roach outperforming state-of-the-art handcrafted mobile CNNs. Experimental
results on CIFAR-10 demonstrate the effectiveness of Pareto-optimal networks
found by DPP-Net, for three different devices: (1) a workstation with NVIDIA
Titan X GPU, (2) NVIDIA Jetson TX1 embedded system, and (3) mobile phone
with ARM Cortex-A53. Compared to CondenseNet and NASNet (Mobile), DPP-
Net achieves better performances: higher accuracy & shorter inference time on
these various devices. Additional experimental results also show that models
found by DPP-Net achieve state-of-the-art performance on ImageNet.
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