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Abstract. As an agent moves through the world, the apparent motion of
scene elements is (usually) inversely proportional to their depth (Strictly
speaking, this statement is true only after one has compensated for cam-
era rotation, individual object motion, and image position. We address
these issues in the paper). It is natural for a learning agent to associate
image patterns with the magnitude of their displacement over time: as
the agent moves, faraway mountains don’t move much; nearby trees move
a lot. This natural relationship between the appearance of objects and
their motion is a rich source of information about the world. In this
work, we start by training a deep network, using fully automatic super-
vision, to predict relative scene depth from single images. The relative
depth training images are automatically derived from simple videos of
cars moving through a scene, using recent motion segmentation tech-
niques, and no human-provided labels. The proxy task of predicting rela-
tive depth from a single image induces features in the network that result
in large improvements in a set of downstream tasks including semantic
segmentation, joint road segmentation and car detection, and monocular
(absolute) depth estimation, over a network trained from scratch. The
improvement on the semantic segmentation task is greater than that
produced by any other automatically supervised methods. Moreover,
for monocular depth estimation, our unsupervised pre-training method
even outperforms supervised pre-training with ImageNet. In addition,
we demonstrate benefits from learning to predict (again, completely
unsupervised) relative depth in the specific videos associated with var-
ious downstream tasks (e.g., KITTI). We adapt to the specific scenes
in those tasks in an unsupervised manner to improve performance. In
summary, for semantic segmentation, we present state-of-the-art results
among methods that do not use supervised pre-training, and we even
exceed the performance of supervised ImageNet pre-trained models for
monocular depth estimation, achieving results that are comparable with
state-of-the-art methods.
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1 Introduction

How does a newborn agent learn about the world? When an animal (or robot)
moves, its visual system is exposed to a shower of information. Usually, the speed
with which something moves in the image is inversely proportional to its depth.1

As an agent continues to experience visual stimuli under its own motion, it is
natural for it to form associations between the appearance of objects and their
relative motion in the image. For example, an agent may learn that objects that
look like mountains typically don’t move in the image (or change appearance
much) as the agent moves. Objects like nearby buildings and bushes, however,
appear to move rapidly in the image as the agent changes position relative to
them. This continuous pairing of images with motion acts as a kind of automatic
supervision that could eventually allow an agent both to understand the depth
of objects and to group pixels into objects by this predicted depth. Thus, by
moving through the world, an agent may learn to predict properties (such as
depth) of static scenes.

A flurry of recent work has shown that proxy tasks (also known as pretext
or surrogate tasks) such as colorization [3,4], jigsaw puzzles [5], and others [6–
13], can induce features in a neural network that provide strong pre-training
for subsequent tasks. In this paper, we introduce a new proxy task: estimation
of relative depth from a single image. We show that a network that has been
pre-trained, without human supervision, to predict relative scene depth provides
a powerful starting point from which to fine-tune models for a variety of urban

(a) (b) (c) (d) (e)

Fig. 1. Sample frames from collected videos and their corresponding relative depth
maps, where brightness encodes relative depth (the brighter the farther). From top
to bottom: input image, relative depth image computed using Eq. (3), and predicted
(relative) depth maps using our trained VGG16 FCN8s [1,2]. There is often a black
blob around the center of the image, a singularity in depth estimation caused by the
focus of expansion. (a) (b) (c): images from the CityDriving dataset, (d): images from
the KITTI dataset, and (e): images from the CityScapes dataset.
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scene understanding tasks. Not only does this automatically supervised start-
ing point outperform all other proxy task pre-training methods. For monocular
depth understanding, it even performs better than the heavily supervised Ima-
geNet pre-training, yielding results that are comparable with state-of-the-art
methods.

To estimate relative scene depths without human supervision, we use a recent
motion segmentation technique [14] to estimate relative depth from geometric
constraints between a scene’s motion field and the camera motion. We apply it
to simple, publicly available YouTube videos taken from moving cars. Since this
technique estimates depth up to an unknown scale factor, we compute relative
depth of the scene during the pre-training phase, where each pixel’s value is in
the range of [0, 1] denoting its depth percentile over the entire image.1

Unlike work that analyzes video paired with additional information about
direction of motion [15], our agent learns from “raw egomotion” video recorded
from cars moving through the world. Unlike methods that require videos of mov-
ing objects [8], we neither depend on, nor are disrupted by, moving objects in the
video. Once we have relative depth estimates for these video images, we train a
deep network to predict the relative depth of each pixel from a single image, i.e.,
to predict the relative depth without the benefit of motion. One might expect
such a network to learn that an image patch that looks like a house and spans
20 pixels of an image (about 100 m away) is significantly farther away than a
pedestrian that spans 100 image pixels (perhaps 10 m away). Figure 1 illustrates
this prediction task and shows sample results obtained using a standard convolu-
tional neural network (CNN) in this setting. For example, in the leftmost image
of Fig. 1, an otherwise unremarkable traffic-light pole is clearly highlighted by
its relative depth profile, which stands out from the background. Our hypothesis
is that to excel at relative depth estimation, the CNN will benefit by learning
to recognize such structures.

The goal of our work is to show that pre-training a network to do relative
depth prediction is a powerful proxy task for learning visual representations.
In particular, we show that a network pre-trained for relative depth prediction
(from automatically generated training data) improves training for downstream
tasks including semantic segmentation, joint semantic reasoning of road segmen-
tation and car detection, and monocular (absolute) depth estimation. We obtain
significant performance gains on urban scene understanding benchmarks such as
KITTI [16,17] and CityScapes [18], compared to training a segmentation model
from scratch. Compared to nine other proxy tasks for pre-training, our proxy
task consistently provides the highest gains when used for pre-training. In fact,
our performance on semantic segmentation and joint semantic reasoning tasks
comes close to that of equivalent architectures pre-trained with ImageNet [19], a
massive labeled dataset. Finally, for the monocular (absolute) depth estimation,
our pre-trained model achieves better performance than an ImageNet pre-trained
model, using both VGG16 [1] and ResNet50 [20] architectures.

1 Later, we will fine-tune networks to produce absolute depths.
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As a final application, we show how our proxy task can be used for domain
adaptation. One might assume that the more similar the domain of unlabeled
visual data used for the proxy task (here, three urban scene understanding tasks)
is to the domain in which the eventual semantic task is defined (here, seman-
tic segmentation), the better the representation learned by pre-training. This
observation allows us to go beyond simple pre-training, and effectively provide a
domain adaptation mechanism. By adapting (fine-tuning) a relative depth pre-
diction model to targets obtained from unlabeled data in a novel domain (say,
driving in a new city) we can improve the underlying representation, priming it
for better performance on a semantic task (e.g., segmentation) trained with a
small labeled dataset from this new domain. In experiments, we show that pre-
training on unlabeled videos from a target city, absent any labeled data from
that city, consistently improves all urban scene understanding tasks.

In total, our work advances two pathways for integrating unlabeled data with
visual learning.

– We propose a novel proxy task for self-supervised learning of visual repre-
sentations; it is based on learning to predict relative depth, inferred from
unlabeled videos. This unsupervised pre-training leads to better results over
all other proxy tasks on the semantic segmentation task, and even outper-
forms supervised ImageNet pre-training for absolute depth estimation.

– We show that our task can be used to drive domain adaptation. Experiments
demonstrate its utility in scene understanding tasks for street scenes in a novel
city. Our adapted model achieves results that are competitive with state-of-
the-art methods (including those that use large supervised pre-training) on
the KITTI depth estimation benchmark.

Such methods of extracting knowledge from unlabeled data are likely to be
increasingly important as computer vision scales to real-world applications; here
massive dataset size can outpace herculean annotation efforts.

2 Related Work

Self-supervised Learning. The idea of formulating supervised prediction tasks
on unlabeled data has been leveraged for both images and videos. The idea, often
called self-supervision, is most typically realized by removing part of the input
and then training a network to predict it. This can take the form of deleting a
spatial region and trying to inpaint it [10], draining an image of color and trying
to colorize it [3,4,21], or removing the final frame in a sequence and trying to
hallucinate it [22–27]. Generative Adversarial Networks, used for inpainting and
several future frame prediction methods, can also be used to generate realistic-
looking samples from scratch. This has found secondary utility for unsupervised
representation learning [28–30]. Another strategy is to extract patches and try
to predict their spatial or temporal relationship. In images, this has been done
for pairs of patches [31] or for 3-by-3 jigsaw puzzles [5]. In videos, it can be done
by predicting the temporal ordering of frames [9,13]. The correlation of frames
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in video is also a rich source of self-supervised learning signals. The assumption
that close-by frames are more similar than far apart frames can be used to train
embeddings on pairs [32–34] or triplets [6] of frames. A related idea that the
representation of interesting objects should change slowly through time dates
back to Slow Feature Analysis [35].

The works most closely related to ours may be [7,8,15], which aim to learn
useful visual representations from unlabeled videos as well. Jayaraman & Grau-
man [15] learn a representation equivariant to ego-motion transformations, using
ideas from metric learning. Agrawal et al. [7] concurrently developed a similar
method that uses the ego-motion directly as the prediction target as opposed to
as input to an equivariant transformation. Both of these works assume knowl-
edge of the agent’s own motor actions, which limits their evaluation in sample
size due to lack of publicly available data. In our work, the ego-motion is inferred
through optical flow, which means we can leverage large sources of crowd-sourced
data, such as YouTube videos. Pathak et al. [8] use optical flow and a graph-
based algorithm to produce unsupervised segmentation maps. A network is then
trained to approximate these maps, driving representation learning. The reliance
on moving objects, as opposed to a moving agent, could make it harder to collect
good data. Using a method based on ego-motion, the agent can promote its own
representation, learning simply by moving, instead of having to find objects that
move.

There is also work on using multi-modal sensory input as a source of super-
vision. Owens et al. [12] predict statistics of ambient sounds in videos. Beyond
studying a single source of self-supervision, combining multiple self-supervision
sources is increasingly popular. In [36], a set of self-supervision tasks are inte-
grated via a multi-task setting. Wang et al. [37] propose to combine instance-level
as well as category-level self-supervision. Both [36,37] achieve better performance
than a single model.

Unsupervised Learning of Monocular Depth Estimation. A single-image
depth predictor can be trained from raw stereo images, by warping the right
image with a depth map predicted from the left and training it to reconstruct
the left image [38,39]. This idea was extended in recent work to support fully
self-supervised training on regular video, by predicting both depth and camera
pose difference for pairs of nearby frames [40,41].

Although [40,41] are closely related to our work in the sense of unsupervised
(or self-supervised) learning of depth and ego-motion from unlabeled videos, our
work differs from them in two ways. First, neither of these two works emphasizes
more general-purpose feature learning. Second, neither of them demonstrates
their scalability to large-scale YouTube videos. [40] requires intrinsic camera
parameters that are not available for most YouTube videos; our approach relies
on optical flow only. [41] only reports experimental results on standard bench-
mark datasets, whose scale is an order of magnitude smaller than videos we
use. It is unclear whether the heuristics (e.g., the manually set camera intrinsic
parameters, number of motion clusters) are robust to YouTube videos in the
wild.
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3 Inducing Features by Learning to Estimate Relative
Depth

As a proxy task, our goal is to induce a feature representation f(I) of an RGB
image I(x, y) by predicting its depth image z(x, y), where the representation f(I)
could be transferred to other downstream tasks (e.g., semantic segmentation)
with fine-tuning. In Sect. 3.1, we introduce technical details of gathering images
and corresponding depth maps. In Sect. 3.2, we provide details of training CNNs
to learn the feature representation f(I).

3.1 Self-Supervised Relative Depth

As described above, we automatically produce depth images for video frames by
analyzing the motion of pre-existing videos. In our experiments, we used three
sets of videos: YouTube videos, videos from the KITTI database [16,17], and
videos from the CityScapes database [18]. The YouTube videos consist of 135
videos taken from moving cars in major U.S. cities.2 We call this dataset City-
Driving. The stability of the camera in these videos makes them relatively easy
for the depth estimation procedure. Some of the videos are extremely long, last-
ing several hours. The CityDriving dataset features a large number of man-made
structures, pedestrians and cars. Following [42], we only keep two consecutive
frames if they have moderate motion (i.e., neither too slow nor too fast). To
eliminate near duplicate frames, two consecutive depth maps must be at least 2
frames apart. We keep only the first one of two consecutive frames and the com-
puted depth image. In total, we gathered 1.1M pairs of RGB images and their
corresponding depth maps, where the typical resolution is 640 × 360. Similarly,
we collect 30 K and 24 K pairs of RGB images and their relative depth maps for
CityScapes and KITTI, respectively.

Denote the instantaneous coordinates of a point P in the environment by
(X,Y,Z)T , and the translational velocity of the camera in the environment by
(U, V,W )T . Let the motion field component (idealized optical flow) of the point P
(in the image plane) be (u, v), corresponding to the horizontal and vertical image
motion, respectively. The motion field can be written as the sum of translation
and rotation components3

u = ut + ur, v = vt + vr, (1)

where the subscript t and r denote translation and rotation, respectively. Accord-
ing to the geometry of perspective projection [43], the following equations hold
if the motion of the camera is purely translational,

ut =
−U + xW

Z
, vt =

−V + yW

Z
, (2)

2 They are crawled from a YouTube playlist, taking less than an hour.
3 Any motion in the image is due to the relative motion of a world point and the

camera. This addresses motion of the object, the camera, or both.
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where x and y are the coordinates of the point P in the image plane (the origin
is at the image center).

Note that the depth Z can be estimated from either one of these equations.
However, the estimate can be unstable if either ut or vt is small. To obtain a
more robust estimate of Z, we square the two equations above and add them:

Z =

√
(−U + xW )2 + (−V + yW )2

u2
t + v2

t

. (3)

Because we can only recover (U, V,W )T up to scale (see below), we can only
compute the depth map of an image up to scale. To induce feature represen-
tations, we use depth orderings of pixels in an image. We compute the relative
depth z ∈ [0, 1] of the pixel P as its depth percentile (divided by 100) across
all estimated depth values for the image. Since these percentiles are invariant
to the velocity’s unknown scale, we do not need to recover the absolute scale
of velocity. Examples of these automatically obtained depth maps are given in
Figs. 1 and 2.

To compute the optical flow, we use the state-of-the-art unsupervised
method [44]. It first computes sparse pixel matchings between two video frames.
It then interpolates to get dense pixelwise optical flow fields from sparse match-
ings, where we replace the supervised edge detector [45] with its unsupervised
version [42]. Based on the optical flow, we use the method proposed in [14] to
recover the image motion of each pixel due to translational motion only (ut, vt),
and also, the global camera motion (U, V,W )T up to an unknown scale factor.
Specifically, the rotation of the camera can be estimated by finding the rotation
such that the remaining motion, by removing the rotational component from the
motion field, can be well-explained by angle fields, which are the angle part of the
motion field. This procedure produces a translational optical flow field (ut, vt),

Fig. 2. Samples of image pairs and computed translational optical flow that we use to
recover the relative depth. From left to right: first images, second images, translational
optical flow between input two images, and relative depth of the first images.
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and a set of regions in the image corresponding to the background and different
object motions, along with the motion directions (U, V,W ) of those regions. We
refer readers to [14] for more technical details.

In summary, to obtain the depth map of each frame from a video, we:

– compute the optical flow (u, v) between a pair of frames [44];
– estimate the translational component (ut, vt) of the optical flow and the direc-

tion of camera translation (U, V,W ) from the optical flow, using the method
of [14];

– estimate the scene depth Z using Eq. 3, up to an unknown scale factor, from
the translational component of the optical flow and the camera direction
estimate and convert it to relative depth z ∈ [0, 1].

3.2 Predicting Relative Depth from a Single Image

While a CNN for predicting depth from a single image is a core component of
our system, we are primarily interested in relative depth prediction as a proxy
task, rather than an end in itself. We therefore select standard CNN architec-
tures and focus on quantifying the power of the depth task for pre-training and
domain adaptation, compared to using the same networks with labeled data.
Specifically, we work with variants of the standard AlexNet [46], VGG16 [1],
and ResNet50 [20] architectures.

Given an RGB image I, we need pixelwise predictions in the form of a depth
image z, so we modify both AlexNet, VGG16, and ResNet50 to produce outputs
with the same spatial resolution as the input image. In particular, we consider
Fully Convolutional Networks (FCNs) [2] and an encoder-decoder with skip con-
nections [39,40]. Detailed discussions can be found in the experiment section.

Since the relative depth (i.e., the depth percentile) is estimated over the
entire image, it is essential to feed the entire image to the CNN to make a
prediction. For CityDriving and KITTI, we simply resize the input image to 224
× 416 and 352 × 1212. For CityScapes, we discard the bottom 20% portion or
so of each video frame containing mainly the hood of a car, which remains static
over all videos and makes the relative depth estimation inaccurate (recall our
relative depth estimation is mainly based on motion information). The cropped
input image is then resized to 384 × 992. During training, we employ horizontal
flipping and color jittering for data augmentation. Since relative depth serves as
a proxy, rather than an end task, even though the relative depth estimation is
not always correct, the network is able to tolerate some degree of noise as shown
in [8]; we can then repurpose the network’s learned representation.

In all experiments, we use L1 loss for each pixel when training for depth pre-
diction, i.e., we train networks to regress the relative depth values. All AlexNet,
VGG16, and ResNet50 variants are trained for 30 epochs using the Adam opti-
mizer [47] with momentum of β1 = 0.9, β2 = 0.999, and weight decay of 0.0005.
The learning rate is 0.0001 and is held constant during the pre-training stage.
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4 Experiments

We consider three urban scene understanding tasks: semantic segmentation, joint
semantic reasoning consisting of road segmentation and object detection [48],
and monocular absolute depth estimation.

4.1 Semantic Segmentation

We consider three datasets commonly used for evaluating semantic segmentation.
Their main characteristics are summarized below:

KITTI [49]: 100 training images, 46 testing images, spatial dimensions of
370 × 1226, 11 classes.

CamVid [50,51]: 367 training images, 101 validation images, 233 testing
images, spatial dimensions of 720 × 960, 11 classes.

CityScapes [18]: 2975 training images, 500 validation images, 1525 testing
images, spatial dimensions of 1024 × 2048, 19 classes. We conduct experiments
on images at half resolution.

The first two datasets are much too small to provide sufficient data for “from
scratch” training of a deep model; CityScapes is larger, but we show below that
all three datasets benefit from pre-training. We use the curated annotations of
the CamVid dataset released by [53]. As a classical CNN-based model for seman-
tic segmentation, we report results of different variants of the Fully Convolutional
Network (FCN) [2].

We compare our results to those obtained with other self-supervision strate-
gies surveyed in Sect. 2. Since only AlexNet pre-trained models are available for

Table 1. Comparisons of mean IoU scores of AlexNet FCN32s for semantic seg-
mentation using different self-supervised models. CS = CityScapes, K = KITTI,
CV = CamVid

Pre-training method Supervision source CS K CV

Supervised ImageNet labels 48.1 46.2 57.4

None - 40.7 39.6 44.0

Tracking [6] Motion 41.9 42.1 50.5

Moving [7] Ego-motion 41.3 40.9 49.7

Watch-move [8] Motion seg. 41.5 40.8 51.7

Frame-order [9] Motion 41.5 39.7 49.6

Context [10] Appearance 39.7 -a 37.8

Object-centric [11] Appearance 39.6 39.1 48.0

Colorization [3,21] Appearance (color) 42.9 35.8 53.2

Cross-channel [52] Misc 36.8 40.8 46.3

Audio [12] Video soundtrack 39.6 40.7 51.5

Ours Depth 45.4 42.6 53.4
a We were unable to get meaningful results of [10] on KITTI.
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most of the previous self-supervised methods, we also train an AlexNet. During
training, the inputs are random crops of 352 × 352 for KITTI and 704 × 704
for CamVid. Each FCN32s using different pre-training models is trained for 600
epochs with a batch size of 16 using 4 GPUs. For CityScapes, the inputs to the
network are random crops of 512 × 512. Each FCN32s is trained for 400 epochs
with a batch size of 16. In addition to the random crops, random horizontal
flips and color jittering are also performed. The CNNs at this stage (learning
segmentation) are trained or fine-tuned using the Adam optimizer, where weight
decay is 0.0005. For the learning rate, we use 0.0001 and decrease it by a factor
of 10 at the 400th epoch (300th epoch for CityScapes).

Quantitative comparisons can be found in Table 1.4 Our pre-trained model
performs significantly better than the model learned from scratch on all three
datasets, validating the effectiveness of our pre-training. Moreover, we obtain
new state-of-the-art results on all three urban scene segmentation datasets
among methods that use self-supervised pre-training. In particular, our model
outperforms all other self-supervised models with motion cues (the first four
self-supervised models in Table 1).

4.2 Ablation Studies

We perform ablation studies using VGG16 FCN32s on the semantic segmentation
datasets. Specifically, we study the following aspects.

Number of Pre-training Images. Figure 3(a) demonstrates that the perfor-
mance of our depth pre-trained model scales linearly with the log of the number
of pre-training images on CamVid, which is similar to the conclusion of [8].

On KITTI, our pre-trained model initially has a big performance boost when
the number of pre-training images increases from 1 K to 10K. With enough data
(more than 10K), the performance also scales linearly with the log of the number
of pre-training images.
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Fig. 3. Ablation studies of performance by (a) varying number of pre-training images
on KITTI and CamVid, (b) varying number of fine-tuning images of CityScapes.

4 We were unable to get meaningful results with [10] on KITTI and with [15] on all
three segmentation datasets.
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Number of Fine-Tuning Images. Figure 3(b) shows that every model (Ima-
geNet, scratch, our depth pre-trained model) benefits from more fine-tuning data
on the CityScapes dataset. For both ImageNet and our depth pre-trained mod-
els, it suggests that more fine-tuning data is also beneficial for transferring the
previously learned representations to a new task.

4.3 Domain Adaptation by Pre-Training

In the experiments described above, the two stages (pre-training on self-
supervised depth prediction, followed by supervised training for segmentation)
rely on data that come from significantly different domains. The self-supervised
learning uses videos obtained from moving through North American cities. In
contrast, none of the target dataset images were collected in the same geographic
locations. For instance, CityScapes includes data from driving in German cities.
Thus, in addition to a shift in task, the fine-tuning of the network for segmen-
tation must also deal with a domain shift in the input.

CityScapes [18] and KITTI [16] make available video sequences that give
temporal context to every image in the dataset. None of these extra frames
are labeled, but we can leverage them in the following way. Before training the
network on segmentation, we fine-tune it, using the same self-supervised relative
depth prediction task described in Sect. 3.1, on these videos. Our intuition is
that this may induce some of the modifications in the network that reflect the
changing distribution of the input. Then, we proceed as before to train the fine-
tuned representation on the semantic segmentation data. Specifically, we fine-
tune different FCNs variants based on VGG16 sequentially, i.e., from FCN32s to
FCN16s, and finally to FCN8s. For FCN32s, the training procedure is identical
to AlexNet FCN32s described earlier. FCN16s and FCN8s are trained for the
same number of epochs as FCN32s, where the learning rate is set to 0.00002 and
0.00001, respectively, and kept constant during training.

The effectiveness of our unsupervised domain adaptation for semantic seg-
mentation can be found in Table 2. The last two rows of demonstrate that such
fine-tuning can consistently improve the performance of a self-supervised model

Table 2. Mean IoU scores of semantic segmentation using different architectures on
different datasets. CD = CityDriving, CS = CityScapes, CV = CamVid, and K =
KITTI.

Pre-training FCN32s FCN16s FCN8s

CS CV K CS CV K CS CV K

ImageNet 58.7 63.7 51.5 62.9 65.9 55.3 63.4 67.0 56.4

Scratch 45.4 41.0 32.4 51.3 44.1 33.1 51.6 44.3 34.2

Ours CD 55.0 57.8 45.6 57.6 59.0 47.7 59.8 60.3 48.6

Ours CD+K 56.0 58.5 46.0 56.9 58.8 48.2 58.9 60.1 49.0

Ours CD+CS 56.2 58.5 47.4 58.5 58.8 47.8 60.5 59.9 49.6
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Fig. 4. Qualitative semantic segmentation results on CityScapes. From top to bottom:
input images, predictions of FCN8s with no pre-training, our FCN8s pre-trained on
CityDriving, our FCN8s pre-trained on CityDriving adapted to CityScapes, ImageNet
FCN8s, and ground-truth annotations. The difference between the 2nd and 3rd rows
shows a clear benefit of pre-training with relative depth prediction. The difference
between 3rd rows and 4th rows shows the benefit our unsupervised domain adaptation
using pre-training.

over all FCN variants on both CityScapes and KITTI, validating its effective-
ness as a domain adaptation approach. Interestingly, we can see that while fine-
tuning is helpful for FCN32s on CamVid initially, it does not help much for
FCN16s and FCN8s. Perhaps this is due to the domain gap between CamVid
and CityScapes/KITTI. Qualitative semantic segmentation results can be found
in Fig. 4.

4.4 Joint Semantic Reasoning

Joint semantic reasoning is important for urban scene understanding, especially
with respect to tasks such as autonomous driving [48]. We investigate the effec-
tiveness of our pre-trained model and the unsupervised strategy of domain adap-
tation using the MultiNet architecture [48] for joint road segmentation and car
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Table 3. Results of joint semantic reasoning, including road segmentation and car
detection.

Pre-training Road segmentation Car detection (AP)

F1 AP Easy Medium Hard

ImageNet 96.33 92.26 95.59 86.43 72.28

Scratch 93.78 91.37 89.37 79.93 66.02

Ours CD 94.74 92.13 92.84 84.73 69.47

Ours CD+K 95.66 92.14 94.31 85.72 70.50

detection.5 MultiNet consists of a single encoder, using the VGG16 as backbone,
and two sibling decoders for each task. For road segmentation, the decoder con-
tains three upsampling layers, forming an FCN8s. The car detection decoder
directly regresses the coordinates of objects. Following [48], the entire network
is jointly trained using the Adam optimizer, using a learning rate of 0.00005
and weight decay of 0.0005 for 200 K steps. We refer readers to [48] for more
technical details.

We replace the ImageNet-trained VGG16 network with a randomly initial-
ized one and our own VGG16 pre-trained on CityDriving using relative depth.
For the road segmentation task, there are 241 training and 48 validation images.
For car detection, there are 7 K training images 481 validation images. Detailed
comparisons on the validation set can be found in Table 3. We use the F1 mea-
sure and Average Precision (AP) scores for road segmentation evaluation and
AP scores for car detection. AP scores for different car categories are reported
separately. We can clearly see that our pre-trained model (Ours CD) consistently
outperforms the randomly initialized model (scratch in Table 3). Furthermore, by
using the domain adaptation strategy via fine-tuning on the KITTI raw videos
(Ours CD+K), we can further close the gap between an ImageNet pre-trained
model. Remarkably, after fine-tuning, the F1 score of road segmentation and AP
scores for easy and medium categories of our pre-trained model are pretty close
to the ImageNet counterpart’s. (See last row of Table 3.)

4.5 Monocular Absolute Depth Estimation

For the monocular absolute depth estimation, we adopt the U-Net architec-
ture [54] similar to [39,40], which consists of a fully convolutional encoder
and another fully convolutional decoder with skip connections. In order to use
an ImageNet pre-trained model, we replace the encoder with the VGG16 and
ResNet50 architectures. We use the training and validation set of [39], contain-
ing 22.6 K and 888 images, respectively. We evaluate our model on the Eigen
split [39,55], consisting of 697 images, where ground-truth absolute depth values

5 We use the author’s released code https://github.com/MarvinTeichmann/MultiNet.
As the scene classification data is not publicly available, we only study road segmen-
tation and car detection here.

https://github.com/MarvinTeichmann/MultiNet
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Table 4. Monocular depth estimation on the KITTI dataset using the split of Eigen
et al. [55] (range of 0–80 m). For model details, Arch. = Architecture, A = AlexNet, V
= VGG16, and R = ResNet50. For training data, Class. = classification, I = ImageNet,
CD = CityDriving, K = KITTI, CS = CityScapes. pp indicates test-time augmentation
by horizontally flipping the input image.

Method Arch. Training data Error metrics Accuracy metrics

Class. Stereo Video GT Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

[55] A I - - K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

[56] A I - - K 0.202 1.614 6.523 0.275 0.678 0.895 0.965

[39]+pp R - CS+K - - 0.114 0.898 4.935 0.206 0.861 0.949 0.976

[40] V - - CS+K - 0.198 1.836 6.565 0.275 0.718 0.901 0.960

[57] R I K - K 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Ours V I - - K 0.157 1.115 5.546 0.233 0.768 0.922 0.974

Ours V - - - K 0.163 1.241 5.649 0.238 0.765 0.918 0.970

Ours V - - CD K 0.154 1.117 5.499 0.228 0.775 0.928 0.976

Ours V - - CD+K K 0.148 1.056 5.317 0.221 0.791 0.932 0.977

Ours R I - - K 0.128 0.933 5.073 0.203 0.827 0.945 0.980

Ours R - - - K 0.131 0.937 5.032 0.203 0.827 0.946 0.981

Ours R - - CD K 0.128 0.901 4.898 0.198 0.834 0.948 0.983

Ours R - - CD+K K 0.125 0.881 4.903 0.195 0.840 0.951 0.983

are captured using LiDAR at sparse pixels. Unlike [39], which uses stereo image
pairs as supervision to train the network, or [40], which uses neighboring video
frames as supervision to train the network (yet camera intrinsic parameters are
required), we use the absolute sparse LiDAR depth values to fine-tune our net-
work. The entire network (either VGG16 or ResNet50 version) is trained for
300 epochs using the Adam optimizer with a weight decay of 0.0005. The initial
learning rate is 0.0001 and decreased by factor of 10 at the 200th epoch.

Detailed comparisons can be found in Table 4. We can observe that our
pre-trained models consistently outperforms ImageNet counterparts, as well as
randomly initialized models, using either VGG16 or ResNet50 architectures. It
is worth noting, however, that converting relative depth to absolute depth is
non-trivial. Computing relative depth (i.e., percentile from absolute depth) is a
non-linear mapping. The inverse transformation from relative depth to absolute
depth is not unique. Following [40], we multiply our relative depth by a factor as
the ratio between relative depth and absolute depth, we get pretty bad results
(RMSE of 11.08 vs 4.903), showing this task is non-trivial.

Moreover, pre-training as domain adaptation also improves the performance
of our pre-trained model. After fine-tuning our pre-trained model using KITTI’s
raw videos (Ours CD+K), our ResNet50 model achieves better results than
most of the previous methods [39,40,55,56]. The results are also on par with the
state-of-the-art method [57].

5 Conclusions and Discussions

We have proposed a new proxy task for self-supervised learning of visual repre-
sentations. It requires only access to unlabeled videos taken by a moving camera.
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Representations are learned by optimizing prediction of relative depth, recovered
from estimated motion flow, from individual (single) frames. We show this task
to be a powerful proxy task, which is competitive with recently proposed alter-
natives as a means of pre-training representations on unlabeled data. We also
demonstrate a novel application of such pre-training, aimed at domain adap-
tation. When given videos taken by cars driven in cities, self-supervised pre-
training primes the downstream urban scene understanding networks, leading
to improved accuracy after fine-tuning on a small amount of manually labeled
data.

Our work offers novel insights about one of the most important questions
in vision today: how can we leverage unlabeled data, and in particular massive
amounts of unlabeled video, to improve recognition systems. While a compre-
hensive picture of self-supervision methods and the role they play in this pursuit
is yet to emerge, our results suggest that learning to predict relative depth is an
important piece of this picture.

While the gap of the performance between self-supervised methods and their
ImageNet counterparts is quickly shrinking, none of current self-supervised meth-
ods performs better than ImageNet pre-trained models on tasks involving seman-
tics (e.g., semantic segmentation and object detection). This makes pre-training
on ImageNet still practically critical for many computer vision tasks. Despite
this fact, this does not mean self-supervised methods are unimportant or unnec-
essary. The value of self-supervised methods lies in the fact that the training
data can easily be scaled up without tedious and expensive human effort.

On other tasks, better performance of self-supervised methods than ImageNet
counterparts has been achieved, including our monocular depth estimation and
surface normal prediction [37]. Moreover, it has been shown that combining
different self-supervised methods can lead to better performance [36,37]. All of
these make it very promising that representations learned using self-supervised
methods may surpass what ImageNet provides us today.
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