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Abstract. We introduce a deep learning-based method to generate full
3D hair geometry from an unconstrained image. Our method can recover
local strand details and has real-time performance. State-of-the-art hair
modeling techniques rely on large hairstyle collections for nearest neigh-
bor retrieval and then perform ad-hoc refinement. Our deep learning
approach, in contrast, is highly efficient in storage and can run 1000
times faster while generating hair with 30K strands. The convolutional
neural network takes the 2D orientation field of a hair image as input and
generates strand features that are evenly distributed on the parameter-
ized 2D scalp. We introduce a collision loss to synthesize more plausible
hairstyles, and the visibility of each strand is also used as a weight term to
improve the reconstruction accuracy. The encoder-decoder architecture
of our network naturally provides a compact and continuous represen-
tation for hairstyles, which allows us to interpolate naturally between
hairstyles. We use a large set of rendered synthetic hair models to train
our network. Our method scales to real images because an intermedi-
ate 2D orientation field, automatically calculated from the real image,
factors out the difference between synthetic and real hairs. We demon-
strate the effectiveness and robustness of our method on a wide range of
challenging real Internet pictures, and show reconstructed hair sequences
from videos.
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1 Introduction

Realistic hair modeling is one of the most difficult tasks when digitizing virtual
humans [3,14,20,25,27]. In contrast to objects that are easily parameterizable,
like the human face, hair spans a wide range of shape variations and can be
highly complex due to its volumetric structure and level of deformability in each
strand. Although [2,22,26,28,38] can create high-quality 3D hair models, but
they require specialized hardware setups that are difficult to be deployed and
populated. Chai et al. [5,6] introduced the first simple hair modeling technique
from a single image, but the process requires manual input and cannot properly
generate non-visible parts of the hair. Hu et al. [18] later addressed this problem
by introducing a data-driven approach, but some user strokes were still required.
More recently, Chai et al. [4] adopted a convolutional neural network to segment
the hair in the input image to fully automate the modeling process, and [41]
proposed a four-view approach for more flexible control.

Fig. 1. Hair reconstruction from a single view image using HairNet.

However, these data-driven techniques rely on storing and querying a huge
hair model dataset and performing computationally-heavy refinement steps.
Thus, they are not feasible for applications that require real-time performance
or have limited hard disk and memory space. More importantly, these meth-
ods reconstruct the target hairstyle by fitting the retrieved hair models to the
input image, which may capture the main hair shape well, but cannot handle the
details nor achieve high accuracy. Moreover, since both the query and refinement
of hair models are based on an undirected 2D orientation match, where a hor-
izontal orientation tensor can either direct to the right or the left, this method
may sometimes produce hair with incorrect growing direction or parting lines
and weird deformations in the z-axis.

To speed up the procedure and reconstruct hairs that preserve better style
w.r.t the input image and look more natural, we propose a deep learning based
approach to generate the full hair geometry from a single-view image, as shown
in Fig. 1. Different from recent advances that synthesize shapes in the form of vol-
umetric grids [8] or point clouds [10] via neural networks, our method generates
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the hair strands directly, which are more suitable for non-manifold structures
like hair and could achieve much higher details and precision.

Our neural network, which we call HairNet, is composed of a convolutional
encoder that extracts the high-level hair-feature vector from the 2D orientation
field of a hair image, and a deconvolutional decoder that generates 32 × 32
strand-features evenly distributed on the parameterized 2D scalp. The hair
strand-features could be interpolated on the scalp space to get higher (30K)
resolution and further decoded to the final strands, represented as sequences of
3D points. In particular, the hair-feature vector can be seen as a compact and
continuous representation of the hair model, which enables us to sample or inter-
polate more plausible hairstyles efficiently in the latent space. In addition to the
reconstruction loss, we also introduce a collision loss between the hair strands
and a body model to push the generated hairstyles towards a more plausible
space. To further improve the accuracy, we uses the visibility of each strand
based on the input image as a weight to modulate its loss.

Obtaining a training set with real hair images and ground-truth 3D hair
geometries is challenging. We can factor out the difference between synthetic
and real hair data by using an intermediate 2D orientation field as network
input. This enables our network to be trained with largely accessible synthetic
hair models and also real images without any changes. For example, the 2D
orientation field can be calculated from a real image by applying a Gabor filter
on the hair region automatically segmented using the method of [42]. Specifically,
we synthesized a hair data set composed of 40K different hairstyles and 160K
corresponding 2D orientation images rendered from random views for training.

Compared to previous data-driven methods that could take minutes and
terabytes of disk storage for a single reconstruction, our method only takes less
than 1 second and 70 MB disk storage in total. We demonstrate the effectiveness
and robustness of our method on both synthetic hair images and real images from
the Internet, and show applications in hair interpolation and video tracking.

Our contributions can be summarized as follows:

1. We propose the first deep neural network to generate dense hair geometry
from a single-view image. To the best of our knowledge, it is also the first
work to incorporate both collision and visibility in a deep neural network to
deal with 3D geometries.

2. Our approach achieves state-of-the-art resolution and quality, and signifi-
cantly outperforms existing data-driven methods in both speed and storage.

3. Our network provides the first compact and continuous representation of hair
geometry, from which different hairstyles can be smoothly sampled and inter-
polated.

4. We construct a large-scale database of around 40K 3D hair models and 160K
corresponding rendered images.

2 Related Work

Hair Digitization. A general survey of existing hair modeling techniques can be
found in Ward et al. [36]. For experienced artists, purely manual editing from
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scratch with commercial softwares such as XGen and Hairfarm is chosen for high-
est quality, flexibility and controllability, but the modeling of compelling and real-
istic hairstyles can easily take several weeks. To avoid tedious manipulations on
individual hair fibers, some efficient design tools are proposed in [7,11,23,37,40].

Meanwhile, hair capturing methods have been introduced to acquire hairstyle
data from the real world. Most hair capturing methods typically rely on high-
fidelity acquisition systems, controlled recording sessions, manual assistance such
as multi-view stereo cameras [2,9,17,22,26,28,38], single RGB-D camera [19] or
thermal imaging [16].

More recently, Single-view hair digitization methods have been proposed by
Chai et al. [5,6] but can only roughly produce the frontal geometry of the hair.
Hu et al. [18] later demonstrated the first system that can model entire hairstyles
at the strand level using a database-driven reconstruction technique with mini-
mal user interactions from a single input image. A follow-up automatic method
has been later proposed by [4], which uses a deep neural network for hair seg-
mentation and augments a larger database for shape retrieval. To allow more
flexible control of side and back views of the hairstyle, Zhang et al. [41] pro-
posed a four-view image-based hair modeling method to fill the gap between
multi-view and single-view hair capturing techniques. Since these methods rely
on a large dataset for matching, speed is an issue and the final results depend
highly on the database quality and diversity.

Single-View Reconstruction using Deep Learning. Generation of 3D data by deep
neural networks has been attracting increasing attention recently. Volumetric
CNNs [8,12,21,33] use 3D convolutional neural networks to generate voxelized
shapes but are highly constrained by the volume resolution and computation
cost of 3D convolution. Although techniques such as hierarchical reconstruction
[15] and octree [31,32,35] could be used to improve the resolution, generating
details like hair strands are still extremely challenging.

On the other hand, point clouds scale well to high resolution due to their
unstructured representation. [29,30] proposed unified frameworks to learn fea-
tures from point clouds for tasks like 3D object classification and segmentation,
but not generation. Following the pioneering work of PointNet, [13] proposed the
PCPNet to estimate the local normal and curvature from point sets, and [10]
proposed a network for point set generation from a single image. However, point
clouds still exhibit coarse structure and are not able to capture the topological
structure of hair strands.

3 Method

The entire pipeline contains three steps. A preprocessing step is first adopted to
calculate the 2D orientation field of the hair region based on the automatically
estimated hair mask. Then, HairNet takes the 2D orientation fields as input and
generates hair strands represented as sequences of 3D points. A reconstruction
step is finally performed to efficiently generate a smooth and dense hair model.
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3.1 Preprocessing

We first adopt PSPNet [42] to produce an accurate and robust pixel-wise hair
mask of the input portrait image, followed by computing the undirected 2D ori-
entation for each pixel of the hair region using a Gabor filter [26]. The use of
undirected orientation eliminates the need of estimating the hair growth direc-
tion, which otherwise requires extra manual labeling [18] or learning [4]. However,
the hair alone could be ambiguous due to the lack of camera view information
and its scale and position with respect to the human body. Thus we also add
the segmentation mask of the human head and body on the input image. In
particular, the human head is obtained by fitting a 3D morphable head model
to the face [20] and the body could be positioned accordingly via rigid transfor-
mation. All these processes could be automated and run in real-time. The final
output is a 3 × 256 × 256 image, whose first two channels store the color-coded
hair orientation and third channel indicates the segmentation of hair, body and
background.

3.2 Data Generation

Similar to Hu et al. [18], we first collect an original hair dataset with 340 3D
hair models from public online repositories [1], align them to the same reference
head, convert the mesh into hair strands and solve the collision between the hair
and the body. We then populate the original hair set via mirroring and pair-wise
blending.

Different from AutoHair [4] which simply uses volume boundaries to avoid
unnatural combinations, we separate the hairs into 12 classes based on styles
shown in Table 1 and blend each pair of hairstyles within the same class to
generate more natural examples. In particular, we cluster the strands of each
hair into five central strands, and each pair of hairstyles can generate 25 − 2
additional combinations of central strands. The new central strands serve as a
guidance to blend the detailed hairs. Instead of using all of the combinations, we
randomly select the combination of them for each hair pair, leading to a total
number over 40K hairs for our synthetic hair dataset.

Table 1. Hair classes and the number of hairs in each class. S refers to short, M refers
to medium, L refers to long, X refers to very, s refers to straight and c refers to curly.
Some hairs are assigned to multiple classes if its style is ambiguous.

XSs 20 Ss 110 Ms 28 Ls 29 XLs 27 XXLs 4

XSc 0 Sc 19 Mc 65 Lc 27 XLc 23 XXLc 1

In order to get the corresponding orientation images of each hair model, we
randomly rotate and translate hair inside the view port of a fixed camera and
render 4 orientation images at different views. The rotation ranges from −90◦

to +90◦ for the yaw axis and −15◦ to +15◦ for the pitch and roll axis. We also
add Gaussian noises to the orientation to emulate the real conditions.



254 Y. Zhou et al.

3.3 Hair Prediction Network

Hair Representation. We represent each strand as an ordered 3D point set
ζ = {si}Mi=0, evenly sampled with a fixed number (M = 100 in our experiments)
of points from the root to end. Each sample si contains attributes of position pi

and curvature ci. Although the strands have large variance in length, curliness,
and shape, they all grow from fixed roots to flexible ends. To remove the vari-
ance caused by root positions, we represent each strand in the local coordinate
anchored at its root.

The hair model can be treated as a set of N strands H = ζN with fixed roots,
and can be formulated as a matrix AN∗M , where each entry Ai,j = (pi,j , ci,j)
represents the jth sample point on the ith strand. In particular, we adopt the
method in [34] to parameterize the scalp to a 32 × 32 grid, and sample hair
roots at those grid centers (N = 1024).

Fig. 2. Network Architecture. The input orientation image is first encoded into a high-
level hair feature vector, which is then decoded to 32 × 32 individual strand-features.
Each strand-feature is further decoded to the final strand geometry containing both
sample positions and curvatures via two multi-layer perceptron (MLP) networks.

Network Architecture. As illustrated in Fig. 2, our network first encodes the
input image to a latent vector, followed by decoding the target hair strands
from the vector. For the encoder, we use the convolutional layers to extract the
high-level features of the image. Different from the common practices that use
a fully-connected layer as the last layer, we use the 2D max-pooling to spatially
aggregate the partial features (a total number of 8 × 8) into a global feature
vector z. This greatly reduces the number of network parameters.

The decoder generates the hair strands in two steps. The hair feature vector z
is first decoded into multiple strand feature vectors {zi}Mi=0 via deconvolutional
layers, and each zi could be further decoded into the final strand geometry
ζ via the same multi-layer fully connected network. This multi-scale decoding
mechanism allows us to efficiently produce denser hair models by interpolating
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the strand features. According to our experiments, this achieves a more natural
appearance than directly interpolating final strand geometry.

It is widely observed that generative neural networks often lose high fre-
quency details, as the low frequency components often dominates the loss in
training. Thus, apart from the 3D position {pi} of each strand, our strand
decoder also predicts the curvatures {ci} of all samples. With the curvature
information, we can reconstruct the high frequency strand details.

Loss Functions. We apply three losses on our network. The first two losses are
the L2 reconstruction loss of the 3D position and the curvature of each sample.
The third one is the collision loss between the output hair strand and the human
body. To speed up the collision computation, we approximate the geometry of
the body with four ellipsoids as shown in Fig. 3.

Given a single-view image, the shape of the visible part of the hair is more
reliable than the invisible part, e.g. the inner and back hair. Thus we assign
adaptive weights to the samples based on their visibility—visible samples will
have higher weights than the invisible ones.

The final loss function is given by:

L = Lpos + λ1Lcurv + λ2Lcollision. (1)

Lpos and Lcurv are the loss of the 3D positions and the curvatures respectively,
written as:

Lpos =
1

NM

N−1∑

i=0

M−1∑

j=0

wi,j ||pi,j − p∗
i,j ||22

Lcurv =
1

NM

N−1∑

i=0

M−1∑

j=0

wi,j(ci,j − c∗
i,j)

2

wi,j =

{
10.0 si,j is visible

0.1 otherwise

(2)

where p∗
i,j and c∗

i,j are the corresponding ground truth position and curvature
to pi,j and ci,j , and wi,j is the visibility weight.

Fig. 3. Ellipsoids for collision test.
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The collision loss Lcol is written as the sum of each collision error on the four
ellipsoids:

Lcol =
1

NM

3∑

k=0

Ck (3)

Each collision error is calculated as the sum of the distance of each collided
point to the ellipsoid surface weighted by the length of strand that is inside the
ellipsoid, written

Ck =
N−1∑

i=0

M−1∑

j=1

‖pi,j − pi,j−1‖max(0,Distk) (4)

Distk = 1 − (pi,j,0 − xk)2

a2
k

− (pi,j,1 − yk)2

b2k
− (pi,j,2 − zk)2

c2k
(5)

where ‖pi,j − pi,j−1‖ is the L1 distance between two adjacent samples on the
strand. xk, yk, zk, ak, bk, and dk are the model parameters of the ellipsoid.

Training Details. The training parameters of Eq. 1 are fixed to be λ1 = 1.0
and λ2 = 10−4. During training, we resize all the hair so that the hair is mea-
sured in the metric system. We use Relu for nonlinear activation, Adam [24] for
optimization, and run the training for 500 epochs using a batch size of 32 and
learning rate of 10−4 divided by 2 after 250 epochs.

Fig. 4. The orientation image (b) can be automatically generated from a real image
(a), or from a synthesized hair model with 9K strands. The orientation map and a
down-sampled hair model with 1K strands (c) are used to train the neural network.

3.4 Reconstruction

The output strands from the network may contain noise, and sometimes lose high-
frequency details when the target hair is curly. Thus, we further refine the smooth-
ness and curliness of the hair. We first smooth the hair strands by using a Gaussian
filter to remove the noise. Then, we compare the difference between the predicted
curvatures and the curvatures of the output strands. If the difference is higher
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than a threshold, we add offsets to the strands samples. In particular, we first
construct a local coordinate frame at each sample with one axis along the tangent
of the strand, then apply an offset function along the other two axises by applying
the curve generation function described in the work of Zhou et al. [39].

Fig. 5. Hair strand upsampling in the space of (b) the strand-features and (c) the final
strand geometry. (d) shows the zoom-in of (c).

The network only generates 1K hair strands, which is insufficient to render a
high fidelity output. To obtain higher resolution, traditional methods build a 3D
direction field from the guide strands and regrows strands using the direction
field from a dense set of follicles. However, this method is time consuming and
cannot be used to reconstruct an accurate hair model. Although directly inter-
polating the hair strands is fast, it can also produce an unnatural appearance.
Instead, we bilinearly interpolate the intermediate strand features zi generated
by our network and decode them to strands by using the perceptron network,
which enables us to create hair models with arbitrary resolution.

Figure 5 demonstrates that by interpolating in strand-feature space, we can
generate a more plausible hair model. In contrast, direct interpolation of the
final strands could lead to artifacts like collisions. This is easy to understand,
as the strand-feature could be seen as a non-linear mapping of the strand, and
could fall in a more plausible space.

Fig. 6. Reconstruction with and without using curliness.
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Figure 6 demonstrates the effectiveness of adding curliness in our network.
Without using the curliness as an extra constraint, the network only learns the
dominant main growing direction while losing the high-frequency details. In this
paper, we demonstrate all our results at a resolution of 9K to 30K strands.

4 Evaluation

4.1 Quantitative Results and Ablation Study

In order to quantitatively estimate the accuracy of our method, we prepare a
synthetic test set with 100 random hair models and 4 images rendered from
random views for each hair model. We compute the reconstruction errors on
both the visible and invisible part of the hair separately using the mean square
distance between points and the collision error using Eq. 3. We compare our
result with Chai et al.’s method [4]. Their method first queries for the nearest
neighbor in the database and then performs a refinement process which globally
deforms the hair using the 2D boundary constraints and the 2D orientation
constraints based on the input image. To ensure the fairness and efficiency of
the comparison, we use the same database in our training set for the nearest
neighbor query of [4] based on the visible part of the hair, and set the resolution
at 1000 strands. We also compare with Hu et al.’s method [18] which requires
manual strokes for generating the 3D hair model. But drawing strokes for the
whole test set is too laborious, so in our test, we use three synthetic strokes
randomly sampled from the ground-truth model as input. In Table 2, we show
the error comparison with the nearest neighbor query results and the methods
of both papers. We also perform an ablation test by respectively eliminating
the visibility-adaptive weights, the collision loss and the curvature loss from our
network.

From the experiments, we observe that our method outperforms all the abla-
tion methods and Chai et al.’s method. Without the visibility-adaptive weights,
the reconstruction error is about the same for both the visible and invisible parts,
while the reconstruction error of the visible hair decreased by around 30% for
all the networks that applies the visibility-adaptive weights. The curvature loss
also helps decrease the mean square distance error of the reconstruction. The
experiment also shows that using the collision loss will lead to much less error
in collision. The nearest-neighbor method results have 0 collision error because
the hairs in the database have no collisions.

In Table 3, we compare the computation time and hard disk usage of our
method and the data-driven method at the resolution of 9K strands. It can be
seen that our method can be about three magnitude faster faster and only uses
a small amount of storage space. The reconstruction time differs from straight
hair styles and curly hair styles because for straight hair styles which have less
curvature difference, we skip the process of adding curves.
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Table 2. Reconstruction Error Comparison. The errors are measured in metric. The
Pos Error refers to the mean square distance error between the ground-truth and the
predicted hair. “-VAW” refers to eliminating the visibility-adaptive weights. “-Col”
refers to eliminating the collision loss, “-Curv” refers to eliminating the curvature loss.
“NN” refers to nearest neighbor query based on the visible part of the hair.

Visible Pos Error Invisible Pos Error Collision Error

HairNet 0.017 0.027 2.26 × 10−7

HairNet - VAW 0.024 0.026 3.5 × 10−7

HairNet - Col 0.019 0.027 3.26 × 10−6

NairNet - Curv 0.020 0.029 3.3 × 10−7

NN 0.033 0.041 0

Chai et al. [4] 0.021 0.040 0

Hu et al. [18] 0.023 0.028 0

Table 3. Time and space complexity.

Ours Preprocessing Inference Reconstruction Total time Total space

0.02 s 0.01 s 0.01–0.05 s 0.04–0.08 s 70 MiB

Chai et al. [4] Preprocessing NN query Refinement Total time Total space

3 s 10 s 40 s 53 s 1 TiB

4.2 Qualitative Results

To demonstrate the generality of our method, we tested with different real portrait
photographs as input, as shown in the supplementary materials. Our method can
handle different overall shapes (e.g. short hairstyles and long hairstyles). In addi-
tion, our method can also reconstruct different levels curliness within hairstyles
(e.g. straight, wavy, and very curly) efficiently, since we learn the curliness as cur-
vatures in the network and use it to synthesize our final strands.

In Figs. 8 and 9, we compare our results of single-view hair reconstruction
with autohair [4]. We found that both methods can make rational inference
of the overall hair geometry in terms of length and shape, but the hair from
our method can preserve better local details and looks more natural, especially
for curly hairs. This is because Chai et al.’s method depends on the accuracy
and precision of the orientation field generated from the input image, but the
orientation field generated from many curly hair images is noisy and the wisps
overlap with each other. In addition, they use helix fitting to infer the depth of
the hair, but it may fail for very curly hairs, as shown in the second row of Fig. 8.
Moreover, Chai et al.’s method can only refine the visible part of the hair, so the
reconstructed hair may look unnatural from views other than the view of the
input image, while the hair reconstructed with our method looks comparatively
more coherent from additional views.
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Fig. 7. Interpolation comparison.

Fig. 8. Comparison with Autohair in different views [4].

Figure 7 shows the interpolation results of our method. The interpolation
is performed between four different hair styles and the result shows that our
method can smoothly interpolate hair between curly or straight and short or long
hairs. We also compare interpolation with Weng et al.’s method [37]. In Fig. 7,
Weng et al.’s method produces a lot of artifacts while our method generates more
natural and smooth results. The interpolation results indicate the effectiveness
of our latent hair representation. Please refer to the supplemental materials for
more interpolation results.

We also show video tracking results (see Fig. 10 and supplemental video). It
shows that our output may fail to achieve sufficient temporal coherence.
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Fig. 9. Comparison with Autohair for local details [4].

Fig. 10. Hair tracking and reconstruction on video.
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Fig. 11. Failure cases.

5 Conclusion

We have demonstrated the first deep convolutional neural network capable of per-
forming real-time hair generation from a single-view image. By training an end-
to-end network to directly generate the final hair strands, our method can capture
more hair details and achieve higher accuracy than current state-of-the-art. The
intermediate 2D orientation field as our network input provides flexibility, which
enables our network to be used for various types of hair representations, such as
images, sketches and scans given proper preprocessing. By adopting a multi-scale
decoding mechanism, our network could generate hairstyles of arbitrary resolution
while maintaining a natural appearance. Thanks to the encoder-decoder architec-
ture, our network provides a continuous hair representation, from which plausible
hairstyles could be smoothly sampled and interpolated.

6 Limitations and Future Work

We found that our approach fails to generate exotic hairstyles like kinky, afro or
buzz cuts as shown in Fig. 11. We think the main reason is that we do not have
such hairstyles in our training database. Building a large hair dataset that covers
more variations could mitigate this problem. Our method would also fail when
the hair is partially occluded. Thus we plan to enhance our training in the future
by adding random occlusions. In addition, we use face detection to estimate the
pose of the torso in this paper, but it can be replaced by using deep learning
to segment the head and body. Currently, the generated hair model is insuffi-
ciently temporally coherent for video frames. Integrating temporal smoothness
as a constraint for training is also an interesting future direction. Although our
network provides a more compact representation for the hair, there is no seman-
tic meaning of such latent representation. It would be interesting to concatenate
explicit labels (e.g. color) to the latent variable for controlled training.
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