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Abstract. Boosting is a classic algorithm which has been successfully
applied to diverse computer vision tasks. In the scenario of image denois-
ing, however, the existing boosting algorithms are surpassed by the
emerging learning-based models. In this paper, we propose a novel deep
boosting framework (DBF) for denoising, which integrates several con-
volutional networks in a feed-forward fashion. Along with the integrated
networks, however, the depth of the boosting framework is substan-
tially increased, which brings difficulty to training. To solve this prob-
lem, we introduce the concept of dense connection that overcomes the
vanishing of gradients during training. Furthermore, we propose a path-
widening fusion scheme cooperated with the dilated convolution to derive
a lightweight yet efficient convolutional network as the boosting unit,
named Dilated Dense Fusion Network (DDFN). Comprehensive exper-
iments demonstrate that our DBF outperforms existing methods on
widely used benchmarks, in terms of different denoising tasks.

1 Introduction

Image denoising is a typical problem in low-level computer vision. Observed
a contaminated image with a certain kind of noise (e.g., additive white Gaus-
sian noise), plenty of methods have been investigated to restore the original
signal. Among them, modeling image priors for restoration is a prominent app-
roach, such as nonlocal similarity based models [1–3] and sparsity based models
[4–6]. Specifically, BM3D [7], CSF [8], and WNNM [9] are several representative
methods for image denoising.

Recently, with the rapid advancement of GPU-based parallel computing
frameworks, increasingly more learning-based denoising models [10–13] began
to adopt the paradigm of end-to-end training based on a convolutional neu-
ral network (CNN). These learning-based models have achieved competitive or
even better performance than previous methods. On the other hand, several tra-
ditional models [14–16] based on the boosting algorithm studied the denoising
problem in a unique perspective. By extracting the residual signal or eliminat-
ing the noise leftover, these methods boost the restoration quality iteratively.
Beyond them, Romano and Elad proposed a notable variant of the boosting
algorithm, named Strengthen-Operate-Subtract (SOS) [17]. By combining the
denoised image with the original input, it increased the signal-to-noise ratio
iteratively and achieved promising improvements.
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Nevertheless, the existing boosting algorithms still have performance gaps
compared with the learning-based models. In this paper, we embed the deep
learning technique into the boosting algorithm and significantly boost its per-
formance in the scenario of image denoising. Specifically, we construct a Deep
Boosting Framework (DBF) that integrates several CNNs in a feed-forward fash-
ion, where each network serves as a boosting unit. To the best of our knowledge,
this is the first time that deep learning and boosting are jointly investigated for
image restoration. Although this paper mainly focuses on denoising, the pro-
posed DBF can be readily generalized to other image restoration tasks.

Theoretically, the boosting unit in the DBF can be any type of networks. In
practice, however, we find that not all structures are suitable to be employed
as the boosting unit. The reason is that, along with the integrated networks for
boosting, the depth of the DBF is substantially increased. It thus causes the
difficulty of convergence during training. To fully exploit the potential of the
DBF, we further propose a Dilated Dense Fusion Network (DDFN), which is
highly optimized to serve as the boosting unit.

We reform the plainly connected network structure in three steps to obtain
the DDFN. First, to overcome the vanishing of gradients during training, we
introduce the dense connection [18] to construct the boosting unit, which also
improves the re-usage of features and thus guarantees the efficiency. Second, to
obtain better performance based on the densely connected structure, we adopt
the dilated convolution [19] for widening the receptive field without additive
parameters, which maintains the lightweight structure of the boosting unit. Last
but not least, we further propose a path-widening fusion scheme cooperated with
the dilated convolution to make the boosting unit more efficient.

The contributions of this paper are summarized as follows:
(1) We propose a novel boosting framework for image denoising by introduc-

ing deep learning into the boosting algorithm, named DBF. It not only outper-
forms existing boosting algorithms by a large margin but also performs better
than extensive learning-based models.

(2) We optimize a lightweight yet efficient convolutional network as the boost-
ing unit, named DDFN. With the dense connection, we address the difficulty of
convergence in DBF. Cooperating with the dilated convolution, we propose a
path-widening fusion scheme to expand the capacity of each boosting unit.

(3) Our DDFN-based DBF has a clear advantage over existing methods on
widely used benchmarks when trained at a specific noise level. If trained for
blind Gaussian denoising, it achieves a new state-of-the-art performance within
a wide range of noise levels. Also, the proposed method is demonstrated effective
when generalized to the image deblocking task.

2 Related Work

CNN-Based Image Denoising. Research along this direction focuses on the
exploration of the network structure. Advanced design of architecture yields
better restoration quality. For instance, Burger et al. [10] trained a multi-layer
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perceptrons (MLPs) with a large image database, which achieved comparable
results with BM3D [7]. Chen et al. [11] proposed a stage-wise model (i.e., TNRD)
which introduced the well-designed convolutional layers into the non-linear dif-
fusion model to derive a flexible framework. And Zhang et al. [12] composed
the deep DnCNN model by utilizing batch normalization (BN) [20] and residual
connection [21]. Essentially, DnCNN can be viewed as the generalization of one-
stage TNRD. Besides, a recently proposed model [13] combined image denoising
with semantic classification using CNNs, which bridged the gap between these
two different tasks and improved the restoration quality. Following the successful
paradigm of end-to-end training, we also adopt the CNN for image denoising.
Different from its common usages, however, the employed CNN is just a com-
ponent of our denoising model. Specifically, it is integrated as a boosting unit
in the DBF. Experimental results demonstrate the superior performance of our
boosting framework compared with a single CNN model.

Boosting Algorithm. Boosting is a widely used algorithm to improve the per-
formance of diverse tasks by cascading several steerable sub-models. A plenty
of models based on the boosting algorithm have been investigated for image
denoising in literature [14–16,22]. Generally, the detailed implementation can
be divided into 3 classes: (a) re-utilizing the residual [14], (b) re-enhancing the
denoised signal [15], and (c) strengthening the SNR iteratively [17]. However,
these boosting algorithms with classic models are surpassed by the emerging
learning-based models. Contrastively, our proposed DBF inherits both advan-
tages of boosting and CNN and achieves a new state-of-the-art performance for
image denoising. Note that, boosting and CNN have been combined for image
classification tasks before, e.g., IB-CNN [23] and BoostCNN [24], yet our pro-
posed DBF is the first deep boosting framework in the field of image restoration.

3 Deep Boosting Framework

3.1 Boosting Perspective of Denoising

The fundamental image denoising problem is the recovery of an image x ∈ R
N×M

from a contaminated measurement y ∈ R
N×M , which can be formulated as

y = x + v, (1)

where v stands for the additive noise that is generally modeled as zero-mean
white Gaussian noise with a standard deviation σ. The denoising process can be
represented as

x̂ = S(y) = S(x + v), (2)

where the operator S(·) stands for a general denoising method and x̂ stands for
an approximation of x.

However, the image x̂ recovered by any algorithm cannot ideally equal to x,
and the gap between them can be denoted as

u = x̂ − x = vr − xr, (3)
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where xr represents the unrecovered signal and vr stands for the leftover noise
in x̂. In other words, by adding xr and subtracting vr, we then obtain the clean
image x from x̂.

A straightforward idea to apply the boosting algorithm to image denoising is
that we iteratively extract the unrecovered signal xr from the residual and add
it back to x̂

x̂n+1 = x̂n + H(y − x̂n), (4)

where H(·) is an operator for the iterative extraction and we set x̂0 = 0. Note
that, however, the residual y− x̂ contains not only the unrecovered signal xr but
also a part of noise

y − x̂ = (x + v) − (x + u)
= (x + v) − (x + vr − xr)
= xr + (v − vr). (5)

Another native idea is that we remove the leftover noise vr by filtering the
denoised image x̂ iteratively

x̂n+1 = F(x̂n), (6)

where F(·) stands for a certain denoising model. However, it could lead to over-
smoothing since it neglects xr which contains most high frequency information.

To further improve the performance of the boosting framework, Romano and
Elad proposed a novel SOS algorithm. The denoising target in each iteration step
is the “strengthened” image y+ x̂n, instead of the residual y− x̂n or the denoised
image x̂n, which improves the signal-to-noise ratio (SNR) [17]. To guarantee the
iterability of SOS, however, it has to “subtract” the identical x̂n in each step as

x̂n+1 = G(y + x̂n) − x̂n, (7)

where G(·) is a certain denoising model imposed on the strengthened image. To
better clarify the insight of the SOS algorithm, we decompose y + x̂ as

y + x̂ = (x + v) + (x + u)
= 2x + (v + u). (8)

Assuming that ||u|| = δ||v||, where δ � 1. Then we have SNR(y + x̂) >
SNR(y) according to the Cauchy-Schwarz inequality [17]. All we need to achieve
so is a general denoising method even if it is a “weak” one.

3.2 CNN-Based Boosting

Inspired by SOS [17], we propose a new boosting framework by leveraging deep
learning. Specifically, we introduce a CNN to learn the denoising model in each
stage. Following Eq. (7), we have

x̂n+1 = Gθ(y + x̂n) − x̂n, (9)

where θ denotes the trainable parameter set of the CNN.
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Fig. 1. CNN-based deep boosting framework. The B.Unitn denotes the nth boosting
unit (i.e., Gθn) in the framework. The investigation of B.Unit is detailed in Sect. 4

The subtraction of identical x̂n inherited from Eq. (7) aims to guarantee the
iterability of the SOS algorithm. Such constraint in Eq. (9) is no longer needed
since we can learn different denoising models in each stage. In other words,
our deep boosting framework can adjust its parameters without the constraint
of identical subtraction, which actually yields a better performance as will be
demonstrated in Sect. 5.3. The output of the final stage can be represented as

x̂n = Gθn
{y + Gθn−1 [y + · · · Gθ2(y + Gθ1(y)) · · · ]}, (10)

where n stands for the serial number of each stage. Figure 1 illustrates a flowchart
for Eq. (10) for a better understanding.

The loss function for training the parameters Θ = {θ1, θ2, ..., θn} is the mean
square error (MSE) between the final output x̂n and the ground truth x

LΘ(x̂n, x) =
1

2B

B∑

i=1

||x̂n
i − xi||22, (11)

where B denotes the size of mini-batch for the stochastic gradient descent. Such
training scheme is called joint training which optimizes the parameters in all
stages simultaneously. We also consider a greedy training scheme, for which the
parameters are firstly optimized stage-wise and then fine-tuned among all stages.
Related experimental results will be described in Sect. 5.3.

3.3 Relationship to TNRD

The TNRD model proposed in [11] is also a stage-wise model trained jointly,
which can be formulated as

x̂n − x̂n−1 = −D(x̂n−1) − R(x̂n−1, y), (12)

where D(·) stands for the diffusion term which is implemented using a CNN with
two layers and R(·) denotes the reaction term as R(x̂n−1, y) = γ(x̂n−1−y), where
γ is a factor which denotes the strength of the reaction term.

Actually, TNRD can be interpreted as a special case of the boosting algo-
rithm. Combining Eqs. (4) and (6), we have

x̂n = x̂n−1 + H(y − x̂n−1) + F(x̂n−1). (13)

Providing F(·) = −D(·) and H(·) = −γ(·), we then obtain the basic equation of
the TNRD model.
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Table 1. From the plain structure to the dilated dense fusion: the evolution of structure
for the boosting unit. Part 1 is the feature extraction stage, part 2 is the feature
integration stage, and part 3 is the reconstruction stage. C(·) stands for the convolution
with (kernel size × kernel size × number of filters) and D(·) denotes the corresponding
parameters of dilated convolution. [·]× or {·}× stands for an operator of concatenation
with certain blocks (the ×1 is omitted). And the symbol “/” denotes the path-widening
fusion. Detail structures are illustrated in Fig. 2 for a better understanding

Parts PN DN DDN DDFN

1 C(3 × 3 × 24) C(3 × 3 × 32)

[
C(3 × 3 × 16)

D(3 × 3 × 16)

] [
C(3 × 3 × 8/6)

D(3 × 3 × 8/6)

]

2 C(3 × 3 × 24) × 8

[
C(1 × 1 × 32)

C(3 × 3 × 8)

]
× 8

[
C(1 × 1 × 32)

D(3 × 3 × 8)

]
× 8

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C(1 × 1 × 24)[
C(3 × 3 × 6/3)

D(3 × 3 × 6/3)

]

C(1 × 1 × 8)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× 8

3 C(3 × 3 × 1) C(1 × 1 × 1) C(1 × 1 × 1) C(1 × 1 × 1)

However, by further decomposing Eq. (12), we demonstrate the fundamen-
tally different insights between TNRD and DBF as follows. Without loss of gen-
erality, let x̂n−1 = x + u and we discuss a special case when γ = 1. Considering
Eqs. (1) and (3), we have

R(x̂n−1, y) = x̂n−1 − y

= (x + u) − (x + v)
= u − v. (14)

Substituting Eq. (14) into Eq. (12), we then have

x̂n = x̂n−1 − D(x̂n−1) − R(x̂n−1, y)

= (x + u) − D(x̂n−1) − (u − v)

= x − D(x̂n−1) + v. (15)

The target of TNRD is to let x̂n → x, i.e., D(x̂n−1) → v. Thus, the diffusion
term is actually trained for fitting the white Gaussian noise v. In contrast, our
proposed DBF is trained for directly restoring the original signal x, leveraging
on the availability of denoised images and the growth of SNR. Intuitively, it may
be more difficult to find correlations between training examples when fitting the
irregular noise. Moreover, from the perspective of SNR, it is more difficult to
predict the “weaker” noise when the input image has a lower noise level. These
are the advantages of our DBF in comparison with TNRD.

4 Dilated Dense Fusion Network

An efficient boosting unit is desired to fully exploit the potential of the pro-
posed DBF. Theoretically, the function Gθ(·) in Eq. (10) has no restriction on
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Fig. 2. Details of the evolution for the boosting unit. “C” and “D” with a rectangular
block denote the convolution and its dilated variant, respectively. The following “1”
and “3” denote the kernel size. “+” with a circular block denotes the concatenation.
Each layer in DDFN (except the last one) adopts ReLU [25] as the activation function,
which is omitted here for simplifying the illustration

the detailed implementation of the boosting unit. Thus, we have a wide choice
of diverse network structures. We start our investigation from a simple structure
which is the simplified DnCNN [12] without batch normalization and residual
connection, i.e., the plain network (PN), as shown in Table 1 and Fig. 2(a). We
find in experiments that, given the same number of parameters, deepening a net-
work properly contributes to the efficiency (as detailed in Sect. 5.2). However,
when we introduce the PN into our DBF to derive a 2-stage boosting framework,
this benefit tends to vanish as the network depth continues to increase, probably
due to the vanishing of gradient during the back propagation.

4.1 Dense Connection

To overcome the propagation problem of gradient during training, we introduce
the dense connection to derive the dense network (DN), as shown in Table 1 and
Fig. 2(b), which is inspired by the successful model for image recognition [18].
The dense connection enables the lth layer to receive the features of all preceding
layers (i.e., f0, ..., fl−1) as input

fl = gl([f0, f1, ..., fl−1]), (16)

where gl(·) denotes the lth layer in Gθ and [f0, f1, ..., fl−1] stands for the concate-
nation of the features output from preceding layers. We demonstrate in experi-
ments that the dense connection can address the propagation issue of gradient
during training (as detailed in Sect. 5.2).

4.2 Dilated Convolution

Widening the receptive field of the CNN is a well-known strategy for enhancing
the performance in both image classification [26] and restoration [27] tasks. The
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convolution with a larger kernel size can widen the receptive field, however,
it increases the number of parameters at the same time. Another strategy is
stacking multiple convolutional layers with a 3 × 3 kernel size to obtain a large
receptive field equivalently. However, it causes difficulty of convergence due to
the increasing of the network depth.

Recently, a notable alternative called dilated convolution has been investi-
gated in semantic segmentation [19] and image classification [28]. The dilated
convolution can widen the receptive field without additive parameters and it
also prevents the increasing of depth. Inspired by that, we introduce the dilated
convolution to derive the dilated dense network (DDN) based on the DN, as
shown in Table 1 and Fig. 2(c). By widening the receptive field efficiently, a bet-
ter denoising performance can be achieved (as detailed in Sect. 5.2).

4.3 Path-Widening Fusion

We further propose a path-widening fusion scheme to make the boosting unit
more efficient. As shown in Table 1 and Fig. 2(d), we expand the number of for-
ward paths to derive the DDFN from the DDN. Specifically, in a certain block,
the order between the dilated convolutions (Dconv for short) and the normal
convolutions (Conv for short) is exchanged in different branches. It is very likely
that the Conv-ReLU-Dconv and Dconv-ReLU-Conv branches can learn different
feature representations. The proposed path-widening fusion exploits the poten-
tial of these two orders at the same time, and thus promotes the possibility to
learn better representations. Experimental results demonstrate that the denois-
ing performance can be further improved in this way (as detailed in Sect. 5.2).
Note that, we restrict the parameter number of DDFN not greater than DDN
(i.e., about 4 × 104) to eliminate the influence of additional parameters due to
path-widening fusion, and thus the efficiency of DDFN is also justified.

5 Experimental Results

5.1 Datasets and Settings

We adopt 400 images at a 180× 180 resolution for training our models following
TNRD [11] and DnCNN [12]. The images are partitioned into sub-image patches
with a size of 50 × 50, and the mini-batch number is set to 64 for the stochas-
tic gradient decent. Two widely-used datasets, “Set12” and “BSD68” [29] are
employed as the benchmarks for image denoising. Moreover, to compare with
the SOS algorithm [17], the “Set5” dataset is adopted following [17].

Besides grey-level image denoising, we also apply our method to two addi-
tional tasks, i.e., color image denoising and JPEG image deblocking, following
the setting of DnCNN [12]. The color version of “BSD68” is adopted for the color
image denoising task. And the “Classic5” and “LIVE1” datasets are adopted for
evaluating the deblocking task as in [30].

We use TensorFlow and the “Adam” [31] solver for optimization with the
momentum factor set as 0.9 and the coefficient of weight decay (L2-Norm) as
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Fig. 3. Illustrations of the ablation experiments. (a) The curves show the advantage of
dense connection over plain structure in terms of convergence. (b) The evolution from
plainly connected structure to DDFN. (c) Performance comparisons between DBF and
its variants. The symbol “W” means wide and all of these models are tested on the
“Set12” dataset at σ = 50

0.0001. The learning rate is decayed exponentially from 0.001 to 0.0001. We
stop training when no notable decay of training loss is observed after 3.6 × 105

iterations. The algorithm proposed in [32] is adopted for initializing the weights
except the last layer. Specifically, the last layer for reconstruction is initialized
by the random weights drawn from Gaussian distributions with σ = 0.001. And
we set zeros for initializing the biases in each convolutional layer.

5.2 Ablation Experiments of DDFN

The proposed DDFN integrates three concepts: dense connection, dilated con-
volution, and path-widening fusion, deriving a fundamentally different structure
compared with existing models. In this section, we design extensive ablation
experiments to evaluate them respectively.

Investigation of Depth (PN). We described the structure of PN in Sect. 4.
To investigate the effect of depth to the boosting unit, we construct a variant
of PN (named PN2) with a deeper yet thinner structure, which has the same
number of parameters compared with PN. Specifically, it contains more layers
(i.e., 18) in the feature integration part and less filter numbers (i.e., 16) in each
layer than PN. Meanwhile, we keep the other hyper-parameters and the training
procedure of PN2 the same as PN. As shown in Fig. 3(b), the deeper and thinner
PN2 outperforms PN. This observation suggests that deepening the framework
gives a better performance. However, when we introduce PN2 into DBF to derive
PN2-x2, the advantage of plainly connected deeper structure tends to vanish.

Dense Connection (DN). We then introduce the dense connection to address
the propagation issue of gradient during training. As shown in Fig. 3(a), DN
converges faster than PN2. While maintaining a quicker convergence, the derived
DN-x2 shows a clear advantage over PN2-x2 for a 2-stage DBF, as shown in
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Table 2. Comparisons with the SOS boosting algorithm [17] combined with four classic
models. DDFN-x5W is employed as a representative of our DBF. We evaluate the mean
PSNR on the “Set5” dataset following [17]

Models Original Boosting

σ = 25 σ = 50 σ = 25 σ = 50

NLM [2] 29.93 26.43 30.34 26.73

K-SVD [5] 31.02 27.20 31.28 27.97

EPLL [1] 30.97 27.74 31.23 28.04

BM3D [7] 31.58 28.51 31.61 28.58

DDFN (Ours) 32.04 28.93 32.38 29.50

Fig. 3(b). Note that, the parameters of DN are 15% less than PN2, yet DN-x2
still outperforms PN2-x2.

Dilated Convolution (DDN). Based on DN, we adopt the dilated convolution
to widen the receptive field. Specifically, we introduce it into two places of the
network: the feature extraction part and each dense block, as shown in Fig. 2(c).
The ratio of dilation is fixed to 2 for each dilated convolution layer. Experimen-
tal results demonstrate that further improvements of the boosting unit can be
achieved, i.e., DDN as shown in Fig. 3(b).

Path-Widening Fusion (DDFN). As described in Sect. 4, we further propose
the path-widening fusion which aggregates the concatenated features of preced-
ing layers using a 1×1 convolution in the dense block, as shown in Fig. 2(d). This
fusion can further promote the denoising performance, i.e., DDFN as shown in
Fig. 3(b).

5.3 Investigation of Framework

Ablation of Subtraction and Training Scheme. As described in Sect. 3.2,
the proposed DBF no longer needs an subtraction of x̂n as in SOS to guaran-
tee the iterability. We design an ablation experiment based on a 3-stage DBF.
Experimental results demonstrate a better performance (+0.12 dB) without the
subtraction. As for the training scheme, we consider both joint and greedy train-
ing as described in Sect. 3.2. Evaluated on a 3-stage DBF, we find joint training
and greedy training give competitive performance.

Boosting - The Deeper, the Better. We investigate the performance by
increasing the stage number of DBF. Experimental results demonstrate the
capacity of our DBF in term of the extension in depth, as can be observed
from Fig. 3(c). Specifically, a 5-stage DBF brings 0.30 dB gain compared with a
single stage one.

DDFN - The Wider, the Better. Besides the exploration of depth, we also
investigate the contribution of width by doubling the number of filters in each
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Table 3. Comparisons of mean PSNR (dB) between our DBF and seven representative
learning-based models. We evaluate the results on two widely used benchmarks (i.e.,
“Set12” and “BSD68”). Best results reported in the corresponding papers are presented

Dataset σ MLP [10] CSF [8] GCRF [33] TNRD [11] NLNet [34] DeepAM [35] DnCNN [12] DDFN/-x5W

Set12 15 - 32.32 - 32.50 - - 32.86 32.73 32.98

25 30.03 29.84 - 30.06 - 30.40 30.44 30.33 30.60

50 26.78 - - 26.81 - - 27.18 27.10 27.46

BSD68 15 - 31.24 31.43 31.42 31.52 31.68 31.73 31.66 31.83

25 28.96 28.74 28.89 28.92 29.03 29.21 29.23 29.16 29.35

50 26.03 - - 25.97 26.07 26.24 26.23 26.19 26.42

(a) Original (b) Noisy (c) KSVD/25.87 dB (d) NCSR/26.60 dB

(e) BM3D/26.72 dB (f) TNRD/26.81 dB (g) DnCNN/27.18 dB (h) Ours/27.46 dB

Fig. 4. Visual comparisons of the image “Couple” from the “Set12” dataset at σ = 50

layer of DDFN (deriving models with the symbol “W”). Experimental results in
Fig. 3(c) demonstrate that widening can further enhance the performance.

5.4 Comparison with State-of-the-Art Methods

Comparison with the SOS Algorithm. We adopt four classical models [1,
2,5,7] and their corresponding SOS [17] variants for comparison. As shown in
Table 2, our boosting unit DDFN has a clear advantage over these classic models,
e.g., +0.46 dB when σ = 25 and +0.42 dB when σ = 50 than BM3D [7]) on
the “Set5” dataset. With the proposed DBF, our DDFN-x5W achieves notable
improvements over BM3D-SOS [17], i.e., +0.77 dB (σ = 25) and +0.92 dB
(σ = 50).
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Table 4. Comparisons for the blind Gaussian denoising (grey-level). We evaluate the
mean PSNR (dB) on the “Set12” dataset

Models / σ 5 10 15 20 25 30 35 40 45 50

BM3D [7] 38.03 34.38 32.37 31.01 29.97 29.13 28.40 27.65 27.19 26.72

DnCNN-B [12] 37.70 34.53 32.68 31.38 30.36 29.53 28.83 28.22 27.69 27.21

DDFN-B 37.31 34.30 32.45 31.15 30.13 29.30 28.60 27.98 27.44 26.96

DDFN-x5W-B 38.14 34.76 32.86 31.55 30.54 29.71 29.02 28.41 27.87 27.44

Table 5. Comparisons for the blind color image denoising. We evaluate the mean
PSNR (dB) on the color version of “BSD68” dataset. A color variant of DDFN-x3W
is adopted as the representative to compared with CBM3D [36] and DnCNN-B [12]

Models / σ 5 10 15 20 25 30 35 40 45 50

CBM3D [36] 40.24 35.91 33.52 31.91 30.71 29.73 28.89 28.09 27.84 27.38

DnCNN-B [12] 40.10 36.12 33.89 32.37 31.23 30.32 29.58 28.95 28.40 27.92

DDFN-x3W-B 40.47 36.42 34.17 32.65 31.52 30.62 29.88 29.26 28.72 28.26

(a) Original (b) Noisy (c) CBM3D/28.86 dB (d) CDnCNN/29.46 dB (e) Ours/29.92 dB

Fig. 5. Visual comparisons of an image from the “BSD68” dataset at σ = 35

(a) Original (b) Noisy (c) CBM3D/28.80 dB (d) CDnCNN/29.29 dB (e) Ours/29.66 dB

Fig. 6. Visual comparisons of an image from the “BSD68” dataset at σ = 45

Comparison with Other Learning-Based Models. We adopt seven repre-
sentative models for comparison: MLP [10], CSF [8], GCRF [33], TNRD [11],
NLNet [34], DeepAM [35] and DnCNN [12]. The restoration results of our DDFN
and DDFN-x5W are listed in Table 3 to compare with them. Specifically, DDFN-
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Table 6. Compression of the JPEG image deblocking. We evaluate the mean PSNR
(dB) and SSIM on the “Classic5” and “LIVE1” datasets in terms of four quality factors
(QF). All methods are implemented using officially available codes

Dataset QF AR-CNN [30] TNRD [11] DnCNN [12] DDFN-x3W

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Classic5 10 29.03 / 0.7929 29.28 / 0.7992 29.40 / 0.8026 29.55 / 0.8086

20 31.15 / 0.8517 31.47 / 0.8576 31.63 / 0.8610 31.70 / 0.8636

30 32.51 / 0.8806 32.78 / 0.8837 32.91 / 0.8861 33.03 / 0.8881

40 33.34 / 0.8953 - 33.77 / 0.9003 33.90 / 0.9023

LIVE1 10 28.96 / 0.8076 29.15 / 0.8111 29.19 / 0.8123 29.39 / 0.8186

20 31.29 / 0.8733 31.46 / 0.8769 31.59 / 0.8802 31.76 / 0.8839

30 32.67 / 0.9043 32.84 / 0.9059 32.98 / 0.9090 33.19 / 0.9117

40 33.63 / 0.9198 - 33.96 / 0.9247 34.20 / 0.9273

(a) JPEG (b) AR-CNN/29.63 dB (c) TNRD/29.75 dB (d) DnCNN/29.82 dB (e) Ours/30.12 dB

Fig. 7. Visual comparisons of an image from the “LIVE1” dataset at QF = 10

(a) JPEG (b) AR-CNN/29.84 dB (c) TNRD/30.11 dB (d) DnCNN/30.28 dB (e) Ours/30.56 dB

Fig. 8. Visual comparisons of an image from the “LIVE1” dataset at QF = 20

x5W achieves a superior performance than TNRD [11] (+0.65 dB) and DnCNN
[12] (+0.28 dB) on the “Set12” dataset when σ = 50.

Comparison for Blind Gaussian Denoising. Following the settings of train-
ing proposed in [12], we re-train our models to derive the DDFN-B and DDFN-
x5W-B for blind Gaussian denoising. We adopt the BM3D [7] and the variant
of DnCNN (i.e., DnCNN-B [12]) for comparison. Experimental results listed in
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Table 7. Comparison of runtime (s) for Gaussian image denoising on the “Set12”
dataset with respect to different resolutions. All methods are implemented using offi-
cially available codes

Resolution K-SVD EPLL BM3D MLP CSF TNRD DnCNN Ours

256 × 256 71.886 19.352 0.369 1.211 1.006 1.125 0.061 0.051

512 × 512 56.689 90.184 1.561 3.486 2.491 2.238 0.212 0.156

Table 4 demonstrate the superiority of our model within a wide range of noise
levels. Specifically, when the noise level is small (i.e., σ = 5), our proposed
DDFN-x5W-B has a clear advantage (+0.44 dB) over DnCNN-B. We also eval-
uate the performance on the task of blind color image denoising. Experimental
results listed in Table 5 demonstrate the advantage of our proposed DBF.

Comparison for JPEG Image Deblocking. We also evaluate our model on
the task of image deblocking. Three representative models: AR-CNN [30], TNRD
[11], and DnCNN [12] are adopted for comparison. Experimental results listed
in Table 6 demonstrate the superiority of our model over existing ones.

Running Time. Although the cascaded structure of our proposed DBF involves
more computation than a single stage one (which is the inevitable cost of boost-
ing), it is still quite efficient. Detailed results are listed in Table 7.

Visual Comparison. To evaluate the perceptual quality of restoration, we
show a few examples including grey-level denoising (Fig. 4), blind color image
denoising (Figs. 5 and 6), and image deblocking (Figs. 7 and 8). As can be seen,
our model performs better than the competitors in both the smooth and edge
regions.

6 Conclusions

In this paper, we propose the DBF which first integrates the boosting algorithm
with deep learning for image denoising. To fully exploit the potential of this
framework, we elaborate the lightweight yet efficient DDFN as the boosting
unit. By introducing the dense connection, we address the vanishing of gradients
during training. Based on the densely connected structure, we further propose
the path-widening fusion cooperated with the dilated convolution to optimize
the DDFN for efficiency. Compared with the existing models, our DDFN-based
DBF achieves the state-of-the-art performance in both non-blind and blind image
denoising on widely used benchmarks.

Besides the scenario of image denoising, the proposed DBF can be readily
generalized to other image restoration tasks, e.g., image deblocking, as demon-
strated in this paper. Also, the idea of path-widening fusion is demonstrated to
be useful in the task of spectral reconstruction from RGB images [37]. We believe
the proposed method could inspire even more low-level vision applications.
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