q

Check for
updates

1

Convolutional neural networks (CNNs) [17] are originally designed to repre-
sent static appearances of visual scenes well. However, it has a limitation if the
underlying structure is characterized by sequential and temporal relations. In
particular, since recognizing human behavior in a video requires both spatial
appearance and temporal motion as important cues, many previous researches
have utilized various modalities that can capture motion information such as
optical flow [33] and RGBJiff (temporal difference in consecutive RGB frames)
[33]. Methods based on two-stream [7,21,33] and 3D convolutions [2,28] utiliz-
ing these input modalities achieve state-of-the-art performances in the field of
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Abstract. Spatio-temporal representations in frame sequences play an
important role in the task of action recognition. Previously, a method of
using optical flow as a temporal information in combination with a set
of RGB images that contain spatial information has shown great perfor-
mance enhancement in the action recognition tasks. However, it has an
expensive computational cost and requires two-stream (RGB and opti-
cal flow) framework. In this paper, we propose MFNet (Motion Feature
Network) containing motion blocks which make it possible to encode
spatio-temporal information between adjacent frames in a unified net-
work that can be trained end-to-end. The motion block can be attached
to any existing CNN-based action recognition frameworks with only a
small additional cost. We evaluated our network on two of the action
recognition datasets (Jester and Something-Something) and achieved
competitive performances for both datasets by training the networks
from scratch.
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Fig. 1. Some examples of action classes in the three action recognition datasets, Jester
(top), Something-Something (middle), and UCF101 (bottom). — top: left ‘Sliding Two
Fingers Down’, right ‘Sliding Two Fingers Up’, middle: left ‘Dropping something in
front of something’, right ‘Removing something, revealing something behind’, bot-
tom: left ‘TableTennisShot’, right ‘Billiards’. Due to ambiguity of symmetrical pair
classes/actions, static images only are not enough to recognize correct labels without
sequential information in the former two datasets. However, in case of the bottom
UCF101 image frames, the action class can be recognized with only spatial context
(e.g. background and objects) from a single image.

action recognition. However, even though optical flow is a widely utilized modal-
ity that provides short-term temporal information, it takes a lot of time to gener-
ate. Likewise, 3D-kernel-based methods such as 3D ConvNets also require heavy
computational burden with high memory requirements.

In our view, most previous labeled action recognition datasets such as
UCF101 [24], HMDBS51 [16], Sports-1M [13] and THUMOS [12] provide highly
abstract concepts of human behavior. Therefore they can be mostly recognized
without the help of temporal relations of sequential frames. For example, the
‘Billiard’ and ‘TableTennisShot’ in UCF101 can be easily recognizable by just
seeing one frame as shown in the third row of Fig.1. Unlike these datasets,
Jester [1] and Something-Something [8] include more detailed physical aspects
of actions and scenes. The appearance information has a very limited usefulness
in classifying actions for these datasets. Also, visual objects in the scenes that
mainly provide shape information are less important for the purpose of recogniz-
ing actions on these datasets. In particular, the Something-Something dataset
has little correlation between the object and the action class, as its name implies.
The first two rows of Fig. 1 show some examples of these datasets. As shown in
Fig. 1, it is difficult to classify the action class with only one image. Also, even if
there are multiple images, the action class can be changed according to the tem-
poral order. Thus, it can be easily confused when using the conventional static
feature extractors. Therefore, the ability to extract the temporal relationship
between consecutive frames is important to classify human behavior in these
datasets.

To solve these issues, we introduce a unified model which is named as the
Motion Feature Network (MFNet). MFNet contains specially designed motion
blocks which represent spatio-temporal relationships from only RGB frames.



394 M. Lee et al.

Because it extracts temporal information using only RGB, pre-computation time
that is typically needed to compute optical flow is not needed compared with
the existing optical flow-based approaches. Also, because MFNet is based on a
2D CNN architecture, it has fewer parameters compared to its 3D counterparts.

We perform experiments to verify our model’s ability to extract spatio-
temporal features on a couple of publicly available action recognition datasets. In
these datasets, each video label is closely related to the sequential relationships
among frames. MFNet trained using only RGB frames significantly outperforms
previous methods. Thus, MFNet can be used as a good solution for an action clas-
sification task in videos consisting of sequential relationships of detailed physical
entities. We also conduct ablation studies to understand properties of MFNets
in more detail.

The rest of this paper is organized as follows. Some related works for action
recognition tasks are discussed in Sect. 2. Then in Sect. 3, we introduce our pro-
posed MFNet architecture in detail. After that, experimental results with abla-
tion studies are presented and analyzed in Sect. 4. Finally, the paper is concluded
in Sect. 5.

2 Related Works

With the great success of CNNs on various computer vision tasks, a growing
number of studies have tried to utilize deeply learned features for action recog-
nition in video datasets. Especially, as the consecutive frames of input data
imply sequential contexts, temporal information as well as spatial information
is an important cue for classification tasks. There have been several approaches
to extract these spatio-temporal features on action recognition problems.

One popular way to learn spatio-temporal features is using 3D convolution
and 3D pooling hierarchically [6,9,28,29,36)]. In this approach, they usually stack
continuous frames of a video clip and feed them into the network. The 3D convo-
lutions have enough capacity to encode spatio-temporal information on densely
sampled frames but are inefficient in terms of computational cost. Furthermore,
the number of parameters to be optimized are relatively large compared to other
approaches. Thus, it is difficult to train on small datasets, such as UCF101 [24]
and HMDB51 [15]. In order to overcome these issues, Carreira et al. [2] intro-
duced a new large dataset named Kinetics [14], which facilitates training 3D
models. They also suggest inflating 3D convolution filters from 2D convolution
filters to bootstrap parameters from the pre-trained ImageNet [4] models. It
achieves state-of-the-art performances in action recognition tasks.

Another famous approach is the two-stream-based method proposed by
Simonyan et al. [22]. It encodes two kinds of modalities which are raw pixels of
an image and the optical flow extracted from two consecutive raw image frames.
It predicts action classes by averaging the predictions from both a single RGB
frame and a stack of externally computed multiple optical flow frames. A large
amount of follow up studies [18,32,35] to improve the performance of action
recognition has been proposed based on the two-stream framework [7,21,33]. As
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an extension to the previous two-stream method, Wang et al. [33] proposed the
temporal segment network. It samples image frames and optical flow frames on
different time segments over the entire video sequences instead of short snippets,
then it trains RGB frames and optical flow frames independently. At inference
time, it accumulates the results to predict an activity class. While it brings
a significant improvement over traditional methods [3,30,31], it still relies on
pre-computed optical flows which are computationally expensive.

In order to replace the role of hand-crafted optical flow, there have been
some works feeding frames similar to optical flow as inputs to the convolutional
networks [33,36]. Another line of works use optical flow only in training phase
as ground-truth [20,38]. They trained a network that reconstructs optical flow
images from raw images and provide the estimated optical flow information to
the action recognition network. Recently, Sun et al. [26] proposed a method of
optical-flow-guided features. It extracts motion representation using two sets
of features from adjacent frames by separately applying temporal subtraction
(temporal features) and Sobel filters (spatial features). Our proposed method is
highly related to this work. The differences are that we feedforward spatial and
temporal features in a unified network instead of separating two features apart.
Thus, it is possible to train the proposed MFNet in an end-to-end manner.

3 Model

In this section, we first introduce the overall architecture of the proposed MFNet
and then give a detailed description of ‘motion filter’ and ‘motion block” which
constitute MFNet. We provide several instantiations of motion filter and motion
block to explain the intuition behind it.

3.1 Motion Feature Network

The proposed architecture of MFNet is illustrated in Fig.2. We construct our
architecture based on temporal segment network (TSN) [33] which works on a
sequence of K snippets sampled from the entire video. Our network is com-
posed of two major components. One is appearance block which encodes the
spatial information. This can be any of the architectures used in image classifi-
cation tasks. In our experiments, we use ResNet [10] as our backbone network
for appearance blocks. Another component is motion block which encodes tem-
poral information. To model the motion representation, it takes two consecutive
feature maps of the corresponding consecutive frames from the same hierarchy’
as inputs and then extracts the temporal information using a set of fixed motion
filters which will be described in the next subsection. The extracted spatial and
temporal features in each hierarchy should be properly propagated to the next
hierarchy. To fully utilize two types of information, we provide several schemes
to accumulate them for the next hierarchy.

1 'We use the term hierarchy to represent the level of abstraction. A layer or a block
of layers can correspond to a hierarchy.



396 M. Lee et al.

44,4444

e leelelel.

& %ﬁ S o oS

e

[ ]
!

Fig. 2. The overall architecture of MFNet. The proposed network is composed of
appearance blocks and motion blocks which encode spatial and temporal information.
A motion block takes two consecutive feature maps from respective appearance blocks
and extracts spatio-temporal information with the proposed fixed motion filters. The
accumulated feature maps from the appearance blocks and motion blocks are used as
an input to the next layer. This figure shows the case of K = 7.

3.2 Motion Representation

To capture the motion representation, one of the commonly used approaches in
action recognition is using optical flow as inputs to a CNN. Despite its important
role in the action recognition tasks, optical flow is computationally expensive in
practice. In order to replace the role of optical flow and to extract temporal
features, we propose motion filters which have a close relationship with the
optical flow.

Approximation of Optical Flow. To approximate the feature-level optical
flow hierarchically, we propose a modular structure named motion filter. Typi-
cally, the brightness consistency constraint of optical flow is defined as follows:

I(x + Az, y + Ay, t + At) = I(z,y,t), (1)

where I(x,y,t) denotes the pixel value at the location (z,y) of a frame at time
t. Here, Az and Ay denote the spatial displacement in horizontal and vertical
axis respectively. The optical flow (Ax, Ay) that meets (1) is calculated between
two consecutive image frames at time ¢ and ¢ + At at every location of an image.

Originally, solving an optical flow problem is to find the optimal solution
(Az*, Ay*) through an optimization technique. However, it is hard to solve (1)
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Fig. 3. Motion filter. Motion filter generates spatio-temporal features from two consec-
utive feature maps. Feature map at time ¢t + At is shifted by a predefined set of fixed
directions and each of them is subtracted from the feature map at time ¢. With con-
catenation of features from all directions, motion filter can represent spatio-temporal
information.

directly without additional constraints such as spatial or temporal smoothness
assumptions. Also, it takes much time to obtain a dense (pixelwise) optical flow.

In this paper, the primary goal is to find the temporal features derived from
optical flow to help classifying action recognition rather than finding the opti-
mal solution to optical flow. Thus, we extend (1) to feature space by replacing
an image I(z,y,t) with the corresponding feature maps F(x,y,t) and define a
residual features R as follows:

Ri(z,y, At) = Fi(z + Az,y + Ay, t + At) = Fi(z,y, 1), (2)

where [ denotes the index of the layer or hierarchy, F; is the [-th feature maps
from the basic network. R is the residual features produced by two features
from the same layer . Given Az and Ay, the residual features R can be easily
calculated by subtracting two adjacent features at time ¢ and t + At. To fully
utilize optical flow constraints in feature level, R tends to have lower absolute
intensity. As searching for the lowest absolute value in each location of feature
map is trivial but time-consuming, we design a set of predefined fixed directions
D = {(Az, Ay)} to restrict the search space. For convenience, in our implemen-
tation, we restrict Az, Ay € {0,+1} and |Az| + |Ay| < 1. Shifting one pixel
along each spatial dimension in the image space is responsible for capturing a
small amount of optical flow (i.e. small movement), while one pixel in the feature
space at a higher hierarchy of a CNN can capture larger optical flow (i.e. large
movement) as it looks at a larger receptive field.

Motion Filter. The motion filter is a modular structure calculated by two
feature maps extracted from shared networks feed-forwarded by two consecutive
frames as inputs. As shown in Fig. 3, the motion filter takes features Fj(t) and
Fi(t + At) at time ¢t and ¢ + At as inputs. The predefined set of directions
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D is only applied to the features at time ¢t + At as illustrated Fig. 3. We follow
the shift operation proposed in [34]. It moves each channel of its input tensor
in a different spatial direction § £ (Az, Ay) € D. This can be alternatively
done with widely used depth-wise convolution, whose kernel size is determined
by the maximum value of Ax and Ay in D. For example, on our condition,
Az, Ay € {0,£1}, we can implement with 3 x 3 kernels as shown in Fig.3.
Formally, the shift operation can be formulated as:

5 s
Gk,l,m = Z Ki,ij+%,l+}',m’ (3)

.3

0 4
b 0 otherwise. )

5{1 if i = Az and j = Ay,

Here, the subscript indicates the index of a matrix or a tensor, § =
(Az, Ay) € D is a displacement vector, F € RW*H*C ig the input tensor and
i=i—|W/2],7=j— |H/2| are the re-centered spatial indices (-] is the floor
operation). The indices k, ! and i, j are those along spatial dimensions and m is
a channel-wise index. We get a set G= {Gf+At|5 € D}, where Gf+At represents
the shifted feature map by an amount of § at time ¢ + At. Then, each of them
is subtracted by F;2. Because the concatenated feature map is constructed by
temporal subtraction on top of the spatially shifted features, the feature map
contains spatio-temporal information suitable for action recognition. As men-
tioned in Sect. 2, this is quite different from optical-flow-guided features in [26]
which use two types of feature maps obtained by temporal subtraction and spa-
tial Sobel filters. Also, it is distinct from ‘subtractive correlation layer’ in [5]
with respect to the implementation and the goal. ‘Subtractive correlation layer’
is utilized to find correspondences for better reconstruction, while, the proposed
motion filter is aimed to encode directional information between two feature
maps via learnable parameters.

3.3 Motion Block

As mentioned above, the motion filter is a modular structure which can be
adopted to any intermediate layers of two appearance blocks consecutive in
time. In order to propagate spatio-temporal information properly, we provide
several building blocks. Inspired by the recent success of residual block used
in residual networks (ResNet) in many challenging image recognition tasks, we
develop a new building block named motion block to propagate spatio-temporal
information between two adjacent appearance blocks into deeper layers.

2 For convenience, here, we use the notation F; and Gyy A, instead of F(t) and G(t +
At). The meaning of a subscript will be obvious in the context.
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Fig. 4. Two ways to aggregate spatial and temporal information from appearance block
and motion filter.

Element-Wise Sum. A simple and direct way to aggregate two different char-
acteristics of information is the element-wise sum operation. As illustrated in
Fig.4(a), a set of motion features R = F; — Gf+At € RWxHXC 5 ¢ D, gen-
erated by motion filter are concatenated along channel dimension to produce a
tensor M; = [R%*|R%|---|R%5] € RW*H*N where [-|-] denotes a concatenation
operation, N = § x C' and S is the number of the predefined directions in . It
is further compressed by 1 x 1 convolution filters to produce output M, with the
same dimension as F;. Finally, the features from the appearance block F; and
those from the motion filters M, are summed up to produce inputs to the next
hierarchy.

Concatenation. Another popular way to combine the appearance and the
motion features is calculated by the concatenation operation. In this paper, the
motion features M; mentioned above are directly concatenated with each of the
appearance features F; as depicted in Fig.4(b). A set of 1 x 1 convolution filters
is also exploited to encode spatial and temporal information after the concate-
nation. The 1 x 1 convolution reduces the channel dimension as we desire. It also
implicitly encodes spatio-temporal features to find the relationship between two
different types of features: appearance and motion features.

4 Experiments

In this section, the proposed MFNet is applied to action recognition problems
and the experimental results of MFNet are compared with those of other action
recognition methods. As datasets, Jester [1] and Something-Something [8] are
used because these cannot be easily recognized by just seeing a frame as already
mentioned in Sect.1. They also are suitable for observing the effectiveness of
the proposed motion blocks. We also perform comprehensive ablation studies
to prove the effectiveness of the MFNets.
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4.1 Experiment Setup

To conduct comprehensive ablation studies on video classification tasks with
motion blocks, first we describe our base network framework.

Base Network Framework. We select the TSN framework [33] as our base
network architecture to train MFNet. TSN is an effective and efficient video
processing framework for action recognition tasks. TSN samples a sequence of
frames from an entire video and aggregates individual predictions into a video-
level score. Thus, TSN framework is well suited for our motion blocks because
each block directly extracts the temporal relationships between adjacent snippets
in a batch manner.

In this paper, we mainly choose ResNet [10] as our base network to extract
spatial feature maps. For the sake of clarity, we divide it into 6 stages. Each
stage has a number of stacked residual blocks and each block is composed of
several convolutional and batch normalization [11] layers with Rectified Linear
Unit (ReLU) [19] for non-linearity. The final stage consists of a global pooling
layer and a classifier. Our base network differs from the original ResNet in that
it contains the max pooling layer in the first stage. Except this, our base network
is the same as the conventional ResNet. The backbone network can be replaced
by any other network architecture and our motion blocks can be inserted into
the network all in the same way regardless of the type of the network used.

Motion Blocks. To form MFNet, we insert our motion blocks into the base
network. In case of using ResNet, each motion block is located right after the
last residual block of every stage except for the last stage (global pooling and
classification layers). Then, MFNet automatically learns to represent spatio-
temporal information from consecutive frames, leading the conventional base
CNN to extract richer information that combines both appearance and motion
features. We also add an 1 x 1 convolution before each motion block to reduce
the number of channels. Throughout the paper, we reduce the number of input
channels to motion block by a factor of 16 with the 1 x 1 convolutional layer. We
add a batch normalization layer after the 1 x 1 convolution to adjust the scale
to fit to the features in the backbone network.

Training. In the datasets of Jester and Something-Something, RGB images
extracted from videos at 12 frames per second with a height of 100 pixels are
provided. To augment training samples, we exploit random cropping method
with scale-jittering. The width and height of a cropped image are determined by
multiplying the shorter side of the image by a scale which is randomly selected in
the set of {1.0,0.875,0.75,0.625}. Then the cropped image is resized to 112x 112,
because the width of the original images is relatively small compared to that of
other datasets. Note that we do not adopt random horizontal flipping to the
cropped images of Jester dataset, because some classes are a symmetrical pair,
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Table 1. Top-1 and Top-5 classification accuracies for different networks with dif-
ferent numbers of training segments (3,5,7). The compared networks are TSN base-
line, MFNet concatenation version (MFNet-C), and MFNet element-wise sum version
(MFNet-S) on Jester and Something-Something validation sets. All models use ResNet-
50 as a backbone network and are trained from scratch.

Dataset Jester Something-Something
Model K | top-1 acc. | top-5 acc. | top-1 acc. | top-5 acc.
Baseline 3 182.4% 98.9% 6.6% 21.5%

5 182.8% 98.9% 9.8% 28.6%

7 181.0% 98.5% 8.1% 24.7%
MFNet-C50 | 3 | 90.4% 99.5% 17.4% 42.6%

5 195.1% 99.7% 31.5% 61.9%

7 196.1% 99.7% 37.3% 67.2%
MFNet-S50 |3 | 91.0% 99.6% 15.4% 39.2%

5 195.6% 99.8% 28.7% 59.1%

7 196.3% 99.8% 37.1% 67.8%

such as ‘Swiping Left’ and ‘Swiping Right’, and ‘Sliding Two Fingers Left’ and
‘Sliding Two Fingers Right’.

Since motion block extracts temporal motion features from adjacent feature
maps, a frame interval between frames is a very important hyper-parameter.
We have trained our model with the fixed-time sampling strategy. However, in
our experiments, it leads to worse results than the random sampling strategy in
[33]. With a random interval, the method forces the network to learn through
frames composed of various intervals. Interestingly, we get better performance on
Jester and Something-Something datasets with the temporal sampling interval
diversity.

We use the stochastic gradient descent algorithm to learn network parame-
ters. The batch size is set to 128, the momentum is set to 0.9 and weight decay
is set to 0.0005. All MFNets are trained from scratch and we train our models
with batch normalization layers [11]. The learning rate is initialized as 0.01 and
decreases by a factor of 0.1 for every 50 epochs. The training procedure stops
after 120 epochs. To mitigate over-fitting effect, we adopt dropout [25] after the
global pooling layer with a dropout ratio of 0.5. To speed up training, we employ
a multi-GPU data-parallel strategy with 4 NVIDIA TITAN-X GPUs.

Inference. We select equi-distance 10 frames without the random shift. We
test our models on sampled frames whose image size is rescaled to 112 x 112.
After that, we aggregate separate predictions from each frame and average them
before softmax normalization to get the final prediction.
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Table 2. Top-1 and Top-5 classification accuracies for different depths of MFNet’s
base network. ResNet [10] is used as the base network. The values are on JESTER
and Something-Something validation sets. All models are trained from scratch, with
10 segments.

Dataset Jester Something-Something

Model Backbone |top-1 acc. | top-5 acc. | top-1 acc. | top-5 acc.
MFNet-C | ResNet-18 | 96.3% 99.8% 39.4% 69.1%
ResNet-50 |96.6% 99.8% 40.3% 70.9%
ResNet-101 | 96.7% 99.8% 43.9% 73.1%
ResNet-152 | 96.5% 99.8% 43.0% 73.2%

4.2 Experimental Results

The Jester [1] is a crowd-acted video dataset for generic human hand gestures
recognition. It consists 118,562 videos for training, 14, 787 videos for validation,
and 14, 743 videos for testing. The Something-Something [8] is also a crowd-acted
densely labeled video dataset of basic human interactions with daily objects. It
contains 86,017 videos for training, 11,522 videos for validation, and 10,960
videos for testing. Each of both datasets is for the action classification task
involving 27 and 174 human action categories respectively. We report validation
results of our models on the validation sets, and test results from the official
leaderboards®+4.

Evaluation on the Number of Segments. Due to the nature of our MFNet,
the number of segments, K, in the training is one of the important parameters.
Table 1 shows the comparison results of different models while changing the num-
ber of segments from 3 to 7 with the same evaluation strategies. We observe that
as the number of segments increases, the performance of overall models increases.
The performance of the MFNet-C50 (which means that MFNet concatenate ver-
sion with ResNet-50 as a backbone network) with 7 segments is by far the better
than the same network with 3 segments: 96.1% vs. 90.4% and 37.3% vs. 17.4%
on Jester and Something-Something datasets respectively. The trend is the same
for MFNet-S50, the network with element-wise sum. Also, unlike baseline TSN,
MFNets show significant performance improvement as the number of segments
increases from 3 to 5.

These improvements imply that increasing K reduces the interval between
sampled frames which allows our model to extract richer information. Interest-
ingly, MFNet-S achieves slightly higher top-1 accuracy (0.2% to 0.6%) than
MFNet-C on Jester dataset, and MFNet-C shows better performance (0.2%
to 2.8%) than MFNet-S on Something-Something dataset. On the other hand,
because the TSN baseline is learned from scratch, performance was worse than

3 https://www.twentybn.com/datasets/jester.
4 https://www.twentybn.com/datasets/something-something.
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Table 3. Comparison of the top-1 and top-5 validation results of various methods on
Jester and Something-something datasets. K denotes the number of training segments.
The results of other models are from their respective papers.

Dataset Jester Something-Something
Model top-1 acc. | top-5 acc. | top-1 acc. | top-5 acc.
Pre-3D CNN + Avg [8] - - 11.5% 30.0%
MultiScale TRN [37] 93.70% 99.59% 33.01% 61.27%
MultiScale TRN (10-crop)[37] | 95.31% 99.86% 34.44% 63.20%
MFNet-C50, K =7 96.13% 99.65% 37.31% 67.23%
MFNet-S50, K =7 96.31% 99.80% 37.09% 67.78%
MFNet-C50, K = 10 96.56% 99.82% 40.30% 70.93%
MFNet-S50, K = 10 96.50% 99.86% 39.83% 70.19%
MFNet-C101, K =10 96.68% 99.84% 43.92% 73.12%

Table 4. Selected test results on the Jester and Something-Something datasets from
the official leaderboards. Since the test results are continuously updated, some results
that are not reported or whose description is missing are excluded. The complete list
of test results is available on official public leaderboards. Our results are based on
ResNet-101 with K = 10 and trained from scratch. For submissions, we use the same
evaluation strategies as the validation mode.

Jester Something-Something

Model top-1 acc. | Model top-1 acc.
BesNet (from [37]) |94.23% | BesNet (from [37]) |31.66%
MultiScale TRN [37] | 94.78% MultiScale TRN [37] | 33.60%
MFNet-C101 (ours) |96.22% | MFNet-C101 (ours) |37.48%

expected. It can be seen that TSN spatial model without pre-training barely
generates any action-related visual features in Something-Something dataset.

Comparisons of Network Depths. Table2 compares the performances as
the depths of MFNet’s backbone network changes. In the table, we can see that
MFNet-C with ResNet-18 achieves comparable performance as the 101-layered
ResNet using almost 76% fewer parameters (11.68M vs. 50.23M). It is generally
known that as CNNs become deeper, more features can be expressed [10,23,27].
However, one can see that because most of the videos in Jester dataset are
composed of almost similar kinds of human appearances, the static visual entities
are very little related to action classes. Therefore, the network depth does not
appear to have a significant effect on performance. In Something-Something case,
accuracy gets also saturated. It could be explained that generalization of a model
seems to be difficult without pre-trained weights on other large-scale datasets,
such as Imagenet [4] and Kinetics [14].
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Fig. 5. Confusion matrices of TSN baseline and our proposed MFNet on Jester dataset.
The figure is best viewed in an electronic form.

Comparisons with the State-of-the-Art. Table 3 shows the top-1 and top-
5 results on the validation set. Our models outperform Pre-3D CNN + Avg
[8] and the MultiScale TRN [37]. Because Jester and Something-Something are
recently released datasets in the action recognition research field, we also report
the test results on the official leaderboards for each dataset for comparison with
previous studies. Table4 shows that MFNet achieves comparable performance
to the state-of-the-art methods with 96.22% and 37.48% top-1 accuracies on
Jester and Something-Something test datasets respectively on official leader-
boards. Note that we do not introduce any other modalities, ensemble methods
or pre-trained initialization weights on large-scale datasets such as ImageNet [4]
and Kinetics [14]. We only utilize officially provided RGB images as the input
of our final results. Also, without 3D ConvNets and additional complex test-
ing strategies, our method provides competitive performances on the Jester and
Something-Something datasets.

4.3 Analysis on the Behavior of MFNet

Confusion Matrix. We analyze the effectiveness of MFNet comparing with the
baseline. Figure 5 shows the confusion matrices of TSN baseline (left) and MFNet
(right) on Jester dataset. Class numbers and the corresponding class names
are listed below. Figure5 suggests that the baseline model confuses one action
class with its counterpart class. That is, it has trouble classifying temporally
symmetric action pairs. For example, (‘Swiping Left’, ‘Swiping Right’) and (‘Two
Finger Down’, ‘Two Finger Up’) are temporally symmetric pairs.

In case of baseline, it predicts an action class by simply averaging the results
of sampled frames. Consequently, if there is no optical flow information, it might
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Fig. 6. Validation accuracies trained with the different number of segments K, while
varying the number of validation segments from 2 to 25. The x-axis represents the
number of segments at inference time and the y-axis is the validation accuracy of the
MFNet-C50 trained with different K.

fail to distinguish some temporal symmetric action pairs. Specifically, we get
62.38% accuracy on ‘Rolling Hand Forward’ class among 35.7% of which is mis-
classified as ‘Rolling Hand Backward’. In contrast, our MFNet showed significant
improvement over baseline model as shown in Fig. 5 (right). In our experiments,
we get the accuracy of 94.62% on ‘Rolling Hand Forward’ class among 4.2% of
which is identified as ‘Rolling Hand Backward’. It proves the ability of MFNet
in capturing the motion representation.

Varying Number of Segments in the Validation Phase. We evaluated the
models which have different numbers of frames in the inference phase. Figure 6
shows the experimental results of MFNet-C50 on Jester (left) and Something-
Something (right) datasets. As discussed in Sect. 4.2, K, the number of segments
in the training phase is a crucial parameter on performance. As we can see, overall
performance for all the number of validation segments is superior on large K (7).
Meanwhile, the optimal number of validation segments for each K is different.
Interestingly, it does not coincide with K but is slightly larger than K. Using
more segments reduces the frame interval which allows extracting more precise
spatio-temporal features. It brings the effect of improving performance. However,
it does not last if the numbers in the training and the validation phases differ
much.

5 Conclusions

In this paper, we present MFNet, a unified network containing appearance blocks
and motion blocks which can represent both spatial and temporal information
for action recognition problems. Especially, we propose the motion filter that
outputs the motion features by performing the shift operation with the fixed set
of predefined directional filters and subtracting the resultant feature maps from
the feature maps of the preceding frame. This module can be attached to any
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existing CNN-based network with a small additional cost. We evaluate our model
on two datasets, Jester and Something-Something, and obtain outperforming
results compared to the existing results by training the network from scratch
in an end-to-end manner. Also, we perform comprehensive ablation studies and
analysis on the behavior of MFNet to show the effectiveness of our method. In
the future, we will validate our network on large-scale action recognition dataset
and additionally investigate the usefulness of the proposed motion block.
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