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Abstract. In this paper, we present an end-to-end deblurring network
designed specifically for a class of data. Unlike the prior supervised deep-
learning works that extensively rely on large sets of paired data, which is
highly demanding and challenging to obtain, we propose an unsupervised
training scheme with unpaired data to achieve the same. Our model con-
sists of a Generative Adversarial Network (GAN) that learns a strong
prior on the clean image domain using adversarial loss and maps the
blurred image to its clean equivalent. To improve the stability of GAN
and to preserve the image correspondence, we introduce an additional
CNN module that reblurs the generated GAN output to match with
the blurred input. Along with these two modules, we also make use of
the blurred image itself to self-guide the network to constrain the solu-
tion space of generated clean images. This self-guidance is achieved by
imposing a scale-space gradient error with an additional gradient mod-
ule. We train our model on different classes and observe that adding
the reblur and gradient modules helps in better convergence. Extensive
experiments demonstrate that our method performs favorably against
the state-of-the-art supervised methods on both synthetic and real-world
images even in the absence of any supervision.

Keywords: Motion blur · Deblur · Reblur · Unsupervised learning
GAN · CNN

1 Introduction

Blind-image deblurring is a classical image restoration problem which has been
an active area of research in image and vision community over the past few
decades. With increasing use of hand-held imaging devices, especially mobile
phones, motion blur has become a major problem to confront with. In scenarios
where the light present in the scene is low, the exposure time of the sensor
has to be pumped up to capture a well-lit scene. As a consequence, camera
shake becomes inevitable resulting in image blur. Motion blur also occurs when
the scene is imaged by fast-moving vehicles such as cars and aircrafts even in
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low-exposure settings. The problem escalates further in data-deprived situations
comprising of only a single blurred frame.

Blind-deblurring can be posed as an image-to-image translation where given
a blurred image y in blur domain, we need to learn a non-linear mapping M:y
→ x that maps the blurred image to its equivalent clean image x in the clean
domain. Many recent deep learning based deblurring networks [18,27,28] esti-
mate this mapping when provided with large sets of {yi, xi}N

i=1 paired train-
ing data. Even though these networks have shown promising results, the basic
assumption of availability of paired data is too demanding. In many a situation,
collecting paired training data can be difficult, time-consuming and expensive.
For example, in applications like scene conversion from day to night and image
dehazing, the availability of paired data is scarce or even non-existent.

This debilitating limitation of supervised deep networks necessitates the need
for unsupervised learning approaches [21,41,42] from unpaired datasets. In an
unsupervised setting, the user collects two sets of images from two marginal
distributions in both domains but sans pair-wise correspondences.Then the task
is to infer the joint distribution using these images. In this paper, we aim to
develop an unsupervised learning framework for blind-deblurring from a single
blurred frame without the need for the corresponding ground truth clean data.
Rather, our network relies on unlabeled image data from blur and clean domains
to perform domain-specific deblurring.

Related Works: There is a vast literature on motion deblurring spanning both
conventional and deep learning techniques. Similarly, of late there are works on
unsupervised image translations gaining popularity due to lack of availability of
paired data. We provide a brief description of these two topics below.

Motion deblurring is a long-studied topic in imaging community. To avoid
shot noise due to low amount of available photons in low light scenarios, the
exposure time is increased. Hence, even a small camera motion is enough to
create motion blur in the recorded image due to averaging of light energy from
slightly different versions of the same scene. While there are several deblurring
works that involve usage of multiple frames [24,35], the problem becomes very
ill-posed in data-limited situations where the user ends up with a single blurred
frame. This entails the need for single-image blind-deblurring algorithms.

To overcome the ill-posedness of single image-blind deblurring, most of the
existing algorithms [11,31,39] rely on image heuristics and assumptions on the
sources of the blur. The most widely used image heuristics are sparsity prior,
the unnatural l0 prior [39] and dark channel prior [31]. Assumptions on camera
motion are imposed in the form of kernel sparsity and smoothness of trajec-
tory. These heuristics are used as priors and iterative optimization schemes are
deployed to solve for camera motion and latent clean frame from a single-blurred
input. Even though these methods are devoid of any requirement of paired data,
they are highly dependent on the optimization techniques and prior selection.

With deep learning coming to the forefront, several deep networks [18,27,28]
have been proposed that perform the task of blind deblurring from a single
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image. These methods work end-to-end and skip the need for the camera motion
estimation and directly provide the clean frame when fed with the blurred image
thus overcoming the tedious task of prior selection and parameter tuning. But
the main disadvantage with existing deep-learning works is that they require
close supervision warranting large amounts of paired datasets for training.

Unsupervised Learning: The recent trend in deep learning is to use unpaired
data to achieve domain transfer. With the seminal work of Goodfellow [10],
GANs have been used in multiple areas of image-to-image translations. The key
to this success is the idea of an adversarial loss that forces the generated images
to be indistinguishable from real images thus learning the data domain. Condi-
tional GANs (cGAN) [15,20,40] have made progress recently for cross-domain
image-to-image translation in supervised settings. The goal remains the same in
unsupervised settings too i.e; to relate the two domains. One way to approach
the problem is by enforcing a common representation across the domains by
using shared weights with two GANs as in [3,21,22]. The fundamental objective
here is to use a pair of coupled GANs, one for the source and one for the target
domain, whose generators share their high-layer weights and whose discrimi-
nators share their low-layer weights. In this manner, they are able to generate
invariant representations which can be used for unsupervised domain transfer.

Following this, the works in [41,42] propose to use a cycle consistency loss
on the image space itself rather than asking for invariant feature space. Here too
the GANs are used to learn each individual domain and then cross model term
with cyclic consistency loss is used to map between domains. Apart from these
methods, there are neural style transfer networks [6,7,16] that is also used for
image-to-image translation with unsupervised data. The idea here is to combine
the ‘content’ features of one image with the ‘style’ of another image (like famous
paintings). These methods use matching of Gram matrix statistics of pre-trained
deep features to achieve image translation between two specific images. On the
other hand, our main focus is to learn the mapping between two image collec-
tions (rather than two specific images) from different domains by attempting to
capture correspondences between higher-level appearance structures.

Class-specific Methods: Of late, domain-specific image restoration methods
[1,2,5,33,36,37,40] are gaining relevance and attracting attention due to the
inaccuracy of generic algorithms to deal with real-world data. The general priors
learned from natural images are not necessarly well-suited for all classes and often
lead to deterioration in performance. Recently, class-specific information has
been employed in carrying out deblurring which outperforms blanket prior-based
approaches. An exemplar-based deblurring for faces was proposed by Pan et al. in
[29]. Anwar et al. [1] introduced a method to restore attenuated image frequencies
during convolution using class-specific training examples. Deep learning networks
too have attempted the task of class-specific deblurring. Text deblurring network
in [12] and deep face deblurring network in [5] are a notable few amongst these.
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Fig. 1. Our network with GAN, reblur module and scale-space gradient module.

Following these works, we also propose in this paper a domain-specific deblur-
ring architecture focusing mainly on face, text, and checkerboard classes using
a single GAN framework. Faces and texts are considered important classes and
many restoration techniques have focused on them explicitly. We also included
the checkerboard class to study our network performance and to ease the task
of parameter tuning akin to [33]. GAN is used in our network to learn a strong
class-specific prior on clean data. The discriminator thus learned captures the
semantic domain knowledge of a class but fails to capture the content, colors, and
structure properly. These are usually corrected with supervised loss functions in
regular networks which is not practical in our unsupervised setting. Hence, we
introduce self-guidance using the blurred data itself. Our network is trained with
unpaired data from clean and blurred domains. A comprehensive diagram of our
network is shown in Fig. 1.

The main contributions of our work are

– To the best of our knowledge, this is the first ever data-driven attempt at
unsupervised learning for the task of deblurring.

– To overcome the shortcomings of supervision due to unavailability of paired
data and to help the network converge to the right solution, we propose self-
guidance with two new additional modules

• A self-supervised reblurring module that guides the generator to produce
a deblurred output corresponding to the input blurred image.

• A gradient module with the key notion that down-sampling decreases
gradient matching error and constrains the solution space of generated
clean images.

2 Unsupervised Deblurring

A naive approach to unsupervised deblurring would be to adopt existing net-
works (CoGAN [22], DualGAN [41], CycleGAN [42]) designed for image trans-
lations and train them for the task of image restoration. However, a main issue
with such an approach is that most of the unsupervised networks discussed thus
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far are designed for a specific task of domain transformation such as face-to-
sketch synthesis, day-to-night etc where the transformations are well-defined. In
image deblurring, the transformation from blur to clean domain is a many-to-one
mapping while clean to blur is the vice versa depending on the extent and nature
of blur. Thus, it is difficult to capture the domain knowledge with these existing
architectures (see experiments section for more on this). Also, the underlying
idea in all these networks is to use a pair of GANs to learn the domains, but
usually training GANs is highly unstable [8,34] and thus using two GANs simul-
taneously escalates in stability issues in the network. Instead of using a second
GAN to learn the blur domain, we use a CNN network for reblurring the out-
put of GAN and a gradient module to constrain the solution space. A detailed
description of each module is provided below.

GAN proposed by Goodfellow [10] consists of two networks (a generator and a
discriminator) that compete to outperform each other. Given the discriminator
D, the generator tries to learn the mapping from noise to real data distribution
so as to fool D. Similarly, given the generator G, the discriminator works as
a classifier that learns to distinguish between real and generated images. The
function of learning GAN is a min-max problem with the cost function

E(D,G) = max
D

min
G

E
x∼Pdata

[log D(x)] + E
z∼Pz

[log(1 − D(G(z)))]. (1)

where z is random noise and x denotes the real data. This work was followed
by conditional GANs (cGAN) [26] that use a conditioning input in the form of
image [15], text, class label etc. The objective remains the same in all of these
i.e, the discriminator is trained to designate higher probability to real data and
lower to the generated data. Hence, the discriminator acts as a data prior that
learns clean data domain similar to the heuristics that are used in conventional
methods. This motivated us to use GANs for learning the mapping from blur
to clean domain using the discriminator as our data prior. In our network, the
input to generator G is a blurred image y ∈ Y and the generator maps it to a
clean image x̂ such that the generated image x̂ = G(y) is indistinguishable from
clean data (where clean data statistics are learned from x̃s ∈ X).

Self-supervision by Reblurring (CNN Module). The goal of GAN in our
deblurring framework is to reach an equilibrium where Pclean and Pgenerated are
close. The alternating gradient update procedure (AGD) is used to achieve this.
However, this process is highly unstable and often results in mode collapse [9].
Also, an optimal G that translates from Y → X does not guarantee that an
individual blurred input y and its corresponding clean output x are paired up
in a meaningful way, i.e, there are infinitely many mappings G that will induce
the same distribution over x̂ [42]. This motivated the use of reconstruction loss
(||x̂ − x||2) and perceptual loss (||Φi((x̂) − Φi(x)||2, where Φi represents VGG
module features extracted at the ith layer) along with the adversarial loss in many
supervised learning works [15,20,27,38,40], to stabilize the solution and help in
better convergence. But, these cost functions require high level of supervision
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Fig. 2. (a) Scale space gradient error. (b) Average decrease in gradient error with
respect to down scaling.

in the form of ground truth clean reference images (x) which are not available
in our case. This restricts the usage of these supervised cost functions in our
network. To account for the unavailability of paired dataset, we use the blurred
image y itself as a supervision to guide in deblurring. Ignatov et al. [14] have
used a similar reblurring approach with a constant Gaussian kernel to correct
for colors in camera mapping. We enforce the generator to produce result (x̂)
that when reblurred using the CNN module will furnish back the input. Adding
such a module ensures that the deblurred result has the same color and texture
comparable to the input image thereby constraining the solution to the manifold
of images that captures the actual input content.

Gradient Matching Module. With a combined network of GAN and CNN
modules, the generator learns to map to clean domain along with color preser-
vation. Now, to enforce the gradients of the generated image to match its cor-
responding clean image, a gradient module is used in our network as given
in Fig. 1. Gradient matching resolves the problem of over-sharpening and ring-
ing in the results. However, since we do not have access to the reference image,
determining the desired gradient distribution to match with is difficult. Hence,
we borrow a heuristic from [25] that takes advantage of the fact that shrinking
a blurry image y by a factor of α results in a image yα that is α times sharper
than y. Thus, we use the blurred image gradients at different scales to guide
the deblurring process. At the highest scales, the gradients of blurred and gen-
erated output match the least but improve while going down in scale space. A
visual diagram depicting this effect is shown in Fig. 2(a) where the gradients of
a blurred and clean checker-board at different scales are provided. Observe that,
at the highest scale, the gradients are very different and as we move down in
scale the gradients start to look alike and the L1 error between them decreases.
The plot in Fig. 2(b) is the average per pixel L1 error with respect to scale for
200 images from each of text, checker-board and face datasets. In all these data,
the gradient error decreases with scale and hence forms a good guiding input for
training our network.
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Fig. 3. Effect of different cost functions. (a) Input blurred image to the generator, (b)
result of unsupervised deblurring with just the GAN cost in Eq. (2), (c) result obtained
by adding the reblurring cost in Eq. (3) with (b), (d) result obtained with gradient cost
in Eq. (4) with (c), and (e) the target output.

3 Loss Functions

A straightforward way for unsupervised training is by using GAN. Given large
unpaired data {xi}M

i=1 and {yj}N
j=1 in both domains, train the parameters (θ) of

the generator to map from y → x by minimizing the cost

Ladv = min
θ

1
N

∑

i

log(1 − D(Gθ(yi))) (2)

Training with adversarial cost alone can result in color variations or missing finite
details (like eyes and nose in faces or letters in case of texts) in the generated
outputs but the discriminator can still end up classifying it as real instead of
generated data. This is because discriminating between real and fake does not
depend on these small details (see Fig. 3(b), the output of GAN alone wherein
eyes and colors are not properly reconstructed).

With the addition of the reblurring module, the generator is more constrained
to match the colors and textures of the generated data (see Fig. 3(c)). The gen-
erated clean image from generator x̂ = G(y) is again passed through the CNN
module to obtain back the blurred input. Hence the reblurring cost is given as

Lreblur = ||y − CNN(x̂)||22 (3)

Along with the above two costs, we also enforce the gradients to match at dif-
ferent scales (s) using the gradient cost defined as

Lgrad =
∑

s∈{1,2,4,8,16}
λs|�ys↓ − �x̂s↓| (4)

where � denotes the gradient operator. A Laplacian operator

⎡

⎣
0 1 0
1 −4 1
0 1 0

⎤

⎦ is used to

calculate the image gradients at different scales and λs values are set as [0.0001,
0.001, 0.01, 0.1, 1] for s = {1, 2, 4, 8, 16}, respectively. Adding the gradient cost
removes unwanted ringing artifacts at the boundary of the image and smoothens
the result. It is evident from the figure that with inclusion of supporting cost
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Table 1. (a) The proposed generator and discriminator network architecture. conv ↓
indicates convolution with stride 2 which in effect reduces the output dimension by
half and d/o refers to dropout. (b) Reblurring CNN module architecture

Module Generator Discriminator
Layers conv conv conv conv conv conv conv conv conv conv conv↓ conv↓ conv↓ conv↓ conv ↓ fc

Kernel Size 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 -
Features 64 128 128 256 256 128 128 64 64 3 64 128 256 512 512 -

d/o (0.2) d/o (0.2)

(a)
Module CNN
Layers conv conv conv conv conv tanh

Kernel Size 5 5 5 5 5
Features 64 64 64 64 3

(b)

functions corresponding to reblurring and gradient, the output (Fig. 3(d)) of
the network becomes comparable with the ground truth (GT) image (Fig. 3(e)).
Hence, the generator network is trained with a combined cost function given by

LG = γadvLadv + γreblurLreblur + γgradLgrad (5)

4 Network Architecture

We followed a similar architecture for our generator and discriminator as pro-
posed in [40], which has shown good performance for blind super-resolution,
with slight modification in the feature layers. The network architecture of GAN
with filter sizes and the number of feature maps at each stage is provided in
Table 1(a). Each convolution (conv) layer in the generator is followed by batch-
normalization and non-linearity using Rectified Linear Unit (ReLU) except the
last layer. A hyper tangential (Tanh) function is used at the last layer to con-
strain the output to [−1, 1]. The discriminator is a basic 6-layer model with each
convolution followed by a Leaky ReLU except the last fully connected (fc) layer
which is followed by a Sigmoid. Convolution with stride 2 is used in most layers to
go down in dimension and the details of filter size and feature maps are provided
in Table 1(a). The reblurring CNN architecture is a simple 5-layer convolutional
module provided in Table 1(b). The gradient module is operated on-the-fly for
each batch of data using GPU based convolution with the Laplacian operator
and downsampling depending on the scaling factor with ‘nn’ modules.

We used Torch for training and testing with the following options: ADAM
optimizer with momentum values β1 = 0.9 and β2 = 0.99, learning rate of
0.0005, batch-size of 32 and the network was trained with the total cost as pro-
vided in Eq. (5). The weights for different costs were initially set as γadv=1,
γgrad=.001 and γreblur=0.01 to ensure that the discriminator learns the clean
data domain. After around 100K iterations the adversarial cost was weighted
down and the CNN cost was increased so that the clean image produced corre-
sponds in color and texture to the blurred input. Hence, the weights were read-
justed as γadv=0.01, γgrad=0.1 and γreblur=1 and the learning rate was reduced
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Table 2. Quantitative comparisons on face, text, and checkerboard datasets.

Face dataset Text dataset Checkerboard dataset

Method PSNR SSIM KSM PSNR SSIM KSM CER PSNR SSIM KSM

Conventional

methods

Pan et al. [30] - - - 16.19 0.7298 0.8628 0.4716 11.11 0.3701 0.7200

Pan et al. [31] 19.38 0.7764 0.7436 17.48 0.7713 0.8403 0.3066 13.91 0.5618 0.7027

Xu et al. [39] 20.28 0.7928 0.7166 14.22 0.5417 0.7991 0.2918 8.18 0.2920 0.6034

Pan et al.[29] 22.36 0.8523 0.7197 - - - - - - -

Deep learning

methods

Nah et al. [27] 24.12 0.8755 0.6229 18.72 0.7521 0.7467 0.2643 18.07 0.6932 0.6497

Hradis̆ et al. [12] - - - 24.28 0.9387 0.9435 0.0891 18.09 0.6788 0.6791

Unsupervised

technique

Zhu et al. [42] 8.93 0.4406 0.2932 13.19 0.5639 0.8363 0.2306 21.92 0.8264 0.6527

Ours 22.80 0.8631 0.7536 23.22 0.8792 0.9376 0.126 20.61 0.8109 0.7801

to 0.0001 to continue training. Apart from these, to stabilize the GAN, during
training we used drop-out of 0.2 at the fourth and fifth convolution layers of the
generator and used a smooth labeling of real and fake labels following [34].

5 Experiments

The experiments section is arranged as follows: (i) training and testing datasets,
(ii) comparison methods, (iii) quantitative results, metrics used and comparisons,
and (iv) visual results and comparisons.

5.1 Dataset Creation

For all classes, we used 128 × 128 sized images for training and testing. The
dataset generation for training and testing of each of these classes is explained
below. Note that our network was trained for each of these classes separately.

Camera Motion Generation: In our experiments, to generate the blur kernels
required for synthesizing the training and test sets, we used the methodology
described by Chakrabarthi in [4]. The blur kernels are generated by randomly
sampling six points in a limited size grid (13 × 13), fitting a spline through
these points, and setting the kernel values at each pixel on this spline to a value
sampled from a Gaussian distribution with mean 1 and standard deviation of
0.5, then clipping these values to be positive, and normalizing the kernel to have
unit sum. A total of 100K kernels were used for creating the dataset.

Face Dataset: We use the aligned CelebA face dataset [23] for creating the
training data for our case. CelebA is a large-scale face attributes dataset of size
178 × 218 with more than 200K aligned celebrity images. We selected 200K
images from it, resized each to 128× 128 and divided it into two groups of 100K
images each. Then, we use the blur kernels generated with [4] to blur one set of
images alone and the other set is kept intact. This way, we generate the clean
and blur face data (without any correspondence) for training the network.
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Table 3. Quantitative comparisons on face and text on real handshake motion [17].

Class PSNR in (dB) SSIM KSM

Text 21.92 0.8968 0.8811

Face 21.40 0.8533 0.7794

Text Dataset: For text images, we use the training dataset of Hradis̆ et al.
[12] which consists of images with both defocus blur generated by anti-aliased
disc and motion blur generated by random walk. They have provided a large
collection of 66K text images of size 300× 300. We use these images for creating
the training dataset and use the test data provided by them for testing our
network. We first divide the whole dataset into two groups of 33K each with one
group containing clean data alone and other containing the blurred data. We
took care to avoid any overlapping pairs in the generated set. We then cropped
128 × 128 patches from these sets to obtain the training set of around 300K
images in both clean and blur set.

Checkerboard Dataset: We took a clean checkerboard image of size 256×256
and applied random rotations and translations to it and cropped out 128 × 128
(avoiding boundary pixels) to generate a set of 100K clean images. The clean
images are then partitioned into two sets of 50K images each to ensure that
there are no corresponding pairs available during training. To one set we apply
synthetic motion blur to create the blurred images by convolving with linear
filters and the other set is kept as such. We used a linear approximation of
camera motion and parametrized it with length l and rotation angle θ. For the
dataset creation, considering the size of input images, we selected the maximum
value of l to be in the range [0, 15] and varied θ from [0, 180]o. We use rand
function of MATLAB to generate 50K such filters. Following similar steps, a
test set consisting of 5000 images is also created.

5.2 Comparison Methods

We compare our deblurring results with three classes of approaches, (a) State-
of-art conventional deblurring approaches which use prior based optimization,
(b) Supervised deep learning based end-to-end deblurring approaches, and (c)
latest unsupervised image-to-image translation approaches.

Conventional Single Image Deblurring: We compare with the state-of-the-
art conventional deblurring works of Pan et al. [31] and Xu et al. [39] that are
proposed for natural images. In addition to this, for face deblurring we used the
deblurring work in [29] that is designed specifically for faces. Similarly for text,
we compared with the method in [30] that uses prior on text for deblurring.
Quantitative results are provided by running their codes on our test dataset.



368 N. T. Madam et al.

Deep supervised deblurring: In deep learning, for quantitative analysis on all
classes, we compared with end-to-end deblurring work of [27] and additionally for
text and checkerboard we also compared with [12]. The work in [27] is a general
dynamic scene deblurring framework and [12] is proposed for text deblurring
alone. Note that all these methods use paired data for training and hence are
supervised. Besides these for visual comparisons on face deblurring, we also
compared with [5] on their images since the trained model was not available.

Unsupervised Image-to-Image Translation : We train the cycleGAN [42]
network, proposed for unpaired domain translations, for deblurring task. The
network is trained from scratch for each class separately and quantitative and
visual results are reported for each class in the following sections.

5.3 Quantitative Analysis

For quantitative analysis, we created the test sets for which the ground truth
was available to report the metrics mentioned below. For text dataset, we used
the test set provided in [12] itself. And for checkerboard, we used synthetic
motion parametrized with {l, θ}. For faces, we created test sets using the kernels
generated from [4].

Quantitative Metrics: We have used PSNR (in dB), SSIM and Kernel Simi-
larity Measure(KSM) values for comparing the performance of different state of
art deblurring algorithms on all the classes. For texts, apart from these metrics,
we also use Character Error Rate (CER) to evaluate the performance of various
deblurring algorithms.

CER [12] is defined as i+s+d
n , where, n is total number of characters in the

image, i is the minimal number of character insertions, s is the number of sub-
stitutions and d is the number of deletions required to transform the reference
text into its correct OCR output. We used ABBYY FineReader 11 to recognize
the text and its output formed the basis for evaluating the mean CER. Smaller
the CER value, better the performance of the method.

Kernel Similarity Measure: In general practice, the deblurring efficiency
is evaluated through PSNR, SSIM metric or with visual comparisons. These
commonly used measures (MSE) are biased towards smooth outputs due to 2-
norm form. Hence, Hu et al. [13] proposed KSM to evaluate deblurring in terms
of the camera motion estimation efficiency. KSM effectively compare estimated
kernels (K̂) evaluated from the deblurred output with the ground truth (K).
It is computed as S(K, K̂) = maxγ ρ(K, K̂, γ) where ρ(.) is the normalized

cross-correlation function given by (ρ(K, K̂, γ) =
∑

τ (K(τ). ˆK(τ+γ))

||K||.|K̂|| ) and γ is the
possible shift between the two kernels. The larger the value, the better the kernel
estimate and indirectly the better the deblurring performance.
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Results and Comparisons: For fair comparison with other methods, we used
the codes provided by the respective authors on their website. Table 2 summa-
rizes the quantitative performance of various competitive methods along with
our network results for all the three classes. A set of 30 test images from each
class is used to evaluate the performance reported in the table. It is very clear
from the results that our unsupervised network performs on par with competitive
conventional methods as well as supervised deep networks. Conventional meth-
ods are highly influenced by parameter selection. We used the default settings for
arriving at the results for conventional methods. The results could perhaps be
improved further by fine-tuning the parameters for each image but this is a time-
consuming task. Though deep networks perform well for class-specific data, their
training is limited by the lack of availability of large collections of paired data. It
can be seen from Table 2 that our network (without data pairing) is able to per-
form equally well when compared to the class-specific supervised deep method
[12] for text deblurring. We even outperform the dynamic deblurring network of
[27] in most cases. The cycleGAN [42] (though unsupervised) struggles to learn
the blur and clean data domains. It can be noted that, for checkerboard, cycle-
GAN performed better than ours in terms of PSNR and SSIM. This is because
checkerboard had simple linear camera motion. Because blur varied for text and
faces (general camera motion) the performance of cycleGAN also deteriorated
(refer to the reported values).

I/o [39] [31] [30] [27] [12] [42] Ours GT

.
I/o [39] [31] [30] [27]

[12] [42] Ours GT

Fig. 4. Visual comparison on checkerboard deblurring. Input blurred image, deblurred
results from conventional methods [30,31,39], results from supervised network in [12,27]
and unsupervised network [42], our result and the GT clean image are provided in that
order.

Real Handshake Motion: In addition, to test the capabilities of our trained
network on real camera motion, we also created test sets for face and text classes
using the real camera motion dataset from [17]. Camera motion provided in [17]



370 N. T. Madam et al.

contains 40 trajectories of real camera shake by humans who were asked to take
photographs with relatively long exposure times. These camera motions are not
confined to translations, but consist of non-uniform blurs, originating from real
camera trajectories. The efficiency of our proposed network in deblurring images
affected by these real motions is reported in Table 3. Since long exposure leads
to heavy motion blur which is not within the scope of this work, we use short
segments of the recorded trajectory to introduce small blurs. We generated 40
images for both text and faces using 40 trajectories and used our trained network
to deblur them. Table 3 shows the PSNR, SSIM between the clean and deblurred
images and KSM between the estimated and original motion. The handshake
motion in [17] produces space-varying blur in the image and hence a single
kernel cannot be estimated for the entire image. We used patches (32×32) from
the image and assumed space-invariant blur over the patch to extract the kernel
and computed the KSM. This was repeated on multiple patches and an average
KSM is reported for the entire image. The KSM, PSNR, and SSIM are all high
for both the classes signifying the effectiveness of our network to deal with real
camera motions.

I/o [39] [31] [29] [27] [42] Ours GT

Fig. 5. Visual comparisons on face deblurring.

5.4 Visual Comparisons

The visual results of our network and competitive methods are provided in
Figs. 4 and 5. Figure 4 contains the visual results for text and checkerboard
data. Comparisons are provided with [31,39] and [30]. The poor performance
of these methods can be attributed to the parameter setting (we took the best
amongst a set of parameters that gave highest PSNR). Most of these results have
ringing artifacts. Now, to analyse the performance of our network over super-
vised networks, we compared with the dynamic deblurring network of [27] and
class-specific deblurring work of [12]. From the visual results it can be clearly
observed that even though the method in [27] gave good PSNR in Table 2 it
is visually not sharp and some residual blur remains in the output. The super-
vised text deblurring network [12] result for checkerboard was sharp but the
squares were not properly reconstructed. For completeness, we also trained the
unsupervised cycleGAN [42] network separately for each of these classes and the
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results so obtained are also provided in the figure. The inefficiency of cycleGAN
to capture the clean and blur domains simultaneously is reflected in the text
results. On the contrary, our unsupervised network produces sharp and legible
(see the patches of texts) results in both these classes. Our network outperforms
existing conventional methods and at the same time works on par with the text-
specific deblurring method of [12]. Visual results on face deblurring are provided
in Fig. 5. Here too we compared with conventional methods [31,39] as before
and the exemplar-based face-specific deblurring method of [29]. Though these
results are visually similar to the GT, the effect of ringing is high with default
parameter settings. The results from deep learning work of [27] is devoid of any
ringing artifacts but are highly oversmoothened. Similarly, CycleGAN [42] fails
to learn the domain properly and the results are quite different from the GT. On
the other-hand, our results are sharp and visually appealing. While competitive
methods failed to reconstruct the eyes of the lady in Fig. 5 (second row), our
method reconstructs the eyes and produces sharp outputs comparable to GT.

We also tested our network against the latest deep face deblurring work of [5].
Since the trained model for their network was not available, we ran our network
on the images provided in their paper. These are real world blurred images from
dataset of Lai et al. [19] and from arbitrary videos. The results obtained are
shown in Fig. 6. It can be cleraly seen that our method though unsupervised
can perform at par with the supervised method of [5] and even outperforms it
in some examples. The results are sharper with our network; it can be clearly
noticed that the eyes are eyebrows are reconstructed well with our network (first
and second rows last columns) when compared to [5].

Input [5] Ours Input [5] Ours

Fig. 6. Visual comparison with the latest face deblurring work of [5].

Human Perception Ranking: We conducted a survey with 50 users to ana-
lyze the visual quality of our deblurring. This was done for face and text datasets
separately. The users were provided with 30 sets of images from each class
grouped into two sections depending on the presence or absence of reference
image. In the first group consisting of 10 sets of images, the users were provided
with blurred image, ground truth reference, our deblurred result and output from
[29]/[5] or [30]/[12], based on their visual perception. And in the second group
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Fig. 7. Summarization of survey: Human rating of our network results against [29]
and [5] for faces and [30] and [12] for texts.

with 20 sets of images the references were excluded. From the face survey result
provided in Fig. 7, it can be observed that 81% of the time the users preferred
our results over the competitive method [29] when GT was provided and 86% of
the time our result was preferred when GT was not provided. For texts, the users
preferred our output 97% of the time over the conventional method [30] with or
without GT. Also, it can be observed that our method matches well with [12].
43% of the users opted our method while 57% voted for [12]. More results (on
testset and real dataset from [32]), discussions on loss functions, details of survey
and limitations of the network are provided in the supplementary material.

6 Conclusions

We proposed a deep unsupervised network for deblurring class-specific data. The
proposed network does not require any supervision in the form of correspond-
ing data pairs. We introduced a reblurring cost and scale-space gradient cost
that were used to self-supervise the network to achieve stable results. The per-
formance of our network was found to be at par with existing supervised deep
networks on both real and synthetic datasets. Our method paves the way for
unsupervised image restoration, a domain where availability of paired dataset is
scarce.
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