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Abstract. We propose a dynamic filtering strategy with large sampling
field for ConvNets (LS-DFN), where the position-specific kernels learn
from not only the identical position but also multiple sampled neighbour
regions. During sampling, residual learning is introduced to ease train-
ing and an attention mechanism is applied to fuse features from different
samples. Such multiple samples enlarge the kernels’ receptive fields signif-
icantly without requiring more parameters. While LS-DFN inherits the
advantages of DFN [5], namely avoiding feature map blurring by posi-
tionwise kernels while keeping translation invariance, it also efficiently
alleviates the overfitting issue caused by much more parameters than
normal CNNs. Our model is efficient and can be trained end-to-end via
standard back-propagation. We demonstrate the merits of our LS-DFN
on both sparse and dense prediction tasks involving object detection,
semantic segmentation and flow estimation. Our results show LS-DFN
enjoys stronger recognition abilities in object detection and semantic seg-
mentation tasks on VOC benchmark [8] and sharper responses in flow
estimation on FlyingChairs dataset [6] compared to strong baselines.

Keywords: Large sampling field · Object detection
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1 Introduction

Convolutional Neural Networks have recently made significant progress in both
sparse prediction tasks including image classification [11,15,29], object detection
[3,9,22] and dense prediction tasks such as semantic segmentation [2,16,18],
flow estimation [7,13,27], etc. Generally, deeper [11,25,28] architectures provide
richer features due to more trainable parameters and larger receptive fields.
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Raw image LS-DFNs’ ERFConven onal CNNs’ ERF

Fig. 1. Visualization of the effective receptive field (ERF). Yellow circle denotes the
position on the object and the red region denotes the corresponding ERF. (Color figure
online)

Most neural network architectures mainly adopt spatially shared kernels
which work well in general cases. However, during training process, the gra-
dients at each spatial position may not share the same descend direction, which
can minimize loss at each position. These phenomena are quite ubiquitous when
multiple objects appear in a single image in object detection or multiple object
with different motion direction in flow estimation, which make the spatially
shared kernels more likely to produce blurred feature maps.1 The reason is that
even though the kernels are far from optimal for every position, the global gra-
dients, which are the spatially summation of the gradients over entire feature
maps, can be close to zero. Because they are used in the update process, the
back-propagation process should nearly not make progress.

Adopting position-specific kernels can alleviate the unshareable descend
direction issue and take advantage of the gradients at each position (i.e. local
gradients) since kernel parameters are not spatially shared. In order to keep the
translation invariance, Brabandere et al. [5] propose a general paradigm called
Dynamic Filter Networks (DFN) and verify them on moving MNIST dataset
[26]. However, DFN [5] only generates the dynamic position-specific kernels for
their own positions. As a result, the kernels can only receive the gradients from
the identical position (i.e. square of kernel size), which is usually more unstable,
noisy and harder to converge than normal CNN.

Meanwhile, properly enlarging receptive field is one of the most important
concerns when designing CNN architectures. In many neural network architec-
tures, adopting stacked convolutional layers with small kernels (i.e. 3×3) [25] is
more preferable than larger kernels (i.e.7×7) [15], because the former one obtains
the same receptive fields with fewer parameters. However, it has been shown that
the effective receptive fields (ERF) [20] only occupies a fraction of the full theo-
retical receptive field due to some weak connections and some unactivated ReLU
units. In practice, it has been shown that adopting dilation strategies [1] can fur-
ther improve performance [3,16], which means that enlarging receptive fields in
a single layer is still beneficial.

Therefore, we propose LS-DFN to alleviate the unshareable descend direction
problem by utilizing dynamic position-specific kernels, and to enlarge the limited
ERF by dynamic sampling convolution. As shown in Fig. 1, with ResNet-50 as

1 Please see the examples and detailed analysis in the Supplementary Material.
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pretrained model, adding a single LS-DFN layer can significantly enlarge the
ERF, which further results in the improvement on representation abilities. On
the other hand, since our kernels at each position are dynamically generated,
LS-DFNs also benefit from the local gradients. We evaluate our LS-DFNs via
object detection and semantic segmentation tasks on VOC benchmark [8] and
optical flow estimation on FlyingChairs dataset [6]. The results indicate that the
LS-DFNs are general and beneficial for both sparse and dense prediction tasks.
We observe improvements over strong baseline models in both tasks without
heavy burden in terms of running time using GPUs.

2 Related Work

Dynamic Filter Networks. Dynamic Filter Networks [5] are originally pro-
posed by Brabandere et al. to provide custom parameters for different input data.
This architecture is powerful and more flexible since the kernels are dynamically
conditioned on inputs. Recently, several task-oriented objectives and extensions
have been developed. Deformable convolution [4] can be seen as an extension of
DFNs that discovers geometric-invariant features. Segmentation-aware convolu-
tion [10] explicitly takes advantage of prior segmentation information to refine
feature boundaries via attention masks. Different from the models mentioned
above, our LS-DFNs aim at constructing large receptive fields and receiving
local gradients to produce sharper and more semantic feature maps.

Receptive Field. Wenjie et al. propose the concept of effective receptive field
(ERF) and the mathematical measure using partial derivatives. The experimen-
tal results verify that the ERF usually occupies only a small fraction of the theo-
retical receptive field [20] which is the input region that an output unit depends
on. Therefore, this has attracted lots of research especially in deep learning based
computer vision. For instance, Chen et al. [1] propose dilated convolution with
hole algorithm and achieve better results on semantic segmentation. Dai et al. [4]
propose to dynamically learn the spatial offset of the kernels at each position so
that those kernels can observe wider regions in the bottom layer with irregular
shapes. However, some applications such as large motion estimation and large
object detection even require larger ERF.

Residual Learning. Generally, residual learning reduces the difficulties of
directly learning the objectives by learning their residual discrepancy of an iden-
tity function. ResNets [11] are proposed to learn residual features of identity
mapping via short-cut connection and helps deepen CNNs to over 100 layers
easily. There have been plenty of works adopting residual learning to alleviate
the problem of divergence and generate richer features. Kim et al. [14] adopt
residual learning to model multimodal data in visual QA. Long et al. [19] learn
residual transfer networks for domain adaptation. Besides, Fei Wang et al. [29]
apply residual learning to alleviate the problem of repeated features in atten-
tion model. We apply residual learning strategy to learn residual discrepancy for
identical convolutional kernels. By doing so, we can ensure valid gradients’ back-
propagation so that the LS-DFNs can easily converge in real-world datasets.
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Attention Mechanism. For the purpose of recognizing important features in
deep learning unsupervisedly, attention mechanism has been applied to lots of
vision tasks including image classification [29], semantic segmentation [10], action
recognition [24,31], etc. In soft attention mechanisms [24,29,32], weights are
generated to identify the important parts from different features using prior
information. Sharma et al. [24] use previous states in LSTMs as prior information
to have the network focus on more meaningful contents in the next frame and
get better results for action recognition. Wang et al. [29] benefit from lower-level
features and learn attention for higher-level feature maps in a residual manner.
In contrast, our attention mechanism aims at combining features from multiple
samples via learning weights for each positions’ kernels at each sample.

3 Largely Sampled Dynamic Filtering

Firstly, we present the overall structure of our LS-DFN in Sect. 3.1, then intro-
duce largely sampling strategies in Sect. 3.2. This design allows kernels at each
position to take advantage of larger receptive fields and local gradients. Further-
more, attention mechanisms are utilized to enhance the performance of LS-DFNs
as demonstrated in Sect. 3.3. Finally, Sect. 3.4 explains implementation details
of our LS-DFNs, i.e. parameters reducing and residual learning techniques.

3.1 Network Overview

We introduce the LS-DFNs’ overall architecture in Fig. 2. Our LS-DFNs consist
of three branches: (1) the feature branch firstly produces C (e.g. 128) channels
intermediate features; (2) the kernel branch, implemented as a convolution lay-
ers with C ′(C + k2) channels where k is kernel size, generates position-specific
kernels to sample multiple neighbour regions in feature branches and produces
C ′ (e.g. 32) output channels’ features; (3) the attention branch, implemented
as convolution layers with C ′(s2 + k2) channels where s is the sampling size,
outputs attention weights for each position’s kernels and each sampling region.
The LS-DFNs output feature maps with C ′ channels and preserve the original
spatial dimensions H and W .

3.2 Largely Sampled Dynamic Filtering

This subsection demonstrates the proposed largely sampled dynamic filtering
enjoying both large receptive fields and the local gradients. In particular, the LS-
DFNs firstly generate position-specific kernels by the kernel branch. After that,
LS-DFNs further convolve these generated kernels with features from multiple
neighbor regions in the feature branch to obtain large receptive fields.

Denoting Xl as the feature maps from lth layer(or intermediate features from
feature branch) with shape (C,H,W ), normal convolutional layer with spatially
shared kernels W can be formulated as

Xl+1,v
y,x =

C∑

u=1

k−1∑

j=0

k−1∑

i=0

Xl,u
y+j,x+iW

v,u
y,x,j,i (1)
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Fig. 2. Overview of the LS-DFN block. Our model consists of three branches: (1) the
kernel branch generates position-specific kernels; (2) the feature branch generates fea-
tures to be position-specifically convolved; (3) the attention branch generates attention
weights. Same color indicates features correlated to the same spatial sampled regions.

where u, v denote the indices of the input and output channels, x, y denote the
spatial coordinates and k indicates the kernel size.

In contrast, the LS-DFNs treat generated features in kernel branch, which
is spatially dependent, as convolutional kernels. This scheme requires the kernel
branch to generate kernels W(X l) from X l, which can maps the C-channel
features in the feature branch to C ′-channel ones2. Detailed kernel generation
methods will be described in Sect. 3.4 and the supplementary material.

Fig. 3. Illustration of our sampling
strategy. The red dot denotes the sam-
pling point. Same color indicates fea-
tures correlated to the same spatial
sampled regions. (Color figure online)

Aiming at larger receptive fields and
more stable gradients, we not only con-
volve the generated position-specific ker-
nels with features at the identical posi-
tions in the feature branch, but also sam-
ple their s2 neighbor regions as addi-
tional features as shown in Eq. 2. There-
fore, we have more learning samples for
each position-specific kernel than DFN
[5], resulting in more stable gradients.
Also, since we obtain more diverse ker-
nels (i.e position-specific) than conven-
tional CNNs, we can robustly enrich the feature space.

As shown in Fig. 3, each position (e.g the red dot) outputs its own kernels
in the kernel branch and uses the generated kernels to sample the corresponding
multiple neighbour regions (i.e the cubes in different colors) in the feature
branch. Assuming we have s2 sampled regions for each position with sample
stride γ, kernel size k, the sampling strategy outputs feature maps with shape
(s2, C ′,H,W ) which obtain approximately (sγ)2 times larger receptive fields.

2 W(Xl) is kernels generated from Xl, and we omit (Xl) when there is no ambiguity.
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Largely sampled dynamic filtering thus can be formulated as

X̂
l+1,v

α,β,y,x =
C∑

u=1

k−1∑

i=0

k−1∑

j=0

Xl,u
ŷ+j,x̂+iWv,u

y,x,j,i, (2)

where x̂ = x+αγ and ŷ = y+βγ denote the coordinates of the center in sampled
neighbor regions. W denotes the position-specific kernels generated by the kernel
branch. And (α, β) is the index of sampled region with sampling stride γ. And
when s = 1, that LS-DFNs reduce to the origin DFN.

3.3 Attention Mechanism

We present our methods to fuse features from multiple sampled regions at each
position X̂

l+1,v

α,β,y,x. A direct solution is to stack s2 sampled features to form a
(s2C ′,H,W ) tensor or perform a pooling operation on the sample dimension

(i.e first dimension of X̂
l+1

) as outputs. However the first choice violates trans-
lation invariance and the second choice is not aware of which samples are more
important.

To address this issue, we present an attention mechanism to fuse those fea-
tures via learning attention weights for each position’s kernel at each sample.
Since the attention weights are also position-specific, the resolution of output
feature maps can be potentially preserved. Also, our attention mechanism ben-
efits from residual learning.

Considering s2 sampled regions and kernel size k in each position, we should
have s2 × k2 × C ′ attention weights for each position for X̂

l+1
, which means

X̃
l+1,v

α,β,y,x =
C∑

u=1

k−1∑

j=0

k−1∑

i=0

Xl,u
ŷ+j,x̂+iWv,u

y,x,j,iA
v,α,β
ŷ,x̂,j,i, (3)

where X̃ denotes weighted features.
However, Eq. 3 requires s2k2C ′HW attention weights, which is computation-

ally costly and easily leads to overfitting. We thus split this task into learning
position attention weights Apos ∈ R

k2×C′×H×W for kernels at each position
and learning sampling attention weights Asam ∈ R

s2×C′×H×W at each sampled
region. Then Eq. 3 becomes

X̃
l+1,v

α,β,y,x = Asam,v
α,β,y,x

C∑

u=1

k−1∑

j=0

k−1∑

i=0

Xl,u
ŷ+j,x̂+iWv,u

y,x,j,iA
pos,v
ŷ,x̂,j,i, (4)

where ŷ, x̂ share the same representations in Eq. 2.
Specifically, we use two CNN sub-branches to generate the attention weights

for samples and positions respectively. The sampling attention sub-branch has
C ′ × s2 output channels and the position attention sub-branch has C ′ × k2 out-
put channels. The sample attention weights are generated from the sampling
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Fig. 4. At each position, we separately learn attention weights for each kernel and
for each sample. Then, we combine features from multiple samples via these learned
attention weights. Boxes with crosses denote the position to generate attention weights
and red one denotes sampling position and black ones denote sampled positions.

position denoted by the red box with cross in Fig. 4 to coarsely predict the
importance according to that position. And the position attention weights are
generated from each sampled regions denoted by black boxes with cross to model
fine-grained local detailed importance based on the sampled local features. Fur-
ther, we manually add 1 to each attention weight to take advantage of residual
learning.

Therefore, the number of attention weights will be reduced from s2k2C ′HW
to (s2+k2)C ′HW as shown in Eq. 4. Obtaining Eq. 4, we finally combine different
samples via attention mechanism as

Xl+1,v
y,x =

s−1∑

α=0

s−1∑

β=0

X̃
l+1,v

α,β,y,x. (5)

Noting that feature maps from previous normal convolutional layers might
still be noisy, the position attention weights help to filter such noise when apply-
ing largely sampled dynamic filtering to such feature maps. And the sample
attention weights indicate how much contribution each neighbor region makes.

3.4 Dynamic Kernels Implementation Details

Reducing Parameter. Given that directly generating the position-specific ker-
nels W with shape same as conventional CNN will require the shape of the kernels
to be (C ′Ck2,H,W ) as shown in Eq. 2. Since C and C ′ can be relatively large
(e.g up to 128 or 256), the required output channels in the kernel branch (i.e
C ′Ck2) can easily get up to hundreds of thousands, which is computationally
costly. Recently, several works have focused on reducing kernel parameters (e.g
MobileNet [12]) by factorizing kernels into different parts to make CNNs effi-
cient in modern mobile devices. Inspired by them and based on our LS-DFNs’
case, we describe our proposed parameter reduction method. And we provide the
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evaluation and comparison with state-of-art counterparts in the supplementary
material.

Fig. 5. Illustration of our parameter
reducing method. In the first part, C×1×
1 weights are placed in the center of the
corresponding kernel and in the second
part k2 weights are duplicated C times.

Inspecting that activated output
feature maps in a layer usually share
similar geometric characteristics across
channels, we propose a novel kernel
structure that splits the original kernel
into two separate parts for the purpose
of parameter reduction. As illustrated
in Fig. 5, on the one hand, the C ×1×1
part U at each position, which will be
placed into the spatial center of each
k ×k kernel, is used to model the differ-
ence across channels. On the other hand, the 1 × k × k part V at each position
is used to model the shared geometric characteristics within each channel.

Combining the above two parts together, our method generates kernels that
map C-channel feature maps to C ′-channel ones with kernel size k by only C ′(C+
k2) parameters at each position instead of C ′Ck2. Formally, the convolutional
kernels used in Eq. 2 become

Wv,u
y,x,j,i =

{
Uv,u

y,x + Vv
y,x,j,i j = i = �k−1

2 �
Uv,u

y,x otherwise
. (6)

Residual Learning. Equation 6 directly generates kernels, which easily leads
to divergence in noisy real-world datasets. The reason is that only if the convo-
lutional layers in kernel branch are well trained can we have good gradients back
to feature branch and vice versa. Therefore, it’s hard to train both of them from
scratch simultaneously. Further, since kernels are not shared spatially, gradients
at each position are more likely to be noisy, which makes kernel branch even
harder to train and further hinders the training process of feature branch.

We adopt residual learning to address this issue, which learns the residual
discrepancies of identical convolutional kernels. In particular, we add 1

C to each
central position of the kernels as

Wv,u
y,x,j,i =

{
Uv,u

y,x + Vv
y,x,j,i + 1

C j = i = �k−1
2 �

Uv,u
y,x otherwise

. (7)

Initially, since the outputs of the kernel branch are close to zero, LS-DFN approx-
imately averages features from feature branch. It guarantees gradients are suf-
ficient and reliable for back propagation to the feature branch, which inversely
benefits the training process of the kernel branch.

4 Experiments

We evaluate our LS-DFNs via object detection, semantic segmentation and opti-
cal flow estimation tasks. Our experiment results show that firstly with larger
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receptive fields, LS-DFN is more powerful on object recognition tasks. Secondly,
with position-specific dynamic kernels and local gradients, LS-DFN produces
much sharper optical flow. Besides, the comparison between ERF of the LS-
DFNs and conventional CNNs is also presented in Sect. 4.1. This also verifies
our aforementioned design target that LS-DFNs have larger ERF.

In the following subsections, we use w/ denotes with, w/o denotes without,
A denotes attention mechanism and R denotes residual learning, C ′ denotes the
number of dynamic features. Since C ′ in our LS-DFN is relatively small (e.g.
24) compared with conventional CNNs’ settings, we optionally apply a post-conv
layer to increase dimension to C1 channels to match the conventional CNNs.

4.1 Object Detection

We use PASCAL VOC datasets [8] for object detection tasks. Following the
protocol in [9], we train our LS-DFNs on the union of VOC 2007 trainval and
VOC 2012 trainval and test on VOC 2007 and 2012 test sets. For evaluation, we
use the standard mean average precision (mAP) scores with IoU thresholds at
0.5.

When applying our LS-DFN, we insert it into object detection networks such
as R-FCN and CoupleNet. In particular, it is inserted right between the feature
extractor and the detection head, producing C ′ dynamic features. It is noting
that these dynamic features just serve as complementary features, which are
concatenated with original features before fed into detection head. For R-FCN,
we adopt ResNet as feature extractor and 7× 7 bin R-FCN [7] with OHEM
[32] as detection head. During training process, following [4], we resize images
to have a shorter side of 600 pixels and adopt SGD optimizer. Following [17],
we use pre-trained and fixed RPN proposals. Concretely, the RPN network is
trained separately as in the first stage of the procedure in [22]. We train 110k
iterations on single GPU with learning rate 10−3 in the first 80k and 10−4 in
the next 30k.

As shown in Table 1, LS-DFN improves R-FCN baseline model’s mAP over
1.5% with only C ′ = 24 dynamic features. This implies that the position-specific
dynamic features are good supplement to the original feature space. And even
though CoupleNets [33] have already explicitly considered global information
with large receptive fields, experimental results demonstrate that adding our
LS-DFN block is still beneficial.

Evaluation on Effective Receptive Field. We evaluate the effective recep-
tive fields (ERF) in the subsection. As illustrated in Fig. 6, with ResNet-50 as
backbone network, single additional LS-DFN layer provides much larger ERF
than vanilla models thanks to the large sampling strategy. With larger ERFs, the
networks can effectively observe larger region at each position thus can gather
information and recognize objects more easily. Further, Table 1 experimentally
verified the improvements on recognition abilities provided by our proposed LS-
DFNs.
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Table 1. Evaluation of the LS-DFN models
on VOC 2007 and 2012 detection dataset.
We use s = 3, C′ = 24, γ = 1, C1 = 256
with ResNet-101 as pre-trained networks in
experiments when adding LS-DFN layers.

mAP
(%) on
VOC12

mAP (%)
on VOC07

R-FCN [3] 77.6 79.5

R-FCN+LS-DFN 79.2 81.2

Deform. Conv. [4] - 80.6

CoupleNet [33] 80.4 81.7

CoupleNet+LS-DFN 81.7† 82.3

†

http://host.robots.ox.ac.uk:8080/anony-
mous/BBHLEL.html

Table 2. Evaluation of numbers
of samples s. The listed results are
trained with residual learning and
the post-conv layer is not applied.
The experiments use R-FCN base-
line and adopt ResNet-50 as pre-
trained networks.

s = 1 s = 3 s = 5

C′ = 16, w/A 72.1 78.2 78.1

C′ = 24, w/A 72.5 78.6 78.6

C′ = 32, w/A 72.9 78.6 78.5

Table 3. Evaluation of attention mecha-
nism with different sample strides and num-
bers of dynamic features. The post-conv
layer is not applied. The experiments use R-
FCN baseline and adopt ResNet-50 as pre-
trained networks.

γ = 1 γ = 2

w/ A w/o A w/ A w/o A
C′ = 16 77.8 77.4 78.2 77.4

C′ = 24 78.1 77.4 78.6 77.3

C′ = 32 78.6 77.6 78.0 77.3

Table 4. Evaluaion of residual
learning strategy in LS-DFN. F indi-
cates that the model fails to con-
verge and the post-conv layer is
not applied. The experiments use R-
FCN baseline and adopt ResNet-50
as pretrained networks.

w/ A w/o A
C′ = 24 w/ R 78.68 77.4

w/o R 68.1 F
C′ = 32 w/ R 78.6 77.6

w/o R 68.7 F

Ablation Study on Sampling Size. We perform experiments to verify the
advantages of applying more sampled regions in LS-DFN.

Table 2 evaluates the effect of sampling in the neighbour regions. In simple
DFN model [5], where s = 1, though attention and residual learning strategy are
adopted, the accuracy is still lower than R-FCN baseline (77.0%). We argue the
reason is that simple DFN model has limited receptive field. Besides, kernels at
each position only receive gradients on the identical position which easily leads
to overfitting. With more sampled regions, we not only enlarge receptive field in
feed-forward step, but also stabilize the gradients in back-propagation process.
As shown in Table 2, when we take 3 × 3 samples, the mAP score surpluses
original R-FCN [3] by 1.6% and gets saturated with respect to s when attention
mechanism is applied.

http://host.robots.ox.ac.uk:8080/anony-mous/BBHLEL.html
http://host.robots.ox.ac.uk:8080/anony-mous/BBHLEL.html
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Fig. 6. Visualization on the effective receptive fields. The yellow circles denote the
position on the objects. The first row presents input images. The second row contains
the ERF figure from vanilla ResNet-50 model. The third row contains figures of the
ERF with LS-DFNs. Best view in color.

Ablation Study on Attention Mechanism. We verify the effectiveness of
the attention mechanism in Table 3 with different sample strides γ and number
of dynamic feature channels C ′. In the experiments without attention mecha-
nism, max pooling in channel dimension is adopted. We observe that, in nearly
all cases, the attention mechanism helps improve mAP by more than 0.5% in
VOC2007 detection tasks. Especially as the number of dynamic feature channels
C ′ increases (i.e. 32), the attention mechanism provides more benefits, increas-
ing the mAP by 1%, which indicates that the attention mechanism can further
strengthen our LS-DFNs.

Ablation Study on Residual Learning. We perform experiments to verify
that with different numbers of dynamic feature channels, residual learning con-
tributes a lot to the convergence of our LS-DFNs. As shown in Table 4, without
utilizing residual learning, dynamic convolution models can hardly converge in
real-world datasets. Even though they converge, the mAP is lower than expected.
When our LS-DFNs learn in a residual fashion, however, the mAP increase about
10% on average.

Runtime Analysis. Since the computation at each position and sampled
regions can be done in a parallel fashion, the running time for the LS-DFN
models could have potential of only slightly slower than two normal convolu-
tional layers with kernel size s2.

4.2 Semantic Segmentation

We adopt the DeepLabV2 with CRF as the baseline model. The added LS-
DFN layer receives input features from res5b layer in ResNet-101 and its output
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FlowNetSGround Truth FlowNets LS-DFN FlowNetC LS-DFNLS-DFN

Fig. 7. Examples of Flow estimation on FlyingChairs dataset. The columns with LS-
DFN denote the results of a LS-DFN added to the eir left columns. With LS-DFN,
much sharper and more detailed optical flow can be estimated.

Table 5. Performance comparison on the PASCAL VOC 2012 semantic segmentation
test set. The average IoU (%) for each class and the overall IoU is reported.

Methods Bg Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow

DeepLabV2 + CRF - 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5

. . . w/o atrous +LS-DFN 95.3 92.3 57.2 91.1 68.8 76.8 95.0 88.8 92.1 35.0 88.5

. . .+ SegAware [10] 95.3 92.4 58.5 91.3 65.6 76.8 95.0 88.7 92.1 34.7 88.5

. . .+ LS-DFNa 95.5 94.0 58.5 91.3 69.2 78.2 95.4 89.6 92.9 38.4 89.9

Methods Table Dog Horse Motor Person Plant Sheep Sofa Train Tv All

DeepLabV2 + CRF 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

. . . w/o atrous + LS-DFN 68.7 89.0 92.2 87.1 87.1 63.3 88.4 64.1 88.0 74.8 80.4

. . . + SegAware [10] 68.7 89.0 92.2 87.0 87.1 63.4 88.4 60.9 86.3 74.9 79.8

. . . + LS-DFNa 70.2 90.8 93.1 87.0 87.4 63.4 89.5 64.9 88.9 75.8 81.1
a http://host.robots.ox.ac.uk:8080/anonymous/5SYVME.html

features are concatenated to the res5c layer. For hyperparameters, we adopt
C ′ = 24, s = 5, γ = 3, k = 3 and a 1 × 1 256-channel post-conv layer with
shared weights at all three input scales. Following SegAware [10], we initialize the
network with ImageNet model, then train on COCO trainval sets, and finetune
on the augmented PASCAL images.

We report the segmentation results in Table 5. Our model achieves 81.2%
overall IoU accuracy which is 1.4% superior to SegAware DeepLab-V2. Further-
more, the results on large objects like boat and sofa3 are significantly improved
(i.e. 3.6% in boat and 4.2% in sofa). The reason is that the LS-DFN layer is
capable of significantly enlarging the effective receptive fields (ERF) so that the
pixels inside the objects can utilize a much wider context, which is important
since the visual clues of determining the correct categories for the pixels can be
far away from the pixels themselves.

3 We observe most boat and sofa instances occupy large area in images in PASCAL
VOC test set.

http://host.robots.ox.ac.uk:8080/anonymous/5SYVME.html
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It’s worth noting that the performance of the chair category is also signifi-
cantly improved thanks to the reduced false positive classification where many
pixels in sofa instances are originally classified as chairs’.

We use w/oatrous+ LS-DFN to denote the DeepLabV2 model where all the
dilated convolutions are replaced by LS-DFN block in Table 5. In particular,
the different dilation rates 6, 12, 18, 24 are replaced by sample strides γ =
2, 4, 6, 8 in the LS-DFN layers. And all branches are implemented as single conv
layers with k = 3, s = 5, C ′ = 21 for classification. Compared with original
DeepLabV2 model, we observe a considerable improvement (i.e. from 79.7% to
80.4%) indicating that the LS-DFN layers are able to better model the contextual
information within the large receptive fields thanks to the dynamic sampling
kernels.

4.3 Optical Flow Estimation

We perform experiments on optical flow estimation using the FlyingChairs
dataset [6]. This dataset is a synthetic one with optical flow ground truth
and widely used in deep learning methods to learn the motion information.
It consists of 22872 image pairs and corresponding flow fields. In experiments
we use FlowNets(S) and FlowNetC [13] as our baseline models, though other
complicated models are also applicable. All of the baseline models are fully-
convolutional networks which firstly downsample input image pairs to learn
semantic features then upsample the features to estimate optical flow.

In experiments, our LS-DFN model is inserted in a relative shallower layer to
produce sharper optical flow images. Specifically, we adopt the third conv layer,
where image pairs are merged into a single branch volume in FlowNetC model.
We also use skip-connection to connect the LS-DFN outputs to the corresponding
upsampling layer. In order to capture large displacement, we apply more samples
in our LS-DFN layer. Concretely, we use 7 × 7 or 9 × 9 samples with a sample
stride of 2 in our experiments. We follow similar training process in [7] for fair
comparison4. As shown in Fig. 7, our LS-DFN models are able to output sharper
and more accurate optical flow. We argue this is due to the large receptive fields
and dynamic position-specific kernels. Since each position estimates optical flow
with its own kernels, our LS-DFN can better identify the contours of the moving
objects.

As shown in Fig. 8, LS-DFN model successfully relaxes the constraint of
sharing kernels spatially and converges to a lower training loss in both FlowNets
and FlowNetC models. That further indicates the advantages of local gradients
when doing dense prediction tasks.

We use average End-Point-Error (aEPE) to quantitatively measure the per-
formance of the optical flow estimation. As shown in Table 6, with a single LS-
DFN layer added, the aEPEs decrease in all baseline models by a large margin.
In FlowNets model, aEPE decreases by 0.79 which demonstrates the increased
learning capacity and robustness of our LS-DFN model. Even though SegAware

4 We use 300k iterations with double batchsize.
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Fig. 8. Training loss of flow estimation. We
use moving average with window size of 2k
iterations when plotting the loss curve.

Table 6. aEPE and running time evalu-
ation of optical flow estimation.

Model aEPE Time

Spynet [21] 2.63 -
EpicFlow [23] 2.94 -
DeepFlow [30] 3.53 -
PWC-Net [27] 2.26 -

FlowNets [13] 3.67 6 ms
FlowNets+ LS-DFN, s = 7 2.88 23 ms

FlowNetS [13] 2.78 16 ms
FlowNetS+ SegAware [10] 2.36 -
FlowNetS+ LS-DFN, s = 7 2.34 34 ms

FlowNetC [13] 2.19 25 ms
FlowNetC + LS-DFN, s = 7 2.11 43 ms
FlowNetC + LS-DFN, s = 9 2.06 51 ms

attention model [10] explicitly takes advantage of boundary information which
requires additional training data, our LS-DFN can still slightly outperforms them
using FlowNetS as baseline model. With s = 9 and γ = 2, we have approximately
40 times larger receptive fields which allow the FlowNet models to easily capture
large displacements in flow estimation task in FlyingChairs dataset.

5 Conclusion

This work introduces Dynamic Filtering with Large Sampling Field (LS-DFN)
to learn dynamic position-specific kernels and takes advantage of very large
receptive fields and local gradients. Thanks to the large ERF in a single layer,
LS-DFNs have better performance in most general tasks. With local gradients
and dynamic kernels, LS-DFNs are able to produce much sharper output fea-
tures, which is beneficial especially in dense prediction tasks such as optical flow
estimation.
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