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Abstract. Consumer depth sensors are more and more popular and
come to our daily lives marked by its recent integration in the latest
Iphone X. However, they still suffer from heavy noises which limit their
applications. Although plenty of progresses have been made to reduce the
noises and boost geometric details, due to the inherent illness and the
real-time requirement, the problem is still far from been solved. We pro-
pose a cascaded Depth Denoising and Refinement Network (DDRNet) to
tackle this problem by leveraging the multi-frame fused geometry and the
accompanying high quality color image through a joint training strategy.
The rendering equation is exploited in our network in an unsupervised
manner. In detail, we impose an unsupervised loss based on the light
transport to extract the high-frequency geometry. Experimental results
indicate that our network achieves real-time single depth enhancement
on various categories of scenes. Thanks to the well decoupling of the
low and high frequency information in the cascaded network, we achieve
superior performance over the state-of-the-art techniques.
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1 Introduction

Consumer depth cameras have enabled lots of new applications in computer
vision and graphics, ranging from live 3D scanning to virtual and augmented
reality. However, even with tremendous progresses in improving the quality and
resolution, current consumer depth cameras still suffer from heavy sensor noises.

During the past decades, in view of the big quality gap between depth sen-
sors and traditional image sensors, researchers have made great efforts to leverage
RGB images or videos to bootstrap the depth quality. While RGB-guided fil-
tering methods show the effectiveness [22,34], a recent trend is on investigating
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the light transport in the scene for depth refinement with RGB images, which
is able to capture high frequency geometry and reduce the texture-copy arti-
facts [3,12,43,46]. Progresses have also been made to push these methods to run
in real time [30,44]. In these traditional methods, before refinement, a smooth
filtering is usually carried out on the raw depth to reduce the sensor noise. How-
ever, this simple spatial filtering may alter the low-dimensional geometry in a
non-preferred way. This degeneration can never be recovered in the follow-up
refinement step, as only high-frequency part of the depth is modified.

To attack these challenges, we propose a new cascaded CNN structure to
perform depth image denoising and refinement in order to lift the depth quality
in low frequency and high frequency simultaneously. Our network consists of two
parts, with the first focusing on denosing while the second aiming at refinement.
For the denoising net, we train a CNN with a structure similar to U-net [36].
Our first contribution is on how to generate training data. Inspired by the recent
progress on depth fusions [11,19,26], we generate reference depth maps from the
fused 3D model. With fusion, heavy noise present in single depth map can be
reduced by integrating the truncated signed distant function (TSDF). From this
perspective, our denoising net is learning a deep fusion step, which is able to
achieve better depth accuracy than heuristic smoothing.

Our second contribution is the refinement net, structured in our cascade end-
to-end framework, which takes the output from the denoising net and refine it
to add high-frequency details. Recent progresses in deep learning have demon-
strated the power of deep nets to model complex functions between visual com-
ponents. One challenge to train a similar net to add high-frequency details is that
there is no ground truth depth map with desired high-frequency details. To solve
this, we propose a new learning-based method for depth refinement using CNNs
in an unsupervised way. Different from traditional methods, which define the loss
directly on the training data, we design a generative process for RGB images using
the rendering equation [20] and define our loss on the intensity difference between
the synthesized image and the input RGB image. Scene reflectance is also esti-
mated through a deep net to reduce the texture-copy artifacts. As the rendering
procedure is fully differentiable, the image loss can be effectively back propagated
throughout the network. Therefore, through these two components in our DDR-
Net, a noisy depth map is enhanced both in low frequency and high frequency.

We extensively evaluate our proposed cascaded CNNs, demonstrating that
our method can produce depth map with higher quality in both low and high
frequency, compared with the state-of-the-art methods. Moreover, the CNN-
based network structure enables our algorithm to run in real-time. And with the
progress of deep-net-specific hardware, our method is promising to be deployed
on mobile phones. Applications of our enhanced depth stream in the Dynamic-
Fusion systems [11,26,47] are demonstrated, which improve the reconstruction
performance of the dynamic scenes.

2 Related Work

Depth Image Enhancement. As RGB images usually capture a higher resolution
than depth sensors, many methods in the past have focused on leveraging the
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RGB images to enhance the depth data. Some heuristic assumptions are usu-
ally made about the correlation between color and depth. For example, some
work assume that the RGB edges are coinciding with depth edges or discontinu-
ities. Diebel and Thrun [9] upsample the depth with a Markov-Random Field.
Depth upsampling with color image as input can be formulated as an optimiza-
tion problem which maximizes the correlation between RGB edges and depth
discontinuities [31]. Another way to implement this heuristics is through filter-
ing [23], e.g. with joint bilateral upsampling filter [22]. Yang et al. [45] propose a
depth upsampling method by filtering a cost space joint-bilaterally with a stereo
image to achieve the resolution upsampling. Similar joint reconstruction ideas
with stereo images and depth data are investigate by further constraining the
depth refinement with photometric consistency from stereo matching [50]. With
the development of modern hardwares and also the improvements in filtering
algorithms, variants of joint-bilateral or multilateral filtering for depth upsam-
pling can run in real-time [6,10,34]. As all of these methods are based on the
heuristic assumption between color and depth, even producing plausible results,
refined depth maps are not metrically accurate, and texture-copy artifacts are
inevitable as texture variations are frequently mistaken for geometric detail.

Depth Fusion. With multiple frames as input, different methods have been pro-
posed to fuse them to improve the depth quality or obtain a better quality scan.
Cue et al. [8] has proposed a multi-frame superresolution technique to estimate
higher resolution depth images from a stack of aligned low resolution images.
Taking into account the sensors’ noise characteristics, the signed distance func-
tion is employed with an efficient data structure to scan scenes with an RGBD
camera [16]. KinectFusion [27] is the first method to show real-time hand-held
scanning of large scenes with a consumer depth sensor. Better data structures
that exploit spatial sparsity in surface scans, e.g. hierarchical grids [7] or voxel
hashing schemes [28], have been proposed to scan larger scenes in real time.
These fusion methods are able to effectively reduce the noises in the scanning by
integrating the TSDF. Recent progresses have extended the fusion to dynamic
scenes [11,26]. The scan from these depth fusion methods can achieve very clean
3D reconstruction, which improves the accuracy of the original depth map. Based
on this observation, we employ depth fusion to generate a training data for our
denoising net. By feeding lots of the fused depth as our training data to the the
network, our denoising net effectively learns the fusion process. In this sense,
our work is also related to Riegler et al. [35], where they designed an OctNet to
perform the learning on signed distance function. Differently, our denoising net
directly works on depth and by special design of our loss function, our net can
effectively reduce the noise in the original depth map. Besides, high frequency
geometric detail is not dealt with in OctNet, while by our refinement net we can
achieve detailed depth maps.

Depth Refinement with Inverse Rendering. To model the relation between color
and depth in a physically correct way, inverse rendering methods have been pro-
posed to leverage RGB images to improve depth quality by investigating the
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light transport process. Shape-from-shading (SfS) techniques have been inves-
tigated on how to extract the geometric detail from a single image [17,49].
One challenge to directly apply SfS is that the light and reflectance are usu-
ally unknown when capturing the depth map. Recent progresses have shown
that SfS can refine coarse image-based geometry models [4], even if they were
captured under general uncontrolled lighting with multi-view cameras [42,43] or
an RGBD camera [12,46]. In these work, illumination and albedo distributions,
as well as refined geometry are estimated via inverse rendering optimization.
Optimizing all these unknowns are very challenging by traditional optimization
schemes. For instance, if the reflectance is not properly estimated, the texture-
copy artifact can still exist. In our work, we employ a specifically structured
network to tackle the challenge of reflectance and geometry separation problem.
Our network structure can be seen as a regularizer which constrain the inverse
rendering loss to back propagate only learnable gradient to train our refinement
net. Also with a better reflectance estimation method than previous work, the
reflectance influence can be further alleviated, resulting in a CNN network which
extracts only geometry-related information to improve the depth quality.

Learning-Based and Statistical Methods. Data driven methods are another cat-
egory to solve the depth upsampling/refinement problem. Data-driven priors
are also helpful for solving the inverse rendering problem. Barron and Malik [2]
jointly solve reflectance, shape and illumination, based on priors derived statis-
tically from images. Similar concepts were also used for offline intrinsic image
decomposition of RGB-D data [1]. Khan et al. [21] learn weighting parameters
for complex SfS models to aid facial reconstruction. Wei and Hirzinger [40] use
deep neural networks to learn aspects of the physical model for SfS. Note that
even our method is also learning based, our refinement net does not take any
training data. Instead, the refinement net relies on a pre-defined generative pro-
cess and thus an inverse rendering loss for the training process. The closest idea
to our paper is the encoder-decoder structure used for image-based face recon-
struction [33,38]. They take the traditional rendering pipeline as a generative
process, defined as a fixed decode. Then, a reconstruction loss can be optimized
to train the encoder, which directly regress from a input RGB image. However,
these methods all require a predefined geometry and reflectance subspace, usu-
ally modeled by linear embedding, to help train a meaningful encode, while our
method can work with general scenes captured by RGBD sensor.

3 Method

We propose a new framework for jointly training a denoising net and a refinement
net from a consumer-level camera to improve depth map both in low frequency
and high frequency. The proposed pipeline features our novelties both in training
data creation and cascaded CNNs architecture design. Obtaining ground-truth
high-quality depth data for training is very challenging. We thus have formu-
lated the depth improvement problem into two regression tasks, while each one
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Fig. 1. The pipeline of our method. The black lines are the forward pass during test,
the gray lines are supervise signal, and the orange lines are related to the unsupervised
loss. Note that every loss function has a input mask W , which is omitted in this figure.
Ddn and Ddt are denoised and refined output. Nref , Ndt are reference normal map
and refined normal map, normals are only used for the training, not for the inference.
(Color figure online)

focuses on lifting the quality in different frequency domains. This also enables
us to combine supervised and unsupervised learning to solve the issue of lacking
ground truth training data. For denoising part, a function D mapping a noisy
depth map Din to a smoothed one Ddn with high-quality low frequency is learned
by a CNN with the supervision of near-groundtruth depth maps Dref , created
from a state of the art of dynamic fusion. For refinement part, an unsupervised
shading-based criterion is developed based on inverse rendering to train and a
function R to map Ddn and the corresponding RGB image Cin to an improved
depth map Ddt with rich geometric details. The albedo map for each frame is
also estimated the CNN used in [25]. We concurrently train cascaded CNNs
from supervised depth data and unsupervised shading cues to achieve state-of-
the-art performance on the task of single image depth enhancement. The detailed
pipeline can be visualized in Fig. 1.

3.1 Dataset

Previous methods usually take a shortcut to obtain the training data by synthe-
sizing [37,39]. However, what if noise characteristic varies from sensor to sensor,
or even the noise source is untraceable? In this case, how to generate ground-
truth (or near-ground-truth) depth map becomes a major problem.

Data Generation. In order to learn the real noise distribution of different con-
sumer depth cameras, we need to collect a training dataset of raw depth data
with corresponding target depth maps, which act as the supervised signal of
our denoising net. To achieve this, we use the non-rigid dynamic fusion pipeline
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proposed by [11], which is able to reconstruct complete and good quality geome-
tries of dynamic scenes from single RGB-D camera. The captured scene could
be static or dynamic and we do not impose any assumptions on the type of
motions. Besides, the camera is allowed to move freely during the capture. The
reconstructed geometry is well aligned with input color frames. To this end, we
first capture a sequence of synchronized RGB-D frames {Dt, Ct}. Then we run
the non-rigid fusion pipeline [11] to produce a complete and improved mesh, and
deform it using the estimated motion to each corresponding frame. Finally the
target reference depth map {Dref,t} is generated by rasterization at each cor-
responding view point. Besides, we also produce a foreground mask {Wt} using
morphological filtering, which indicates the region of interest in the depth.

Content and Novelty. Using the above method, we contribute a new dataset
of human bodies, including color image, raw depths with real noises and the
corresponding reference depths with sufficient quality. Our training dataset con-
tains 36840 views of aligned RGB-D data along with high quality Dref rendered
from fused model, among which 11540 views are from structured light depth sen-
sor and 25300 views are from time-of-flight depth sensor. Our validation dataset
contains 4010 views. Training set contains human bodies with various clothes
poses under different lighting conditions. Moreover, to verify how our method
generalized to other scenes, objects such as furniture and toys are also included
in the test set. Existing public datasets, eg. Face Warehouse, Biwi Kinect face
and D3DFACS, lack geometry details, thus do not meet our requirement for
surface refinement. ScanNet consists of a huge amount of 3D indoor scenes, but
has no human body category. Our dataset fills the blank in human body surface
reconstruction. Dataset and training code will be public available.

3.2 Depth Map Denoising

The denoising net D is trained to remove the sensor noise in depth map Din given
the reference depth map Dref . Our denoising net architecture is inspired by Disp-
Net [24] with skip connections and multi-scale predictions, as shown in Fig. 2.
The denoising net consists of three parts: encoder, nonlinearity and decoder. The
encoder aims to successively extract low-resolution high-dimensional features
from Din. To add nonlinearity to the network without performance degrada-
tion, several residual blocks with pre-activation are stacked sequentially between
encoder and decoder part. The decoder part upsamples encoded feature maps
to the original size, together with skip connections from the encoder part. These
skip connections is useful to preserve geometry details in Din. The whole denois-
ing net adopts the residual learning strategy to extract the latent clean image
from noisy observation. Not only does this direct pass set a good initialization,
it turns out that residual learning is able to speed up the training process of
deep CNN as well. Instead of the “unpooling + convolution” operation, our
upsampling uses transpose convolution with trainable kernels. Note that the
combination of bilinear up-sampling and transpose convolution in our upsam-
pling pass help to inhibit checkerboard artifacts [29,41]. Our denoising net is
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Fig. 2. The structure of our denoising net consists of encoder, nonlinear and decoder.
There are three upsampling levels and one direct skip to keep captured value.

fully convolutional with receptive field up to 256. As a result, it is able to handle
almost all types of consumer sensor inputs with different size.

The first loss for our denoising net is defined on the depth map itself. For
example, per-pixel L1 and L2 loss on depth are used for our reconstruction term:

�rec(Ddn,Dref )=‖Ddn − Dref‖1+‖Ddn − Dref‖2, (1)

where Ddn = D(Din) is the output denoised depth map, and Dref is the reference
depth map. It is known that L2 and L1 loss may produce blurry results, however
they accurately capture the low frequencies [18] which meets our purpose.

However, with only the depth reconstruction constraint, the high-frequency
noise in small local patch could still remain after passing denoising net. To
prevent this, we design a normaldot term to remove the high-frequency noise
further. Specifically, this term is designed to constrain the normal direction of
the denoised depth map to be consistent with the reference normal direction. We
define the dot production of reference normal N i

ref and tangential direction as
the second loss term for our denoising net. Since each neighbouring depth point
j (j ∈ N (i)) could potentially define a 3D tangential direction, we sum over all
possible directions, and the final normaldot term is formulated as:

�dot(Ddn, Nref )=
∑

i

∑

j∈N (i)

[
< P i − P j , N i

ref >
]2

, (2)

where P i is the 3D coordinate of Di
dn. This term explicitly drives the network to

consider the dependence between neighboring pixels N (i), and to learn locally
the joint distributions of the neighboring pixels. Therefore, the final loss function
for training the denoising net is defined as:

Ldn(Ddn,Dref ) = λrec�rec + λdot�dot, (3)

where λrec, λdot defines the strength of each loss term.
In order to get Nref from the depth map Dref , a depth to normal (d2n)

layer is proposed, which calculate normal vector given depth map and intrinsic
parameters. For each pixel, it takes the surrounding 4 pixels to estimate one
normal vector. The d2n layer is fully differentiable and has been employed several
times in our end-to-end framework as shown in Fig. 1.
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Fig. 3. Refinement net structure. The convolved feature maps from Ddn are comple-
mented with the corresponding feature maps from Cin possessing the same resolution.

3.3 Depth Map Refinement

Although denoising net is able to effectively remove the noises, the denoised
depth map, even getting improved in low frequency, still lacks details compared
with RGB images. To add high-frequency details to the denoised depth map,
we adopt a relatively small fully convolutional network based on hypercolumn
architecture [14,33].

Denote the single channel intensity map of color image Cin as I. 1 The hyper-
column descriptor for a pixel is extracted by concatenating the features at its
spatial location in several layers, from both Ddn and I of the corresponding color
image with high-frequency details. We first combine the spectral features from
Ddn and I, then fuse these features in the spatial domain by max-pooling and
convolutional down-sampling, which end with multi-scale fused feature maps.
The pooling and convolution operation after hypercolumn extraction constructs
a new set of sub-bands by fusing the local features of other hypercolumns in
the vicinity. This transfers fine structure from color map domain to depth map
domain. Three post-fusion convolutional layers is introduced to learn a better
channel coupling. tanh function is used as the last activation to limit the output
to the same range of the input. In brief, high frequency features in the color image
are extracted, and used as guidance, to extrude local detailed geometry from the
denoised surfaces by the proposed refinement net shown in Fig. 3. As high fre-
quency details are mainly inferred from small local patches, a shallow network
with relative small reception field has enough capacity. Without post-processing
as in other two-stage pipelines [37], our refinement net generates high-frequency
details on depth map in a single forward pass.

Many SfS-based refinement approaches [13,44] demonstrate that color images
can be used to estimate the incident illumination, which is parameterized by
the rendering process of an image. For Lambertian surface and low-frequency
illumination, we can express the reflected irradiance B as the function of the

1 Intensity image I plays the same role as Cin. We study I for simplicity.
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Fig. 4. Estimated albedo map and relighted result using estimated lighting coefficients
and uniform albedo. The estimation is in line with the actual incident illumination.

surface normal N , the lighting condition l and the albedo R as follows:

B(l, N,R) = R

9∑

b=1

lbHb(N), (4)

where Hb : R3 �→ R is the basis function of spherical harmonics(SH) that takes
unit surface normal N as input. l = [l1, · · · , l9]T are the nine 2nd order SH
coefficients which represent the low-frequency scene illumination.

Based on Eq. 4, a per-pixel shading loss is designed. It penalizes both inten-
sity and gradient of the difference value between the rendered image and the
corresponding intensity image:

�sh(Ndt, Nref , I) = ‖B(l∗, Ndt, R) − I‖2+λg‖∇B(l∗, Ndt, R) − ∇I‖2, (5)

where Ndt represents the normal map of the regressed depth from the refinement
net, λg is the weight to balance shading loss term, R is the albedo map estimated
using Nestmeyer’s “CNN + filter”method [25]. Then, the light coefficients l∗ can
be computed by solving the least squares problem:

l∗ = arg min
l

‖B(l, Nref , R) − I‖22. (6)

Here Nref is calculated by the aforementioned d2n layer in Sect. 3.2. To
show the effectiveness of our estimated illumination, a per-pixel albedo image
is calculated by RI = I/

∑9
b=1 lbHb(Nref ), as shown in Fig. 4. Note that pixels

at grazing angles are excluded in the lighting estimation, as both shading and
depth are unreliable in these regions. Additionally, to constrain the refined depth
to be close to the reference depth map, a fidelity term is added:

�fid(Ddt,Dref ) = ‖Ddt − Dref‖2. (7)

Furthermore, a smoothness term is added to regularize the refined depth. More
specifically, we minimize the anisotropic total variation of the depth:

�smo(Ddt) =
∑

i,j

|Di+1,j
dt − Di,j

dt |+|Di,j+1
dt − Di,j

dt |. (8)
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With all the above terms, the final loss for our refinement net is expressed as:

Ldt(Ddt,Dref , I)=λsh�sh+λfid�fid+λsmo�smo, (9)

where λsh, λfid, λsmo defines the strength of each loss term. The last two addi-
tional terms are necessary, because they constrain the output depth map to be
smooth and also close to our reference depth, as the shading loss would not be
able to constrain the low frequency component.

3.4 End-to-End Training

We train our cascaded net jointly. To do so, we define total loss as:

Ltotal = Ldn + λLdt (10)

where λ is set to 1 during training. The denoising net is supervised by temporally
fused reference depth map, and the refinement CNN is trained in an unsupervised
manner. By incorporating supervision signals in both the middle and the output
of the network, we achieve a steady convergence during the training phase. In
the forward pass, each batch of input depth maps is propagated through the
denoising net, and reconstruction L1/L2 term and normaldot term are added to
Ltotal. Then, the denoised depth maps, together with the corresponding color
images, are fed to our refinement net. Shading, fidelity and smooth terms are
added to Ltotal. In the backward pass, the gradient of the loss Ltotal are back-
propagated through both network. All the hyper-parameters λ are fixed during
training.

There are two types of consumer depth camera data in our training and val-
idation set: structured light (K1) and time-of-flight (K2). We train the variants
of our model on K1/K2 dataset respectively. To augment our training set, each
RGB-D map are randomly cropped, flipped and re-scaled to the resolution of
256 × 256. Considering that depth map is 2.5D in nature, the intrinsic matrix
should be changed accordingly during data augmentation. This enables the net-
work to learn more object-independent statistics and to work with sensors of
different intrinsic parameters. For efficiency, we implement our d2n layer as a
single CUDA layer. We chooseAdam optimizer to compute gradients, with 0.9
and 0.999 exponential decay rate for the 1st and 2nd moment estimates. Base
learning-rate is set to 0.001 and batch-size is 32. All convolution weights are
initialized by Xavier algorithm, and weight decay is used for regularization.

4 Experiments

In this section, we evaluate the effectiveness of our cascade depth denoising
and refinement framework, and analyze the contribution from each loss term.
To the best of our knowledge, there is no public dataset for human body that
contains raw and ground-truth depth maps with rich details from consumer
depth cameras. We thus compare the performance of all available method on
our own validation set, qualitatively and quantitatively.
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Color Image Raw Depth Denoised Depth Refined Depth

Fig. 5. Qualitative results on validation set. From left to right: RGB image, raw depth
map, output of denoising net Ddn and output of refinement net Ddt. Ddn captures
the low-dimensional geometry without noise, Ddt shows fine-grained details. Although
trained on human body dataset, our model also produce high-quality depth map on
general objects in arbitrary scenes, eg. the backpack sequence.

4.1 Evaluation

To verify the generalization ability of our trained network, we also evaluate on
other objects other than human body, which can be seen in Figs. 5 and 8. One can
see that although refined in an unsupervised manner, our results are comparable
to the fused depth map [11] obtained using consumer depth camera only, and
preserve thin structures such as fingers and folds in clothes better.

4.2 Ablation Study

The Role of Cascade CNN. To verify the necessity of our cascade CNNs, we
replace our denoising net by a traditional preprocessing procedure, eg. bilateral
filter, and still keep the refinement net to refine the filtered depth. We call this
two-stage method as “Base+Ours refine”, and it is trained from scratch with
shading, fidelity and smoothness loss. As we can see in the middle of Fig. 6,
“Base+Ours refine” is not able to preserve distinctive structures of clothes in
the presence of widespread structured noise. Unwanted high frequency noise
leads to inaccurate estimation of illuminance, therefore shading loss term will
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keep fluctuating during training. This training process will end up with non-
optimal model parameters. However, in our cascade design, denoising net sets a
good initialization for refinement net and achieves better result.

Supervision of Refinement Net. For our refinement net, there are two choices
for regularization depth map in fidelity loss formulation, using reference depth
map Dref or the denoised depth map Ddn. When using only output of denoising
net Ddn in an unsupervised manner, scene illumination is also estimated using
Ddn. We denote this unsupervised framework as “Ours unsupervised”. Output
of these two choices are shown in Fig. 7. In the unsupervised case, refinement
net could produce reasonable result, but Ddt may stray from input.

Fig. 6. Left: normal map of Din.
Middle: Base+Ours refine, bilat-
eral filter can’t remove wavelet
noise, refinement result suffers
from high-frequency. Right: Ours.

Fig. 7. Left: Cin and Din. Middle: Ours unsu-
pervised, output depth does not match input
value in stripes area in the cloth. Right: Ours
with more reliable result.

Fig. 8. Comparison of color-assisted depth map enhancement between bilateral filter,
He et al. [15], Wu et al. [44] and our method. The closeup of the finger region demon-
strates the effectiveness of unsupervised shading term in our refinement net loss.
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4.3 Comparison with Other Methods

Compared with other non-data-driven methods, deep neural networks allow us to
optimize non-linear loss and to add data-driven regularization, while keeping the
inference time constant. Figure 8 shows examples of the qualitative comparison
of different methods for depth map enhancement. Our method outperforms other
methods by capturing cleaner structure of the geometry and high-fidelity details.

Quantitative Comparison. To evaluate quantitatively, we need a dataset with
ground truth depth map. Multi-view stereo and laser scanner are able to capture
static scene with high resolution and quality. We thus obtain ground truth depth
value by multi-view stereo [32] (for K1) and Mantis Vision’s F6 laser scanner
(for K2). Meanwhile, we collect the input of our method, the RGB-D image of
the same scene by a consumer depth camera. The size of validation set is limited
due to the high scan cost. Therefore, we also contribute a larger validation set
labeled with the near-ground-truth depth obtained using mentioned method in
Sect. 3.1. After reconstruction, the ground truth 3D model is rescaled and aligned
with our reprojected enhanced depth map, using iterative closest point (ICP)
[5]. Then the root mean squared error (RMSE) and the mean absolute error
(MAE) between these two point clouds are calculated in Euclidean space. We
also report the angular difference of normals, and the percentages of normal
difference less than 3.0, 5.0, and 10.0◦. Two sets of model are trained/evaluated
on K1 and K2 data respectively. Quantitative comparison with other methods
are summarized in Tables 1 and 2. Results shows that our method substantially
outperforms other methods in terms of both metrics on the validation set.

Table 1. Quantitative comparison results on K1 validation set, error metrics in mm.

Method Near-GT set GT set

MAE RMSE MAE RMSE

Bilateral [22] 15.9 4.8 15.1 3.7

He et al. [15] 46.5 14.7 41.1 15.2

Wu et al. [44] 14.5 4.3 15.7 4.4

Ours 10.9 4.1 11.0 3.6

Base+Ours refine 15.7 4.1 15.8 4.4

Ours unsupervised 16.1 5.2 14.9 5.5

Runtime Performance. At test time, our whole processing procedure includes
data pre-processing and cascade CNN predicting. The preprocessing steps
include: depth-to-color alignment, morphological transformation, and resam-
pling if necessary. The forward pass takes 10.8 ms (256 × 256 input) or 20.4 ms
(640 × 480 input) on TitanX, 182.56 ms or 265.8 ms per frame on Intel Core
i7-6900K CPU. It is worth mentioning that without denoising CNN, a variant of
our method, “Base+Ours refine” reaches a speed of 9.6ms per frame for 640×480
inputs.
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Table 2. Average score of depth and normal error and on our K2 validation set.

Method Depth difference Normal difference

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Mean ↓ Median ↓ 3.0↑ 5.0↑ 10.0↑
Wu et al. [44] 27.60 22.19 21.34 22.41 25.67 11.20 5.02 29.81 50.24 76.62

Or-El et al. [30] 27.14 25.42 22.89 21.31 26.08 10.03 4.12 35.43 56.57 79.99

Ours Ddn 19.03 19.25 18.49 18.37 18.76 9.36 3.40 45.33 66.79 84.69

Ours Ddt 18.97 19.41 18.38 18.50 18.61 9.55 3.54 43.77 64.98 83.69

4.4 Limitation

Similar to other real-time methods, we consider simplified light transport model.
This simplification is effective but will impose intensity image’s texture on depth
map. With the learning framework, texture-copy artifacts can be alleviated due
to the fact that network can balance fidelity and shading loss term during train-
ing. Another limitation comes with non-diffuse surface assumption, as we only
consider second order spherical harmonics representation.

5 Applications

It is known that real-time single frame depth enhancement is applicable for low-
latency system without temporal accumulation. We compare the result using
depth refined by our method with result using raw depth, on Dynamic Fusion [11]
and DoubleFusion [48]. The temporal window in fusion systems would smooth
out noise, but it will also wipe out high-frequency details. The time in TSDF
fusion blocks the whole system from tracking detailed motions. In contrast, our
method runs on single frame and provide timely update of fast changing sur-
face details (eg. deformation of clothes and body gestures), as shown in red
circles in Fig. 9 and the supplementary video. Moreover, real-time single frame
depth enhancement could help tracking and recognition tasks under interactive
scenarios.

Fig. 9. Application on DynamicFusion (left) and DoubleFusion (right) using our
enhanced depth stream. Left: color image, Middle: fused geometry using raw depth
stream, Right: “instant” geometry using our refined depth stream.
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6 Conclusion

We presented the first end-to-end trainable network for depth map denoising
and refinement for consumer depth cameras. We proposed a near-groundtruth
training data generation pipeline, based on the depth fusion techniques. Enabled
by the separation of low/high frequency parts in network design, as well as the
collected fusion data, our cascaded CNNs achieves state-of-the-art result in real-
time. Compared with available methods, our method achieved higher quality
reconstruction in terms of both low dimensional geometry and high frequency
details, which leads to superior performance quantitatively and qualitatively.
Finally, with the popularity of integrating depth sensors into cellphones, we
believe that our deep-net-specific algorithm is able to run on these portable
devices for various quantitative measurement and qualitative visualization appli-
cations.
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