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Abstract. Unsupervised video segmentation plays an important role in
a wide variety of applications from object identification to compression.
However, to date, fast motion, motion blur and occlusions pose signifi-
cant challenges. To address these challenges for unsupervised video seg-
mentation, we develop a novel saliency estimation technique as well as
a novel neighborhood graph, based on optical flow and edge cues. Our
approach leads to significantly better initial foreground-background esti-
mates and their robust as well as accurate diffusion across time. We
evaluate our proposed algorithm on the challenging DAVIS, SegTrack v2
and FBMS-59 datasets. Despite the usage of only a standard edge detec-
tor trained on 200 images, our method achieves state-of-the-art results
outperforming deep learning based methods in the unsupervised setting.
We even demonstrate competitive results comparable to deep learning
based methods in the semi-supervised setting on the DAVIS dataset.

1 Introduction

Unsupervised foreground-background video object segmentation of complex
scenes is a challenging problem which has many applications in areas such as
object identification, security, and video compression. It is therefore not surpris-
ing that many efforts have been devoted to developing efficient techniques that
are able to effectively separate foreground from background, even in complex
videos.

In complex videos, cluttered backgrounds, deforming shapes, and fast motion
are major challenges. In addition, in the unsupervised setting, algorithms have
to automatically discover foreground regions in the video. To this end, clas-
sical video object segmentation techniques [6,9,11,18,22,23,46,50,58] often
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Fig. 1. Video object segmentation in challenging scenarios. Given an input
video, our algorithm produces accurate segmentation of the foreground object without
any manual annotations. Our method is capable of handling unconstrained videos
that span a wide variety of situations including occlusion (bus), non-ridge deformation
(dance-jump), and dynamic background (kite-surf).

assume rigid background motion models and incorporate a scene prior, two
assumptions which are restrictive in practice. Trajectory based methods, such
as [5,8,12,15,45], require selection of clusters or a matrix rank, which may not
be intuitive. Graphical model based approaches [2,16,24,51,52,54] estimate the
foreground regions using a probabilistic formulation. However, for computational
efficiency, the constructed graph usually contains only local connections, both
spatially and temporally, reducing the ability to consider long-term spatial and
temporal coherence patterns. To address this concern, diffusion based meth-
ods [35], e.g., [13,55], propagate an initial foreground-background estimate more
globally. While promising results are shown, diffusion based formulations rely
heavily on the initialization as well as an accurate neighborhood graph encoding
the semantic distance between pixels or superpixels.

Therefore, in this paper, we develop (1) a new initialization technique and (2)
a more robust neighborhood graph. Our initialization technique is based on the
intuition that the optical flow on the boundary of an image differs significantly
from the moving direction of the object of interest. Our robust neighborhood
graph is built upon accurate edge detection and flow cues.

We highlight the performance of our proposed approach in Fig. 1 using three
challenging video sequences. Note the fine details that our approach is able to
segment despite the fact that our method is unsupervised. Due to accurate initial
estimates and a more consistent neighborhood graph, we found our method to be
robust to different parameter choices. Quantitatively, our initialization technique
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and neighborhood graph result in significant improvements for unsupervised
foreground-background video segmentation when compared to the current state-
of-the-art. On the recently released DAVIS dataset [42], our unsupervised non-
deep learning based segmentation technique outperforms current state-of-the-
art methods by more than 1.3% in the unsupervised setting. Our method also
achieves competitive performance compared with deep net based techniques in
the semi-supervised setting.

2 Related Work

The past decade has seen the rapid development in video object segmenta-
tion [17,19,20,25,31–33,38,40,44,51,52,57]. Given different degrees of human
interaction, these methods model inter- and intra-frame relationship of the pixels
or superpixels to determine the foreground-background labeling of the observed
scene. Subsequently, we classify the literature into four areas based on the degree
of human involvement and discuss the relationship between video object and
video motion segmentation.

Unsupervised Video Object Segmentation: Fully automatic approaches for
video object segmentation have been explored recently [7,13,30,31,39,40,57,59],
and no manual annotation is required in this setting. Unsupervised foreground
segmentation discovery can be achieved by motion analysis [13,40], trajectory
clustering [39], or object proposal ranking [31,57]. Our approach computes
motion saliency in a given video based on boundary similarity of motion cues. In
contrast, Faktor and Irani [13] find motion salient regions by extracting dominant
motion. Subsequently they obtain the saliency scores by computing the motion
difference with respect to the detected dominant motion. Papazoglou and Fer-
rari [40] identify salient regions by finding the motion boundary based on optical
flow and computing inside-outside maps to detect the object of interest.

Recently, deep learning based methods [25,48,49] were also used to address
unsupervised video segmentation. Although these methods do not require the
ground truth of the first frame of the video (unsupervised as opposed to semi-
supervised), they need a sufficient amount of labeled data to train the models. In
contrast, our approach works effectively in the unsupervised setting and does not
require training data beyond the one used to obtain an accurate edge detector.

Tracking-Based Video Object Segmentation: In this setting, the user anno-
tation is reduced to only one mask for the first frame of the video [4,17,24,36,41,
51,52]. These approaches track the foreground object and propagate the segmen-
tation results to successive frames by incorporating cues such as motion [51,52]
and supervoxel consistency [24]. Again, our approach differs in that we don’t
consider any human labels.

Interactive Video Object Segmentation: Interactive video object segmen-
tation allows users to annotate the foreground segments in key frames to gener-
ate impressive results by propagating the user-specified masks across the entire
video [14,24,34,38,44]. Price et al. [44] further combine multiple features, of
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which the weights are automatically selected and learned from user inputs.
Fan et al. [14] tackle interactive segmentation by enabling bi-directional propa-
gation of the masks between non-successive frames. Our approach differs in that
the proposed method does not require any human interaction.

Video Motion Segmentation: Video motion segmentation [5] aims to segment
a video based on motion cues, while video object segmentation aims at segment-
ing the foreground based on objects. The objective function differs: for motion
segmentation, clustering based methods [5,29,32,39] are predominant and group
point trajectories. In contrast, for video object segmentation, a binary labeling
formulation is typically applied as we show next by describing our approach.

Fig. 2. Motion saliency estimation. Given an input video, we compute the flow field
for each frame. We detect the saliency score based on the flow vector by calculating a
boundary dissimilarity map u(0) and a distance map u(1) indicating the distance of each
pixel to the boundaries. We use minimum barrier distance to measure the distance. The
motion saliency estimation is computed by averaging the boundary dissimilarity map
and the distance map.

3 Unsupervised Video Object Segmentation

The two most important ingredients for unsupervised video object segmentation
are the initial saliency estimate as well as a good assessment of the neighborhood
relation of pixels or superpixels. For initial saliency prediction in unsupervised
video object segmentation we describe a novel method comparing the motion at
a pixel to the boundary motion. Intuitively, boundary pixels largely correspond
to background and pixels with a similar motion are likely background too. To
construct a meaningful neighborhood relation between pixels we assess flow and
appearance cues. We provide details for both contributions after describing an
overview of our unsupervised video object segmentation approach.

Method Overview: Our method uses a diffusion mechanism for unsuper-
vised video segmentation. Hence, the approach distributes an initial fore-
ground saliency estimate over the F frames xi, i ∈ {1, . . . , F}, of a video
x = (x1, . . . , xF ). To this end, we partition each frame into a set of nodes
using superpixels, and estimate and encode their semantic relationship within
and across frames using a global neighborhood graph. Specifically, we represent
the global neighborhood graph by a weighted row-stochastic adjacency matrix
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G ∈ R
N×N , where N is the total number of nodes in the video. Diffusion of

the initial foreground saliency estimates v0 ∈ R
N for each node is performed by

repeated matrix multiplication of the current node estimate with the adjacency
matrix G, i.e., for the t-th diffusion step vt = Gvt−1.

With the adjacency matrix G and initialization v0 being the only inputs to
the algorithm, it is obvious that they are of crucial importance for diffusion based
unsupervised video segmentation. We focus on both points in the following and
develop first a new saliency estimation of v0 before discussing construction of
the neighborhood graph G.

3.1 Saliency Estimation

For unsupervised video object segmentation, we propose to estimate the motion
saliency by leveraging a boundary condition. Since we are dealing with video,
motion is one of the most important cues for identifying moving foreground
objects. In general, the motion of the foreground object differs from background
motion. But importantly, the background region is often connected to the bound-
ary of the image. While the latter assumption is commonly employed for image
saliency detection, it has not been exploited for motion saliency estimation.
To obtain the initial saliency estimate v0 defined over superpixels, we average
the pixelwise motion saliency results u over the spatial support of each super-
pixel. We subsequently describe our developed procedure for foreground saliency
estimation, taking advantage of the boundary condition. The proposed motion
saliency detection is summarized in Fig. 2.

Conventional motion saliency estimation techniques for video object segmen-
tation are based on either background subtraction [6], trajectory clustering [5],
or motion separation [13]. Background subtraction techniques typically assume
a static camera, which is not applicable for complex videos. Trajectory clus-
tering groups points with similar trajectories, which is sensitive to non-rigid
transformation. Motion separation detects background by finding the dominant
motion and subsequently calculates the difference in magnitude and/or orienta-
tion between the motion at each pixel, and the dominant motion. The larger the
difference, the more likely the pixel to be foreground. Again, complex motion
poses challenges, making it hard to separate foreground from background.

In contrast, we propose to use the boundary condition that is commonly used
for image saliency detection [53,56] to support motion saliency estimation for
unsupervised video segmentation. Our approach is based on the intuition that
the background region is connected to image boundaries in some way. Therefore
we calculate a distance metric for every pixel to the boundary. Compared to the
aforementioned techniques, we will show that our method can better deal with
complex, non-rigid motion.

We use u to denote the foreground motion saliency of the video. Moreover, ui

and ui(pi) denote the foreground saliency for frame i and for pixel pi in frame i
respectively. To compute the motion saliency estimate, we treat every frame xi,
i ∈ {1, . . . , F} independently. Given a frame xi, let xi(pi) refer to the intensity
values of pixel pi, and let fi(pi) ∈ R

2 denote the optical flow vector measuring
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the motion of the object illustrated at pixel pi between frame i and frame i + 1.
In addition, let Bi denote the set of boundary pixels of frame i.

We compute the foreground motion saliency ui of frame i based on two
terms u

(0)
i and u

(1)
i , each of which measures a distance between any pixel pi of

the i-th frame and the boundary Bi. For the first distance u
(0)
i , we compute

the smallest flow direction difference observed between a pixel pi and common
flow directions on the boundary. For the second distance u

(1)
i , we measure the

smallest barrier distance between pixel pi and boundary pixels. Both of the
terms capture the similarity between the motion at pixel pi and the background
motion. Subsequently, we explain both terms in greater detail.

Computing Flow Direction Difference: More formally, to compute u
(0)
i (pi),

the flow direction difference between pixel pi in frame i and common flow direc-
tions on the boundary Bi of frame i, we first cluster the boundary flow directions
into a set of K clusters k ∈ {1, . . . , K} using k-means. We subsume the cluster
centers in the set

Ki=

⎧
⎨

⎩
μi,k :μi,k =arg min

µ̂i,k

min
r∈{0,1}|B i|K

1
2

∑

pi∈B i,k

rpi,k‖fi(pi) − μ̂i,k‖2
2

⎫
⎬

⎭
. (1)

Hereby, rpi,k ∈ {0, 1} is an indicator variable which assigns pixel pi to cluster k,
and r is the concatenation of all those indicator variables. We update Ki to only
contain centers with more than 1/6 of the boundary pixels assigned. Given those
cluster centers, we then obtain a first distance measure capturing the difference
of flow between pixel pi in frame i and the major flow directions observed at the
boundary of frame i via

u
(0)
i (pi) = min

µi,k∈K i

‖fi(pi) − μi,k‖2
2. (2)

Computing Smallest Barrier Distance: When computing the smallest bar-
rier distance Dbd,i between pixel pi in frame i and boundary pixels, i.e., to
obtain

u
(1)
i (pi) = min

s∈B i

Dbd,i(pi, s), (3)

we use the following barrier distance:

Dbd,i(pi, s) = max
e∈Πi,pi,s

wi(e) − min
e∈Πi,pi,s

wi(e). (4)

Hereby, Πi,pi,s denotes the path, i.e., a set of edges connecting pixel pi to
boundary pixel s ∈ Bi, obtained by computing a minimum spanning tree on
frame i. The edge weights wi(e), which are used to compute both the mini-
mum spanning tree as well as the barrier distance given in Eq. (4), are obtained
as the maximum flow direction difference between two neighboring pixels, i.e.,
wi(e) = max {fi(pi) − fi(qi)} ∈ R where the max is taken across the two compo-
nents of fi(pi) − fi(qi) ∈ R

2. Note that e = (pi, qi) refers to an edge connecting
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the two pixels pi and qi. To compute the minimum spanning tree we use the
classical 4-connected neighborhood. Intuitively, we compute the barrier distance
between 2 points as the difference between the maximum edge weight and min-
imum edge weight on the path of the minimum spanning tree between the 2
points. We then compute the smallest barrier distance of a point as the mini-
mum of the barrier distances between the point and any point on the boundary.

Computing Foreground Motion Saliency: We obtain the pixelwise fore-
ground motion saliency ui of frame i when adding the two distance metrics u

(0)
i

and u
(1)
i after having normalized each of them to a range of [0, 1] by subtracting

the minimum entry in u
(·)
i and dividing by the difference between the maximum

and minimum entry. Examples for u
(0)
i , u

(1)
i and the combined motion saliency

are visualized in Fig. 2.
We found the proposed changes to result in significant improvements for

saliency estimation of video data. We present a careful assessment in Sect. 4.

3.2 Neighborhood Construction

The second important term for diffusion based video segmentation beyond initial
estimates is the neighborhood graph G. Classical techniques construct the adja-
cency matrix using local information, such as connecting a node with its spatial
and temporal neighbors, and non-local connections. These methods establish a
connection between two nodes as long as their visual appearance is similar.

Fig. 3. Graph construnction. In our method, we construct a graph for diffusing the
initial motion saliency estimation. Our graph contains (1) edge-aware spatial connec-
tions (intra-frame connections), (2) flow-based temporal connections (inter-frame con-
nections and (3) non-local long range connections. We show the initial motion saliency
and the diffused saliency map using the constructed graph. We found these three types
of connections to help propagate the initial saliency estimation effectively.

In contrast, we compute the neighborhood graph, i.e., the adjacency matrix
for graph diffusion, G = T ×E×V as the product of three components, based on
inter-frame information T , intra-frame signals E, and long-range components V ,
as shown in Fig. 3, and use a variety of cues for robustness. We formally discuss
each of the components in the following.

Inter-frame temporal information is extracted from optical flow cues.
We connect superpixels between adjacent frames following flow vectors while
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checking the forward/backward consistency in order to prevent inaccurate flow
estimation at motion boundaries.

More formally, to compute the flow adjacency matrix T , consider two succes-
sive video frames xi and xi+1 each containing pixel pi and pi+1, respectively. We
compute a forward flow field fi(pi) and a backward flow field bi+1(pi+1) densely
for every pixel p using [21]. Using those flow fields, we define the forward confi-
dence score cFi (pi) at pixel pi of frame xi via

cFi (pi) = exp
(−‖ − fi(pi) − bi+1(pi + fi(pi))‖2

2

σ2

)

, (5)

and the backward confidence score cBi (pi) at pixel pi of frame xi via

cBi (pi) = exp
(−‖ − bi(pi) − fi−1(pi + bi(pi))‖2

2

σ2

)

, (6)

where σ2 is a hyper-parameter. Intuitively, this confidence score measures the
distance between the pixel pi and the result obtained after following the flow field
into frame xi+1 via pi + fi(pi) and back into frame xi via pi + fi(pi) + bi+1(pi +
fi(pi)). Taking the difference between pixel pi and the obtained reprojection
results in the term given in Eqs. (5) and (6). We use the confidence scores to
compute the connection strength between two superpixels si,k and si+1,m in
frame i and i + 1 via

T (si,k, si+1,m)=
∑

p∈si,k

δ(p + fi(p) ∈ si+1,m)cFi (p)

|si,k| + |si+1,m| +
∑

p′∈si+1,m

δ(p′ + bi+1(p
′) ∈ si,k)cBi+1(p

′)
|si,k| + |si+1,m| .

(7)
Hereby δ(·) denotes the indicator function and |si,k| and |si+1,m| represent the
number of pixels in si,k and si+1,m, respectively. Intuitively, the first term com-
pares the strength of the connections that start in superpixel si,k and end up in
superpixel si+1,m with the total amount of strength originating from both si,k
and si+1,m. Similarly for the second term.

Intra-frame spatial information prevents diffusion across visual edges
within a frame, while allowing information to be propagated between adjacent
superpixels in the same frame if they aren’t separated by a strong edge.

More formally, to find the edge aware spatial connections E, we first detect
the edge responses frame-by-frame using the training based method discussed
in [10]. Given edge responses, we calculate the confidence scores A(s) for all
superpixel s by summing over the decay function, i.e.,

A(s) =
1
|s|

∑

p∈s

1
1 + exp(σw · (G(p) − ε))

. (8)

Hereby, G(p) ∈ [0, 1] is the edge response at pixel p. σw and ε are hyper-
parameters, which we fix at σw = 50 and ε = 0.05 for all our experiments.

We calculate the edge-aware adjacency matrix E by exploiting the above
edge information. Specifically,

E(si,k, si,m) =
1
2

(A(si,k) + A(si,m)) , (9)
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if si,k is spatially close to si,m, i.e., if the distance between the centers of the two
superpixels is less than 1.5 times the square root of the size of the superpixel.

Long range connections based on visual similarity allow propagating infor-
mation between superpixels that are far away either temporally or spatially as
long as the two are visually similar. These long-range connections enable the
information to propagate more efficiently through the neighborhood graph.

More formally, to compute the visual similarity matrix V , we find those
superpixels that are most closely related to a superpixel si,m. To this end, we
first perform a k nearest neighbor search. More specifically, for each superpixel
si,m we find its k nearest neighbors that are within a range of r frames temporally.
To compute the distance between two superpixels we use the Euclidean distance
in the feature space.

We compute features f(s) of a superpixel s by concatenating the LAB and
RGB histograms computed over the pixels within a superpixel. We also include
the HOG feature, and the x and y coordinate of the center of the superpixel.

Let the k nearest neighbors of the superpixel si,m be referred to via N(si,m).
The visual similarity matrix is then defined via

V (si,m, s) = exp

(−‖f(si,m) − f(s)‖2
2

σ

)
∀s ∈ N(si,m), (10)

where σ is a hyper-parameter and f(s) denotes the feature representation of the
superpixel s. Note that we use the same features to find k nearest neighbors and
to compute the visual similarity matrix V . In this work, we refrain from using
deep net based information even though we could easily augment our technique
with more features.

To address the computational complexity, we use an approximate k nearest
neighbor search. Specifically, we use the fast implementation of ANN search
utilizing the randomized k-d forest provided in [37].

4 Experiments

In the following, we present the implementation details, describe the datasets
and metrics used for evaluation, followed by ablation study highlighting the
influences of the proposed design choices and comparisons with the state-of-the-
art.

4.1 Implementation Details

For the proposed saliency estimation algorithm, we set the number of clusters
K = 3 for modeling the background. For neighborhood graph construction
described in Sect. 3.2, we found k = 40, r = 15, σ = 0.1, σ2 = 2−6, σw = 50
to work well across datasets. The number of diffusion iterations is set to 25. In
the supplementary material, we show that the performance of our method is
reasonably robust to parameter choices.
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The average running time of our approach on the DAVIS dataset, including
the graph construction and diffusion is about 8.5 s per frame when using a single
PC with Intel i7-4770 CPU and 32 GB memory. Extracting superpixels and
feature descriptors takes about 1.5 and 0.8 s per frame, respectively. We use the
implementation by [21,47] for computing optical flow, which takes about 10.7 s
per frame, including both forward flow and backward flow.

4.2 Datasets

We extensively compare our proposed technique to a series of baselines using
the DAVIS dataset [42] (50 video sequences), the SegTrack v2 dataset [33] (14
video sequences), and the FBMS-59 dataset [39] (22 video sequences in the test
set). These datasets are challenging as they contain nonrigid deformation, drastic
illumination changes, cluttered background, rapid object motion, and occlusion.
All three datasets provide pixel-level ground-truth annotations for each frame.

4.3 Evaluation Metrics

Intersection Over Union (J ): The intersection over union (IoU) metric, also
called the Jaccard index, computes the average over the dataset. The IoU metric
has been widely used for evaluating the quality of the segmentation.

Contour Accuracy (F ) [42]: To assess the segmentation quality, we compute
the contour accuracy as F = 2PR

P+R , where P and R are the matching precision
and recall of the two sets of points on the contours of the ground truth segment
and the output segment, calculated via a bipartite graph matching.

Table 1. Contribution of different components of our algorithm evaluated on the
DAVIS dataset. Our algorithm with inter-frame, intra-frame connections, long range
connections, and focused diffusion (denoted as FDiff) enabled performs best and
achieves an IoU of 77.56%.

Connections FDiff IoU (%)

Inter-frame Intra-frame Long range

- - - - 57.52

� - - - 62.75

- � - - 62.13

- - � - 72.38

� � - - 65.01

� - � - 72.70

- � � - 74.13

� � � - 74.34

� � � � 77.56
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Temporal Stability (T ) [42]: The temporal stability is measured by comput-
ing the distance between the shape context descriptors [3] describing the shape
of the boundary of the segmentations between two successive frames. Intuitively,
the metric indicates the degree of deformation required to transform the segmen-
tation mask from one frame to its adjacent frames.

Subsequently we first present an ablation study where we assess the con-
tributions of our technique. Afterwards we perform a quantitative evaluation
where we compare the accuracy of our approach to baseline video segmentation
approaches. Finally we present qualitative results to illustrate the success and
failure cases of our method.

4.4 Ablation Study

We assess the resulting performance of the individual components of our adja-
cency defined neighborhood in Table 1. The performance in IoU of the motion
saliency estimation in our approach (with all the connections disabled) is 57.52%.
We analyze the effect of the three main components in the adjacency graph: (1)
inter-frame flow based temporal connections T , (2) intra-frame edge based spa-
tial connections E and (3) long range connections V .

The improvements reported for saliency estimation and neighborhood con-
struction motivate their use for unsupervised video segmentation. Besides, we
apply a second round of ‘focused diffusion,’ restricted to the region which focuses
primarily on the foreground object, to improve the results. The effects of the
focused diffusion (denoted ‘FDiff’) can be found in Table 1 as well, showing sig-
nificant improvements.

In Table 1, the checkmark ‘�’ indicates the enabled components. We observe
consistent improvements when including additional components, which improve
the robustness of the proposed method.

4.5 Quantitative Evaluation

Evaluation on the DAVIS dataset: We compare the performance of our app-
roach to several baselines using the DAVIS dataset. The results are summarized

Table 2. The quantitative evaluation on the DAVIS dataset [42]. Evaluation metrics
are the IoU measurement J , boundary precision F , and time stability T . Follow-
ing [42], we also report the recall and the decay of performance over time for J and
F measurements.
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Table 3. The attribute-based aggregate performance comparing unsupervised methods
on the DAVIS dataset [42]. We calculate the average IoU of all sequences with the
specific attribute: appearance change (AC), dynamic background (DB), fast motion
(FM), motion blur (MB), and occlusion (OCC). The right column with small font
indicates the performance change for the method on the remaining sequences if the
sequences possessing the corresponding attribute are not taken into account.

Attribute NLC

[13]

MSG

[5]

KEY

[31]

FST

[40]

FSG [25] LMP [49] ARP [30] OURS-U

AC 0.54

+0.13
0.48

+0.08
0.42

+0.19
0.55

+0.04
0.73 -0.02 0.67 +0.03 0.73+0.04 0.72 +0.07

DB 0.53

+0.15
0.43

+0.15
0.52

+0.07
0.53

+0.06
0.67+0.05 0.57 +0.16 0.70 +0.08 0.66 +0.15

FM 0.64

+0.00
0.46

+0.14
0.50

+0.12
0.50

+0.12
0.69

+0.04
0.67 +0.05 0.73+0.05 0.75 +0.04

MB 0.61

+0.04
0.35

+0.29
0.51

+0.08
0.48

+0.14
0.65

+0.10
0.64 +0.08 0.69+0.11 0.74 +0.06

OCC 0.70

-0.09
0.48

+0.10
0.52

+0.08
0.53

+0.07
0.65

+0.10
0.70 -0.01 0.71+0.08 0.81 -0.05

in Table 2, where we report the IoU, the contour accuracy, and the time stabil-
ity metrics. The best method is emphasized in bold font and the second best
is underlined. We observe our approach to be quite competitive, outperform-
ing a wide variety of existing unsupervised video segmentation techniques, e.g.,
NLC [13], MSG [5], KEY [31], FST [40], FSG [25], LMP [49], ARP [30]. We
also evaluate our method in the semi-supervised setting by simply replacing the
saliency initialization of the first frame with the ground truth. Note that it is
common to refer to usage of the first frame as ‘semi-supervised.’ Our unsuper-
vised version is denoted as OURS-U and the semi-supervised version is referred
to via OURS-S in Table 2. Semi-supervised baselines are SEA [1], HVS [17],
JMP [14], FCP [43], BVS [36], OFL [52], CTN [27], VPN [26], and MSK [41].
Note that OFL uses deep features, and CTN, VPN, MSK, FSG, and LMP are
deep learning based approaches. We observe our method to improve the state-
of-the-art performance in IoU metric by 1.3% in the unsupervised setting and by
0.7% in the semi-supervised case. Note that beyond training of edge detectors,
no learning is performed in our approach.

In Table 3, we compare the average IoU of all DAVIS sequences, clustered
by attributes, e.g., appearance change, dynamic blur, fast motion, motion blur,
and occlusion. Our method is more robust and outperforms the baselines for fast
motion, motion blur and occlusion. In particular, our method performs well for
objects with occlusion, outperforming other methods by 10% for this attribute.

Evaluation on the SegTrack v2 Dataset: We assess our approach on the
SegTrack v2 dataset using identical choice of parameters. We show the results in
Table 4. We observe our method to be competitive on SegTrack v2. Note that the
reported performance of NLC differs from [13] as in the evaluation in [13] only
a subset of the 12 video sequences were used. We ran the code released by [13]
and report the results on the full SegTrack v2 dataset with 14 video sequences.
The results we report here are similar to the ones reported in [48].
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Table 4. Performance in IoU on SegTrack v2 dataset [33].

Sequence KEY [31] FST [40] NLC [13] FSG [25] Ours

birdfall 0.490 0.014 0.565 0.380 0.649

bird of paradise 0.922 0.837 0.814 0.699 0.937

bmx 0.630 0.621 0.754 0.591 0.847

cheetah 0.281 0.396 0.518 0.596 0.518

drift 0.469 0.811 0.741 0.876 0.829

frog 0.000 0.629 0.713 0.570 0.832

girl 0.877 0.441 0.860 0.667 0.846

hummingbird 0.602 0.335 0.624 0.652 0.464

monkey 0.790 0.699 0.823 0.805 0.739

monkeydog 0.396 0.523 0.525 0.328 0.381

parachute 0.963 0.839 0.859 0.516 0.937

penguin 0.093 0.074 0.139 0.713 0.240

soldier 0.666 0.453 0.692 0.698 0.800

worm 0.844 0.705 0.782 0.506 0.800

Average IoU 0.573 0.527 0.672 0.614 0.701

Table 5. Performance in IoU on FBMS-59 test set [39].

NLC [13] POR [59] POS [28] FST [40] ARP [30] OURS

Average IoU 0.445 0.473 0.542 0.555 0.598 0.608

Table 6. Performance comparisons in IoU on the initialization on the DAVIS and
SegTrack v2 datasets.

Training? DAVIS Segtrack v2

NLC FST FSG LMP Ours NLC FST FSG Ours

- - � � - - - � -

Initial saliency 0.402 0.456 0.602 0.569 0.575 0.419 0.389 0.530 0.424

Evaluation on the FBMS Dataset: We evaluate our method on the
FBMS [39] test set which consists of 22 video sequences. The results are pre-
sented in Table 5. We observe our approach to outperform the baselines.

Comparisons of the Saliency Estimation: To illustrate the benefits of the
proposed motion saliency estimation, we compare the performance of the pro-
posed initialization with other approaches in Table 6 and observe that the pro-
posed saliency estimation performs very well. Note that the saliency estimation



826 Y.-T. Hu et al.

in our approach is unsupervised as opposed to FSG and LMP which are trained
on more than 10,000 images and 2,250 videos, respectively.

4.6 Qualitative Evaluation

Side-by-Side Comparison: Next we present qualitative results comparing our
algorithm to competing methods on challenging parts of the DAVIS dataset. In
Fig. 4 we provide side-by-side comparisons to existing methods, i.e., APR [30],
LMP [49], FSG [25], and NLC [13]. We observe our approach to yield encourag-
ing results even in challenging situations such as frames in bmx-trees (Fig. 4,
first row), where the foreground object is very small and occluded, and the back-

Fig. 4. Comparison of our algorithm and other unsupervised methods on sequence
bmx-trees (1st row), flamingo (2nd row), libby (3rd row), rhino (4th row), and
dance-jump (5th row) of the DAVIS dataset.

Fig. 5. Visual results of our approach on the sequences swing (1st row), soapbox
(2nd row), drift-straight (3rd row), and dance-twirl (4th row) of the DAVIS
dataset.
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Fig. 6. Failure case. Groundtruth vs. our result.

ground is very colorful, and in flamingo (Fig. 4, second row), where there is
non-rigid deformation, and the background object is similar to the foreground
object. We refer the interested reader to the supplementary material for addi-
tional results and videos.

Success Cases: In Fig. 5, we provide success cases of our algorithm, i.e., frames
where our designed technique delineates the foreground object accurately. We
want to highlight that our approach is more robust to challenges such as occlu-
sions, motion blur and fast moving objects as the attribute-based aggregate
performance in Table 3 suggests.

Failure Modes: In Fig. 6, we also present failure modes of our approach. We
observe our technique to be challenged by complex motion. Since our method
mainly relies on motion and appearance, water is classified as foreground due to
its complex motion (mallard-water).

5 Conclusion

We proposed a saliency estimation and a graph neighborhood for effective unsu-
pervised foreground-background video segmentation. Our key novelty is a motion
saliency estimation and an informative neighborhood structure. Our unsuper-
vised method demonstrates how to effectively exploit the structure of video
data, i.e., taking advantage of flow and edges, and achieves state-of-the-art per-
formance in the unsupervised setting.
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National Science Foundation under Grant No. 1718221, 1755785, Samsung, and 3M.
We thank NVIDIA for providing the GPUs used for this research.
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