
Learning Compression from Limited
Unlabeled Data

Xiangyu He1,2 and Jian Cheng1,2,3(B)

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences, Beijing, China

{xiangyu.he,jcheng}@nlpr.ia.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Center for Excellence in Brain Science and Intelligence Technology, Beijing, China

Abstract. Convolutional neural networks (CNNs) have dramatically
advanced the state-of-art in a number of domains. However, most models
are both computation and memory intensive, which arouse the interest
of network compression. While existing compression methods achieve
good performance, they suffer from three limitations: (1) the inevitable
retraining with enormous labeled data; (2) the massive GPU hours for
retraining; (3) the training tricks for model compression. Especially the
requirement of retraining on original datasets makes it difficult to apply
in many real-world scenarios, where training data is not publicly avail-
able. In this paper, we reveal that re-normalization is the practical and
effective way to alleviate the above limitations. Through quantization or
pruning, most methods may compress a large number of parameters but
ignore the core role in performance degradation, which is the Gaussian
conjugate prior induced by batch normalization. By employing the re-
estimated statistics in batch normalization, we significantly improve the
accuracy of compressed CNNs. Extensive experiments on ImageNet show
it outperforms baselines by a large margin and is comparable to label-
based methods. Besides, the fine-tuning process takes less than 5 min on
CPU, using 1000 unlabeled images.

Keywords: Deep neural networks · Label-free network compression

1 Introduction

Convolutional neural networks (CNNs) have achieved impressive performances
in many challenging problems [15,24], and even surpass human-level for certain
tasks such as ImageNet classification [16]. As CNN-based recognition systems [3]
continue to grow, it is critical to improve inference efficiency while maintaining
accuracy [5].

Since network compression introduces efficient approximations to CNNs and
compressed models require less memory and fewer operations, parameter quan-
tization [8,18,30], pruning [11,13] and low-rank [33,38] representations have

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11205, pp. 778–795, 2018.
https://doi.org/10.1007/978-3-030-01246-5_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01246-5_46&domain=pdf
http://orcid.org/0000-0003-2554-9289
http://orcid.org/0000-0003-1289-2758

Label-free Network Compression 779

become a topic of interest in the deep learning community. Especially quan-
tization, with the boom of AI chips, will be the workhorse in industry. While
these techniques have driven advances in power efficiency, they still face a consid-
erable accuracy loss under low-bit or highly sparse compression. Retraining on
the original dataset is usually inevitable. Unfortunately, the retraining process
needs a sufficiently large open training dataset which is inaccessible for many
real-world applications, such as medical diagnosis [9], drug discovery and toxi-
cology [1]. Therefore, it is imperative to avoid retraining or require no training
data.

In this work, we alleviate the accuracy degradation in direct network com-
pression through label-free fine-tuning. For network quantization, which com-
prises two primary components: weight quantization and feature map quantiza-
tion. Intuitively, the quantization error determines the performance loss. There-
fore, we propose the Quasi-Lloyd-Max algorithm to minimize the weight quanti-
zation error. To further improve the accuracy of compressed networks, we explore
the reason of feature map distortion. In light of Bayesian networks, we reveal
that statistic-shift of batch normalization results in the accuracy degradation
of direct compression. When network parameters misfit approximate Gaussian
distribution, the prior assumption of mean and variance should mismatch the
corrupted features. By employing the re-estimated statistics in batch normaliza-
tion, the performance of compressed CNNs can be rapidly recovered. Extensive
experiments on 4-bit quantization and pruning demonstrate the robustness of
this viewpoint.

Compared with conventional label-based compression methods, the main con-
tributions of this paper are as follows:

– We reveal the hidden factor why direct network compression results in per-
formance degradation, and prove that 4-bit or sparse representation remains
capable of original tasks without retraining.

– A Quasi-Lloyd-Max algorithm is proposed to minimize the weight quantiza-
tion error on 4-bit networks.

– The fine-tuning time decreases from days (GPU) to minutes (CPU), by using
limited unlabeled data.

2 Related Work

The redundant parameters of deep neural networks induce inefficient computa-
tion and large memory footprint. Most compression approaches can be viewed as
the regularization techniques to solve these problems. Recently, along with the
existence of TPU [22] and low precision BLAS [10], parameter fixed-point rep-
resentation has frequently been discussed. Traditional hash-based vector quanti-
zation, such as HashNet [2], may not directly benefit from customized hardware.
In contrast, 8-8-bit structures get TensorRT [27] or TPU [22] support easily.
Bit-oriented methods with potential 64× acceleration, such as BC [7], FFN [34],
BNN [6] and XNOR-Net [30], compress DNNs to extreme 1 bit (∼32× compres-
sion), while suffering an irreversible accuracy loss. INQ [39] shows the reasonable

780 X. He and J. Cheng

performance of 2n framework; nevertheless, plenty of labeled data is required for
retraining.

For low-rank representation, early studies share the same starting point:
using matrix low-rank approximation to reduce the computation. Conventional
network structures with regular filters and large feature maps are friendly to
matrix decomposition. Generalized Singular Vector Decomposition [38], Tucker
Decomposition [23] and Tensor Block Term Decomposition [33,35] are widely
used on AlexNet [24], VGG-16 [31] and GoogleNet [32]. At the cost of negligible
loss in accuracy, they gain several times acceleration with a certain amount of
compression. Very recently, MobileNet [17] with channel-wise convolution shows
the potential capability to extract distinguishing features within limited parame-
ters. Most notably, this network structure is identical to the decomposed matrix,
which invalidates the current decomposition methods. Similar problems still arise
in ResNet [16] with 1 × 1 filters.

Weight pruning benefits from Sparse GEneral Matrix Multiplication (Sparse
GEMM) and highly optimized hardware design [14]. Combining with clustering
and Huffman coding [13], promising compression results without accuracy loss
were reported. The problem is hundreds [11] or even thousands [14] of retraining
epochs are time-consuming, and is still heavily reliant on labeled datasets.

By using feature map fitting, [4,36] implicitly learn from the well-trained net-
works through the Euclidean distance between feature maps of full-precision and
compressed networks. Nevertheless, deeper network structures and imbalanced
class samples would be the nightmare to hand-tuned layer by layer analysis.

3 Weight Quantization

Since quantization has been the mainstream compression technique in indus-
try, we first review the cause of quantization, then discuss three hardware-
friendly quantizers under different metrics. The scheme with least accuracy loss
is adopted in further feature map recovery.

3.1 Cause

In early research, [12,19] show that it is possible to train deep neural networks
using 16-bit fixed-point numbers. Fixed-point computation with high speed and
low power consumption is much more friendly to embedded devices. The small
circuits would allow for the configuration of more arithmetic units. Besides, the
low-bit data representation minimizes the memory footprint, which reduces the
data transmission time for the customized device like FPGA [12,13,25].

3.2 �2 Norm Metric

Since customized hardware units have fully supported fixed-point multiplication
and addition, quantizing float numbers to their nearest fixed-point representa-
tions by shift and carry operations can easily accelerate inference time. Suppose

Label-free Network Compression 781

the fixed-point number is represented as [Ibit : Fbit], and the Integer part plus
the Fraction part yields the real number. Mathematically this problem, dubbed
round-to-nearest, can be stated as follows,

Q∗ = arg min
Q

J(Q) = ||W − Q||22
s.t. Qi ∈ {−2I/2,−2I/2 + 2−F , ...0, ..., 2I/2 − 2−F }

where Q is forced to fit the large number in W. This metric minimizes the
loss function at the cost of small numbers and becomes much more sensitive
to outliers. That is, large numbers determine the bit-width selection of Ibit and
Fbit. To partly solve this problem, a scaling factor α ∈ R is introduced,

α∗,Q∗ = arg min
α>0,Q

J(α,Q) = ||W − αQ||22
It has been proved that scaling factor could dramatically enlarge the domain of
values [30]. Although the function is convex in each variable only, they are not
convex in each variable together. It is infeasible to solve J(α,Q) in the sense
of finding global minima, especially under the discrete constraint. However, it is
possible to find local minima using iterative numerical optimization. Consider
the following problem,

α∗, Q∗ = arg min
α>0

(
α2QTQ − 2αQTW + c

)
, (1)

where Q corresponds to a set of fixed-point numbers and c =
∑

i W
2
i is an α

and Q independent constant. Thus, for any given Q, the optimal α is

α∗ =
QTW
QTQ

. (2)

By substituting α∗ into (1), the optimization problem leads to the partial deriva-
tives ∂J(α,Q)

∂Q . Setting it to zero, then project the solution to given discrete space

Q∗ ≈ Fix(W/α∗). (3)

Algorithm 1 iteratively updates α∗ and Q∗ through quantizer Fix(·), such as
round-to-nearest, 2n (i.e., quantized to nearest power of 2) or uniform quanti-
zation (i.e., quantized to nearest quantization interval endpoints). Following the
iterative update rule, the Euclidean distance between W and αQ is optimized
in each iteration.

3.3 Discrete Entropy Metric

Similar to the squared Euclidean distance (�2) which is the canonical example of
a Bregman distance, another useful measure is the generalized Kullback-Leibler
divergence (KL) generated by the convex function

∑
i pi ln pi. In this case,

α∗,Q∗ = arg min
α>0,Q

D(αQ||W) =
∑

i

(|Wi| ln Wi

αQi
− |Wi| + α|Qi|)

s.t. α > 0, Qi ∈ {±20Δ,±21Δ, ...,±2k−1Δ}

782 X. He and J. Cheng

Algorithm 1. Quasi-Lloyd-Max Algorithm.
Require: Full precision weights W, metric J (·) (�2, KL, etc.) and quantizer Fix(·).
Ensure: Updated ˜W ≈ α∗Q∗ and fixed-point Q∗.
1: for kth filter in lth layer do
2: αl,k ← Initialize parameters
3: repeat
4: α∗

l,k,Q∗
l,k ← arg min

α,Q
J (αl,k, Ql,k); {Fix α, solve Q; Fix Q, solve α}

5: swap(αl,k, α∗
l,k);

6: until convergence of parameters αl,k

7: Yl ← ˜Wl ∗ ˜Xl ≈ α∗
l (Q∗

l � ˜Xl); {low-bit convolution + cblas sscal}
8: ˜Xl+1 ← ψ(Yl); {ReLU + INT 8-bit quantization}
9: end for

Fig. 1. (a) Quasi-Lloyd-Max convergence comparsion of different metrics. The
Euclidean distance between W and αQ is reported. (b) The distributions of quantized
4-bit (2n quantization) and full-precision weights of the third convolution layer (some
bars get merged for clearness)

where Δ corresponds to the minimum value of 2n in k-bit quantization. Like �2
norm metric, this loss function is also lower bounded by zero.

Consider the function of D(αQ||W) to be differentiated partially with respect
to the elements of Q, which is

∂D(αQ||W)

∂Qi
= −|Wi|

Qi
+ α · sgn(Qi). (4)

With fixed α, similarly we have

∂D(αQ||W)

∂α
= − 1

α

∑

i

|Wi| +
∑

i

|Qi|. (5)

By setting both equations to zero, we obtain a pair of local minima of KL
Divergence. Hence, the solutions to D(αQ||W) are α∗ =

∑
i |Wi|∑
i |Q∗

i | and Q∗ =

Fix(Wα∗) through Quasi-Lloyd-Max iterations.
In mathematics, generalized Kullback-Leibler Divergence is similar to a met-

ric, but satisfies neither the triangle inequality nor symmetry. We further test

Label-free Network Compression 783

D(W||αQ) as a weight quantization loss on AlexNet, shown in Fig. 1(b). Fol-
lowing the same procedure, we obtain

∂D(W||αQ)

∂α
=

∑

i

|Qi| ln α +
∑

i

|Qi|(ln |Qi|
|Wi|) (6)

∂D(W||αQ)

∂Qi
= α · sgn(Qi) · ln

αQi

Wi
. (7)

In this case, α∗ = exp(
∑

i |Q∗
i | ln |Wi|

|Q∗
i

|
∑

i |Q∗
i |) and Q∗ remains the same as Eq. (4).

Taking the third convolution layer and the second fully connected layer of
AlexNet as examples, Fig. 1(a) shows the convergence under different metrics. In
our evaluations, all metrics converge in the first few iterations and obtain nearly
the same quantization error. Since �2 yields more steady convergence speed, we
evaluate the accuracy of different quantizer under �2 norm metric. As listed in
Table 1 (whole network quantization except the first layer), 2n outperforms other
quantizers by a large margin; thus we follow this setting in the next experiments.

Table 1. Quantizer comparsion of 4-bit Weights and 8-bit activations (�2 Norm)

Models Round-to-nearest Uniform 2n Full-precision

AlexNet Top-1 48.32 43.12 58.66 60.43

Top-5 72.93 67.73 81.17 82.47

ResNet-18 Top-1 45.92 50.18 55.76 69.08

Top-5 71.33 75.63 79.75 89.03

ResNet-50 Top-1 54.61 55.99 68.14 75.30

Top-5 77.98 79.00 87.98 92.11

3.4 Feature-Based Metric

In general, feature map extracted from input data is more crucial than weights in
computer vision tasks. To fit the output features rather than pre-trained weights
would further improve the performance [36]. Taking full-precision features Y
and quantized input activations X̃ into account, we obtain the multi-objective
optimization problem:

α∗,Q∗ = arg min
α>0,Q

||W − αQ||22 + λ||Y − αX̃QT ||22. (8)

With λ = 0, Eq. (8) degrades to �2 metric. For large λ, feature map fitting
becomes more crucial. This problem could be solved by Quasi-Lloyd-Max in a

784 X. He and J. Cheng

similar way. The closed-form solutions of each step are

α∗ =
λ

∑m
i=1 Q

T X̃T
i Yi + QTW

λ
∑m

i=1 QT X̃T
i X̃iQ + QTQ

(9)

(α∗λ
m∑

i=1

X̃T
i X̃i + α∗I)Q = λ

m∑

i=1

X̃T
i Yi + W, (10)

where I corresponding to n×n unit matrix and m refers to m smaples. If X̃T
i X̃i

is symmetric positive definite, then by using modified Cholesky decomposition,
one may simplify Eq.(10) as α∗(λ

∑
i X̃

T
i X̃i + I) = LDLT , where L is a lower

triangular matrix with unit diagonal elements and D is a diagonal matrix with
positive elements on the diagonal. To solve LDLTx = y, we only need to address
Lx′ = y and DLTx = x′, which is faster and with better numerical stability.

However, given limited unlabeled data, there is no global measurement to
facilitate the selection of λ. In our experiments, the iterative numerical approx-
imation to solve Q can be hugely affected by the different settings. Hence, the
explicit feature-map based method is deprecated in our further evaluations. Com-
pared with various metrics, Table 2 shows that the �2 norm could better reflect
the weight fitting error.

Table 2. Metric Comparsion of Direct 4-bit 2n Weight Quantization

Models �2 Norm D(W||αQ) D(αQ)||W Fmap-based

AlexNet Top-1 58.90 56.30 57.59 –

Top-5 81.43 79.40 80.26 –

4 Feature Recovery

To further improve the performance of compressed networks, we focus on the
“Gaussian-like”feature distribution. From a Bayesian perspective, the conjugate
prior induced by batch normalization results in the performance gap between
full-precision network and post hoc compression. Therefore, we can use batch
normalization to refine a well-trained network with low-bit or sparse represen-
tation.

4.1 Bayesian Networks

The methodology of CNNs is to find the maximum a posteriori (MAP) weights
given a training dataset (D) and a prior distribution p(W) over model param-
eters W . Suppose that D consists of N batch samples {(xi, yi)i=1:N}, then
p(W |D) = p(D|W)p(W)

p(D) . Due to the difficulty in calculating p(D), it is common
to approximate p(W |D) using a variational distribution qτ (W). By optimizing

Label-free Network Compression 785

the variational parameters τ so that the Kullblack-Leiber (KL) divergence is
minimized:

L(τ) = −Eqτ (W)[log p(D|W)] + KL(qτ (W)||p(W)) (11)

= −
∫

W
qτ (W) log p(D|W)dW + KL(qτ (W)||p(W)). (12)

Equation (13) is known as the evidence-lower-bound (ELBO), assuming i.i.d.
observation noise.

In practice, a Monte Carlo integration is usually employed to estimate the
expectation term Eqτ (W)[log p(D|W)]. Using weight samples Ŵi ∼ qτ (W) for
each batch i, leads to the following approximation:

L(τ) := − 1
N

N∑

i=1

log p(D|Ŵi) + KL(qτ (W)||p(W)) (13)

:= − 1
N

N∑

i=1

log p(yi|xi, Ŵi)

︸ ︷︷ ︸
negative log−likelihood

+KL(qτ (W)||p(W)).
︸ ︷︷ ︸

KL divergence

(14)

Especially, for batch normalization parameters {μB , σB} ∈ W , we regard the
inference at training time as a stochastic process, estimated mean and vari-
ance based on samples in a mini-batch are two stochastic variables. Assume
i.i.d. M samples where zi = Wx ∼ N (μ, σ2) and μi = 1

M

∑M
k=1 zk. By

using central limit theorem (CLT) for sufficient random sampling through SGD,
we have μB ∼ N (μ, σ2

M). Due to E[(zi − μ)2] = σ2, similarly we obtain

σ2
B ∼ N (σ2, E[(zi−μ)4]−σ4

M).

4.2 KL Divergence and Weight Regularization

Probabilistically, p(D|W) =
∏N

i=1 p(yi|xi,W), the posterior p(yi|xi,W)
expresses a predictive distribution generated by a parameteric model W , e.g.,
the cross-entropy criterion for multi-classification. The negative loglikelihood
defines L as follows:

L(y) = − 1
N

N∑

i=1

log p(yi|xi,W) +
λ

2
||ω||22. (15)

where ω is learnable parameters such as weights, and W also includes random
parameters such as μB , σB .

Since both L(τ) and L(y) are solved by gradient descent, the second terms of
Eqs. (15) and (17) illustrate the connection between KL divergence (i.e., p(W)
w.r.t the estimated distribution qτ (W)) and weight regularization:

∂KL(qτ (W)||p(W))
∂ω

=
∂ λ

2ωT ω

∂ω
. (16)

786 X. He and J. Cheng

The regularization term can be viewed as a log-prior distribution over weights,
such as Gaussian derived from �2 norm. Under the constraint of low-bit or spar-
sity, the penalty term introduces different priors (e.g., spike-and-slab in pruning)
which hugely affect the approximation to p(W). We now describe how weight
compression corrupts batch normalization parameters.

For random variables in batch normalization, the KL divergence between
approximation N (μq, σ

2
q) and true distribution N (μp, σ

2
p) can be calculated

using:

KL(q(W)||p(W)) =
(μq − μp)2

2σ2
p

+ log
σp

σq
+

σ2
q

2σ2
p

− 1
2
.

Since μp, σp won’t change during training, which is independent to ω, thus μ′
p =

σ′
p = 0, and then ∂KL

∂ω = (μq−μp)μ
′
q

σ2
p

+ (σ2
q−σ2

p)σ
′
q

σqσ2
p

. The optimal approximation μq →
μp, σ2

q → σ2
p reaches its limit when regularization term solved by SGD (partial

derivative is zero). When we compress the well-trained networks, the weight
regularization has changed implicitly, in another word, former estimations should
introduce a great bias. Fortunately, as proved in Sect. 4.2, the expectations of μq

and σ2
q converge to the real distribution parameters, then it is possible to renew

the distorted features through re-estimation.

Fig. 2. Feature distribution comparsion for AlexNet 5th batch-normalization layer

4.3 Renew Distorted Features

While it is impractical to update weights through inference on unlabeled data,
re-estimation on μB and σB is still feasible. From [21], the mean and variance
of activations holds that

E[x̃] := E[μ̃B] (17)

V ar[x̃] :=
m

m − 1
E[σ̃2

B], (18)

where E(μ̃) = 1
m

∑m
i=1 x̃i and E(σ̃2) = 1

m

∑m
i=1 (x̃i − μ̃)2.

Label-free Network Compression 787

In Bayesian theory, if the posterior distribution is in the same probability
distribution family as the prior, then the prior is called a conjugate prior for the
likelihood function. Especially, Gaussian distribution is a conjugate prior for the
likelihood that is also Gaussian. In this case, we have shown that batch normal-
ization parameters obey normal distribution and combine the empirical obser-
vations that output feature of batch normalization is “more Gaussian” [20,21],
one may derive that convolution, or inner-product layer tends to be a Gaus-
sian likelihood. Thus, after compression, by choosing a new Gaussian prior (i.e.,
re-normalization or re-estimation), it will be more likely that the posterior dis-
tribution is also Gaussian:

PGaussian ∝ Plikelihood × Pnormal.

Since batch normalization is commonly employed after convolution, the
distribution of distorted features can be directly renewed. After the re-
normalization, Fig. 2 shows that the distribution has been restored. Nevertheless,
interpreting compressed networks as a likelihood function is a weak approx-
imation. The performance of extremely quantized networks, such as binary or
ternary, will not be improved since the corruption of likelihood function. In those
cases, retraining on the original dataset is somehow inevitable.

5 Experiments

In this section, we verify the effectiveness of proposed methods on ImageNet
dataset (ILSVRC 2012). Generally speaking, training-free quantization or prun-
ing on deep neural networks is challenging, but we achieve much closer accuracy
to full precision networks. We implement weight pruning and low-bit quantiza-
tion on three representative CNNs: AlexNet [30], ResNet-18 [16] and MobileNet
[17]. Besides, we also evaluate on ResNet-50 [16] to examine the validity of
re-normalization on deeper network structures. All images are resized to have
256 pixel at short dimension and then a central crop of 224 × 224 is selected
for re-normalization and evaluation. No data augmentation was used for all
experiments.

5.1 Network Quantization

8-bit quantization with few samples or, ideally, without input data is becoming
the workhorse in industry. As shown in Table 3, our 8-8-bit has reached the com-
parable accuracy with the full precision network. To achieve higher efficiency on
embedded devices, we prove that even 4-bit weights could reach approximately
32-bit level. Using the same 4-bit weights in Sect. 3.2, we re-normalize those
models on 1 K images randomly selected from ILSVRC 2012 training dataset
without label information.

As shown in Table 4, the performance of 4-8-bit network (except the first
layer) was hugely improved from direct quantization. Compared with Nvidia

788 X. He and J. Cheng

Table 3. Results of 8-8-bit (whole network weights & features 8-bit) quantization on
ILSVRC2012 validation dataset. Round-to-nearest with �2 metric was adopted in 8-bit
weights. For 8-bit feature maps, we just quantize float numbers to nearest fixed-points

Models Our baseline Our Gap TensorRT Baseline TensorRT[27] Gap

AlexNet Top-1 60.43 +0.50 57.08 −0.08

Top-5 82.47 +0.29 80.06 −0.08

ResNet-18 Top-1 69.08 −0.08 – –

Top-5 89.03 −0.06 – –

ResNet-50 Top-1 75.30 −0.27 73.23 −0.20

Top-5 92.11 −0.02 91.18 −0.03

Table 4. Final Performance of Network 2n Quantization. Accuracy loss corresponding
to full precision network is reported (4-bit Weights & 8-bit Activations)

Models Baseline w/o ReNorm w/ ReNorm

AlexNet Top-1 60.43 −1.77 −0.39

Top-5 82.47 −1.30 -0.20

ResNet-18 Top-1 69.08 -13.21 -1.83

Top-5 89.03 −9.28 −1.01

ResNet-50 Top-1 75.30 −7.16 −2.14

Top-5 92.11 −4.13 −0.99

MobileNet Top-1 70.81 −70.80 −9.75

Top-5 89.85 −89.82 −6.37

TenorRT, 1250 images were used to update the parameters of 8-bit networks; we
need 1000 images to learn 4-bit quantization. Results on AlexNet, ResNet-18,
and ResNet-50 show the steady performance improvements, which have nearly
approached the 32-bit level. MobileNet, with channel-wise convolution layers, is
far more challenging to quantize. After straightforward 4-bit weight quantization,
the accuracy dropped to nearly zero. This delicate network structure is equivalent
to the low-rank representation of Tensor Block Term Decomposition [33]. For this
reason, channel-wise convolution with little redundancy is naturally difficult to
compress. Since the runtime speed of 8-bit MobileNet on CPU has already only
31 ms (Tensorflow 1.1.0), 4-bit could be a trade-off between even higher speed
and lower accuracy.

Table 5 further shows the comparison between accuracy and learning cost.
Our 4-8-bit is still competitive with retraining methods. In some cases, 4-8-bit
even outperforms some label-based counterparts on AlexNet. For 4-4-bit, slightly
different from Sect. 3.2, we quantize features to nearest 2n (without scale) during
the process of re-normalization.

Compared with the 8-8-bit framework, 4-8-bit achieves not only 2× model
compression but higher runtime speed. Low bit-width enables more fixed-point

Label-free Network Compression 789

Table 5. Quantization comparison for AlexNet and ResNet-18. Top-1 and Top-5 gap
to the corresponding full-precision network is reported. Label-based retraining methods
are marked as “+Label”. The bit width before and after “+” is for weight and activa-
tion respectively. Not reported retraining epoch was shown as “*”. “∼ 0” requires no
backward propagation

AlexNet

Bit Precision Method Top-1 gap Top-5 gap Epochs

8 + 8 DoREFA [40] −2.90 – * + Label

Going Deeper [29] −0.88 −1.06 ∼0

Ours +0.50 +0.29 ∼ 0

5 + 32 INQ [39] +0.15 +0.23 ∼8 + Label

4 + 4 WQ [28] −1.2 −1.1 ∼6 + Label

4 + 8 Ours −0.39 −0.20 ∼0

5 + 4 LogQuant [26] – −3.20 *

4 + 4 Ours -3.24 -2.13 ∼0

ResNet-18

4 + 32 INQ [39] +0.62 +0.32 ∼8 + Label

4 + 8 Ours −1.83 −1.01 ∼ 0

multiplications at the same clock frequency of the chip. This could provide dra-
matic data-level parallelism to achieve higher speedup. Besides, retraining meth-
ods can still benefit from feature map recovery. 3-8-bit AlexNet with +25.43%
Top-1 and +26.86% Top-5 improvement yields 50.69% (Top-1) and 74.87% (Top-
5) accuracy. This result provides a better starting point for retraining 3-bit
networks.

5.2 Weight Pruning

To further verify the conclusion in Sect. 4.2, we apply network pruning (based
on absolute value) to well-trained parameters. Figure 3(a) shows the trade-off
between compression rate and accuracy. Within one iteration, i.e., using 1 K
images, we recover the performance to the practical level (solid line in Fig. 3(a)).
This steady performance improvement not only appeared in network quantiza-
tion but also in weight pruning.

Since AlexNet with over-parameterized inner-product layers is the typical
network structure to examine the effectiveness of pruning approach, we compare
the typical pruning approach [14] with ours on compression rate. As listed in
Table 6, our method even pruned more parameters on two layers, especially Fc1
with most parameters in AlexNet. The overall compression rate of FC was still
very close. Considering the training cost of both methods, ours has a significant
advantage of high-efficiency. Due to the accuracy loss under high compression
rate, we show the trade-off between training cost and performance in Table 7.

790 X. He and J. Cheng

(a) (b)

Fig. 3. (a) Normalized accuracy of the compressed networks under different compres-
sion rate. “1” indicates original network precision. The performance of direct pruning
and re-normalized network are shown as“P” and “RN”. We stop pruning when the accu-
racy drops to 0.85 (normalized). (b) Normalized accuracy changes over re-normalization
iterations. 1K different images were used in each iteration

In our experiments, deeper networks, such as ResNet-50, and lightweight
structures, such as MobileNet, obtain the same results. For 3× pruning,
MobileNet achieves +53.82% Top-5 improvement to 78.43%, with 43% convolu-
tion layer and 7.3% fully connected layer parameters. ResNet-50 yields +6.92%
Top-5 improvement to 90.00%, with 35% convolution layer and 10% fully con-
nected layer parameters. The performance improvements are consistent in all
our experiments, indicating that better performance becomes available by higher
performance network.

Table 6. Model Sparsity Comparsion on AlexNet

Layer |w �=0|
|w| % [14] Total.% |w �=0|

|w| % (Ours) Total.%

Conv1 ∼84% ∼37% 63.1% 48.6%

Conv2 ∼38% 42.1%

Conv3 ∼35% 49.8%

Conv4 ∼37% 50.0%

Conv5 ∼37% 49.0%

Fc1 ∼9% ∼10% 7.6% 12.6%

Fc2 ∼9% 14.5%

Fc3 ∼25% 52.4%

10,000 iterations 1 iteration

120W labeled images 1K unlabeled images

Label-free Network Compression 791

Table 7. The comparsion for different compressed models with the number of training
epochs and the final compression rate. “*” indicates the not reported training epoch.
Label-based retraining methods are marked as “+Label”

Methods Top-1 Epochs Compression Parameters

Dynamic Surgery [11] 56.91 ∼140 + Label 17.7× 3.48M

Fastfood-32-AD [37] 58.07 * + Label 2× 32.8M

Fastfood-16-AD [37] 57.10 * + Label 3.7× 16.4M

Han et al. [14] 57.23 ≥960 + Label 9× 6.7M

Naive Cut [14] 42.82 0 4.4× 13.8M

Ours 55.28 ∼ 0 6.73× 9.26M

5.3 Time Consumption

As listed in Table 8, most networks take only a few minutes to refine the dis-
torted features, and as illustrated in Fig. 3(b), using more images has almost
no contribution to the final accuracy. Setting batch size to 1K is just a trade-
off between memory size and the sampling error of E(x̂) and V ar(x̂). By using
large memory GPU, the whole process may take only a few seconds. This should
lead to reduced time consumption of several orders of magnitudes. We believed
that learning time speedup with limited unlabeled data is far more practical in
real-world applications since slightly accuracy loss is unnoticeable to customers.

Table 8. Time consumption of feature recovery (1 batch = 1K images), evaluated on
Intel Xeon CPU E5-2680 v4 @2.40 GHz x2

AlexNet ResNet-18 ResNet-50 MobileNet

1 batch 64s 172s 295s 197s

6 Conclusion

In this paper, we analyze the compression loss from Bayesian perspective and
prove that batch normalization statistics misfit is one of the crucial reason for the
performance loss. By using the proposed Quasi-Lloyd-Max and re-normalization,
we quantize 4-bit networks to nearly full-precision level without retraining. In
the experiments of network pruning, we further prove the robustness of this
theorem. Our learning process is much more efficient than existing methods
since considerably less data are required. In conclusion, we partly solve the real-
world challenge of learning from limited unlabeled data to compress deep neural
networks, which could be applied in a wide range of applications.

792 X. He and J. Cheng

Acknowledgements. This work was supported in part by National Natural Science
Foundation of China (No. 61332016), the Strategic Priority Research Program of Chi-
nese Academy of Science, Grant No. XDBS01000000.

References

1. Burbidge, R., Trotter, M.W.B., Buxton, B.F., Holden, S.B.: Drug design by
machine learning: support vector machines for pharmaceutical data analysis. Com-
put. Chem. 26(1), 5–14 (2002)

2. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6–11 July 2015, pp. 2285–2294. JMLR.org (2015). http://jmlr.org/proceedings/
papers/v37/chenc15.html

3. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D
object detection for autonomous driving. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June
2016, pp. 2147–2156. IEEE Computer Society (2016)

4. Cheng, J., Wu, J., Leng, C., Wang, Y., Hu, Q.: Quantized CNN: A unified approach
to accelerate and compress convolutional networks. IEEE Trans. Neural Netw.
Learn. Syst., 1–14 (2017)

5. Cheng, J., Wang, P., Li, G., Hu, Q., Lu, H.: Recent advances in efficient compu-
tation of deep convolutional neural networks. Front. IT EE 19(1), 64–77 (2018).
https://doi.org/10.1631/FITEE.1700789

6. Courbariaux, M., Bengio, Y.: BinaryNet: training deep neural networks with
weights and activations constrained to +1 or -1. arXiv abs/1602.02830 (2016)

7. Courbariaux, M., Bengio, Y., David, J.: Binaryconnect: Training deep neural net-
works with binary weights during propagations. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Information Processing Systems
2015, 7–12 December 2015, Montreal, Quebec, Canada, pp. 3123–3131. Curran
Associates, Inc. (2015). http://papers.nips.cc/paper/5647-binaryconnect-training-
deep-neural-networks-with-binary-weights-during-propagations

8. Dettmers, T.: 8-bit approximations for parallelism in deep learning. arXiv
abs/1511.04561 (2015)

9. Djuric, U., Zadeh, G., Aldape, K., Diamandis, P.: Precision histology: how deep
learning is poised to revitalize histomorphology for personalized cancer care. NPJ
Precis. Oncol. 1, 22 (2017)

10. Group, G.: gemmlowp: a small self-contained low-precision GEMM library (2016).
https://github.com/google/gemmlowp

11. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In: Lee,
D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, 5–10 December 2016, Barcelona, Spain, pp. 1379–
1387. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6165-dynamic-
network-surgery-for-efficient-dnns

http://jmlr.org/proceedings/papers/v37/chenc15.html
http://jmlr.org/proceedings/papers/v37/chenc15.html
https://doi.org/10.1631/FITEE.1700789
https://arxiv.org/abs/1609.07061
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
https://arxiv.org/abs/1511.04561
https://github.com/google/gemmlowp
http://papers.nips.cc/paper/6165-dynamic-network-surgery-for-efficient-dnns
http://papers.nips.cc/paper/6165-dynamic-network-surgery-for-efficient-dnns

Label-free Network Compression 793

12. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6–11 July 2015, pp. 1737–1746. JMLR.org (2015). http://jmlr.org/proceedings/
papers/v37/gupta15.html

13. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and huffman coding. arXiv abs/1510.00149
(2015)

14. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connec-
tions for efficient neural network. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015,
7–12 December 2015, Montreal, Quebec, Canada. pp. 1135–1143. Curran Asso-
ciates, Inc. (2015). http://papers.nips.cc/paper/5784-learning-both-weights-and-
connections-for-efficient-neural-network

15. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE Interna-
tional Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October
2017. pp. 2980–2988. IEEE Computer Society (2017). https://doi.org/10.1109/
ICCV.2017.322

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society
(2016)

17. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv abs/1704.04861 (2017)

18. Hu, Q., Wang, P., Cheng, J.: From hashing to CNNs: training binary weight net-
works via hashing. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana,
USA, 2–7 February 2018. AAAI Press (2018). https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16466

19. Hwang, K., Sung, W.: Fixed-point feedforward deep neural network design using
weights +1, 0, and -1. In: 2014 IEEE Workshop on Signal Processing Systems, SiPS
2014, Belfast, United Kingdom, 20–22 October 2014, pp. 174–179. IEEE (2014),
https://doi.org/10.1109/SiPS.2014.6986082

20. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and appli-
cations. Neural Netw. 13(4-5), 411–430 (2000). https://doi.org/10.1016/S0893-
6080(00)00026--5

21. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceed-
ings of the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6–11 July 2015. pp. 448–456. JMLR.org (2015). http://jmlr.org/
proceedings/papers/v37/ioffe15.html

22. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
arXiv abs/1704.04760 (2017)

23. Kim, Y., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv
abs/1511.06530 (2015)

http://jmlr.org/proceedings/papers/v37/gupta15.html
http://jmlr.org/proceedings/papers/v37/gupta15.html
https://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://arxiv.org/abs/1704.04861
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16466
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16466
https://doi.org/10.1109/SiPS.2014.6986082
https://doi.org/10.1016/S0893-6080(00)00026--5
https://doi.org/10.1016/S0893-6080(00)00026--5
http://jmlr.org/proceedings/papers/v37/ioffe15.html
http://jmlr.org/proceedings/papers/v37/ioffe15.html
https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1511.06530

794 X. He and J. Cheng

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada,
United States, pp. 1106–1114. Curran Associates, Inc. (2012). http://papers.nips.
cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

25. Li, G., Li, F., Zhao, T., Cheng, J.: Block convolution: towards memory-efficient
inference of large-scale CNNs on FPGA. In: 2018 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2018, Dresden, Germany, 19–23 March
2018, pp. 1163–1166. IEEE (2018)

26. Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using log-
arithmic data representation. arXiv abs/1603.01025 (2016)

27. NVIDIA: 8-bit inference with tensorrt (2017). http://on-demand.gputechconf.
com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

28. Park, E., Ahn, J., Yoo, S.: Weighted-entropy-based quantization for deep neural
networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 7197–7205. IEEE Computer
Society (2017)

29. Qiu, J., et al.: Going deeper with embedded FPGA platform for convolutional
neural network. In: Chen, D., Greene, J.W. (eds.) Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 21–23 February 2016, pp. 26–35. ACM (2016)

30. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classi-
fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv abs/1409.1556 (2014)

32. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June
2015, pp. 1–9. IEEE Computer Society (2015)

33. Wang, P., Cheng, J.: Accelerating convolutional neural networks for mobile appli-
cations. In: Hanjalic, A., et al. (eds.) Proceedings of the 2016 ACM Conference on
Multimedia Conference, MM 2016, Amsterdam, The Netherlands, 15–19 October
2016, pp. 541–545. ACM (2016)

34. Wang, P., Cheng, J.: Fixed-point factorized networks. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
21–26 July 2017, pp. 3966–3974. IEEE Computer Society (2017)

35. Wang, P., Hu, Q., Fang, Z., Zhao, C., Cheng, J.: DeepSearch: a fast image search
framework for mobile devices. TOMCCAP 14(1), 6:1–6:22 (2018)

36. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp.
4820–4828. IEEE Computer Society (2016)

37. Yang, Z., et al.: Deep fried convnets. In: 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 1476–
1483. IEEE Computer Society (2015)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/abs/1603.01025
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://doi.org/10.1007/978-3-319-46493-0_32

Label-free Network Compression 795

38. Zhang, X., Zou, J., Ming, X., He, K., Sun, J.: Efficient and accurate approximations
of nonlinear convolutional networks. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 1984–
1992. IEEE Computer Society (2015)

39. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
towards lossless CNNs with low-precision weights. arXiv abs/1702.03044 (2017)

40. Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: DoReFa-Net: training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
abs/1606.06160 (2016)

https://arxiv.org/abs/1606.06160

	Learning Compression from Limited Unlabeled Data
	1 Introduction
	2 Related Work
	3 Weight Quantization
	3.1 Cause
	3.2 2 Norm Metric
	3.3 Discrete Entropy Metric
	3.4 Feature-Based Metric

	4 Feature Recovery
	4.1 Bayesian Networks
	4.2 KL Divergence and Weight Regularization
	4.3 Renew Distorted Features

	5 Experiments
	5.1 Network Quantization
	5.2 Weight Pruning
	5.3 Time Consumption

	6 Conclusion
	References

